Advanced Techniques for Enhancing Low-Noise Amplifier Performance: A Review
Abstract
This paper reviews prior investigations into low noise amplifier (LNA) design. In this work, various modern LNA architectures will be examined, with a focus on five technologies: Cascode Distributed LNA, Coupled-Line Feedback in 0.15-m GaAs pHEMT Technology, Dual-Band CMOS LNA in 65-nm CMOS, CMOS LNA Using Post-distortion technique and 22-nm FD-SOI CMOS. In this review, Low power dissipation rate, input and output synchronization, high gain, and low noise levels are examined. In order to design a new successful LNA, each topology's performance is then examined. Future research will be conducted based on comparisons of these five topologies.
References
- A. Bevilacqua, Fundamentals of integrated transformers: From principles to applications, IEEE Solid StateCircuits Mag., vol. 12, no. 4, pp. 86100, Fall 2020, doi: 10.1109/MSSC.2020.3021844
- B. Razavi, "Design of Analog CMOS Integrated Circuits, 2nd ed". New York, NY, USA: McGraw-Hill, ISBN 0-07-252493-6 (alk. paper) 1.
- B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed. New York, NY, USA: McGraw-Hill, 2017.
- C. Xie, Z. Yu, and C. Tan, An X/Ku dual-band switch-free reconfigburable GaAs LNA MMIC based on coupled line, IEEE Access, vol. 8, pp. 160070160077, Aug. 2020.
- C.-Y. Hsiao, T.-Y. Su, and S. S. H. Hsu, CMOS distributed amplifiers using gatedrain transformer feedback technique, IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 29012910, Aug. 2013.
- C.W. Kim, M.S. Kang, P.T. Anh, H.T. Kim, S.G. Lee" An ultra-wideband CMOS low noise amplifier for 35 GHz UWB system" IEEE J. Solid State Circ. 40 (2005) 544547, doi: 10.1109/JSSC.2004.840951
- Deepak Prasad, Krishna Datta" A novel design of UWB low noise amplifier for 210 GHz wireless sensor applications ", Sensors International 21 September 2020, doi: https://doi.org/10.1016/j.sintl.2020.100041
- Enis Kobal, Teerachot Siriburanon''A Compact, Low-Power, Low-NF, Millimeter-Wave Cascode LNA with Magnetic Coupling Feedback in 22-nmFD-SOI CMOS for 5G Applications', IEEE, VOL. 70, NO. 4, APRIL 2023
- F. Ellinger, Radio Frequency Integrated Circuits and Technologies, Springer Germany, Berlin, 2007.
- G. Nikandish and A. Medi, Unilateralization of MMIC distributed amplifiers, IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 30413052, Dec. 2014, doi: 10.1109/TMTT.2014.2361341
- H. Zhang, X. Fan, and E. S. Sinencio, A low-power, linearized, ultra-wideband LNA design technique, IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 320330, Feb. 2009, doi: 10.1109/JSSC.2008.2011033
- Jiye Liu, Shubin Liu" A 2631 GHz Linearized Wideband CMOS LNA Using Post-Distortion Technique", IEEE, VOL. 32, NO. 9, SEPTEMBER 2022, doi: 10.1109/LMWC.2022.3168086
- Jiye Liu, Shubin Liu"A 28-/39-GHz Dual-Band CMOS LNA With Shunt-Series Transformer Feedback" IEEE, VOL. 33, NO. 1, JANUARY 2023, doi: 10.1109/LMWC.2022.3201087
- K. W. Kobayashi, D. Denninghoff, and D. Miller, A novel 100 MHz-45 GHz input-termination-less distributed amplifier design with low-frequency low-noise and high linearity implemented with a 6 Inch 0.15-um GaN-SiC wafer process technology, IEEE J. Solid-State Circuits, vol. 51, no. 9, pp. 20172026, Sep. 2016, doi: 10.1109/JSSC.2016.2558488
- Kateryna Smirnova, Christian Bohn" Ultralow-Power W-Band Low-Noise Amplifier Design in 130-nm SiGe BiCMOS"IEEE, d 21 May 2023, doi: 10.1109/LMWT.2023.3279574
- Kopa and A. B. Apsel, Distributed amplifier with blue noise active termination, IEEE Microw. Compon. Lett., vol. 18, no. 3, pp. 203205, Mar. 2008, doi: 10.1109/LMWC.2008.916814
- Mohammad Billa "6-9 GHz Low-Noise Amplifier Design Implementering"Master of Science Thesis carried out at the Department of Science and Technology (ITN) in Linkping University, June 14, 2010
- O. El-Aassar and G. M. Rebeiz, Design of low-power sub-2.4 dB mean NF 5G LNAs using forward body bias in 22 nm FDSOI, IEEE Trans. Microw. Theory Techn., vol. 68, no. 10, pp. 44454454, Oct. 2020, doi: 10.1109/TMTT.2020.3012538
- O. El-Gharniti, E. Kerherv, and J.-B. Bgueret, Modeling and characterization of on-chip transformers for silicon RFIC, IEEE Trans. Microw. Theory Techn., vol. 55, no. 4, pp. 607615, Apr. 2007, doi: 10.1109/TMTT.2007.893647
- Omar El-Aassar; Gabriel M. Rebeiz " Design of Low-Power Sub-2.4 dB Mean NF 5G LNAs Using Forward Body Bias in 22 nmFDSOI",Year:2020 | Volume: 68, Issue: 10 | Journal Article | Publisher: IEEE
- S. Mondal and J. Paramesh, A reconfigurable 28-/37-GHz MMSEadaptive hybrid-beamforming receiver for carrier aggregation and multistandard MIMO communication, IEEE J. Solid-State Circuits, vol. 54, no. 5, pp. 13911406, May 2019, doi: 10.1109/JSSC.2018.2888844
- T.-K. Nguyen, C.-H. Kim, G.-J. Ihm, M.-S. Yang, and S.-G. Lee, CMOS low-noise amplifier design optimization techniques, IEEE Trans. Microw. Theory Techn., vol. 52, no. 5, pp. 14331442, May 2004, doi: 10.1109/TMTT.2004.827014
- Tran Van Hoi " Study and design of wide band low noise amplifier operating at C band", Vietnam Journal of Mathematics April 2013
- V. Bhagavatula, T. Zhang, A. R. Suvarna, and J. C. Rudell, An ultra-wideband IF millimeter-wave receiver with a 20 GHz channel bandwidth using gain-equalized transformers, IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 323331, Feb. 2016.
- Vikas Chauhan, Nadine Collaert" A 120140-GHz LNA in 250-nm InP HBT ", IEEE, 5 July 2022, doi: 10.1109/LMWC.2022.3189607
- Xu Yan, Haorui Luo "Design and Analysis of a Cascode Distributed LNA With Gain and Noise Improvement in 0.15-m GaAs pHEMT Technology", IEEE, VOL. 69, NO. 12, DECEMBER 2022, doi: 10.1109/TCSII.2022.3196817
- Xu Yan, Jingyuan Zhang "A Broadband 1043-GHz High-Gain LNA MMIC Using Coupled-Line Feedback in 0.15-m GaAs pHEMT Technology" IEEE, VOL. 32, NO. 12, DECEMBER 2022, doi: 10.1109/LMWC.2022.3193007
- Yanhui Lu1, Qinghua Tang" Design of a 1GHz~4GHz ultra-wide band low noise amplifier" 978-1-4244-7941-2/10/$26.00 2010 IEEE, doi: 10.1109/ICIECS.2010.5677741
- Z. Pan, C. Qin, Z. Ye, and Y. Wang, A low power inductorless wideband LNA with Gm enhancement and noise cancellation, IEEE Microw. Wireless Compon. Lett., vol. 27, no. 1, pp. 5860, Jan. 2017, doi: 10.1109/LMWC.2016.2629969