Advanced Techniques for Enhancing Low-Noise Amplifier Performance: A Review

Section: Review Paper
Published
Mar 1, 2024
Pages
35-45

Abstract

This paper reviews prior investigations into low noise amplifier (LNA) design. In this work, various modern LNA architectures will be examined, with a focus on five technologies: Cascode Distributed LNA, Coupled-Line Feedback in 0.15-m GaAs pHEMT Technology, Dual-Band CMOS LNA in 65-nm CMOS, CMOS LNA Using Post-distortion technique and 22-nm FD-SOI CMOS. In this review, Low power dissipation rate, input and output synchronization, high gain, and low noise levels are examined. In order to design a new successful LNA, each topology's performance is then examined. Future research will be conducted based on comparisons of these five topologies.

References

  1. A. Bevilacqua, Fundamentals of integrated transformers: From principles to applications, IEEE Solid StateCircuits Mag., vol. 12, no. 4, pp. 86100, Fall 2020, doi: 10.1109/MSSC.2020.3021844
  2. B. Razavi, "Design of Analog CMOS Integrated Circuits, 2nd ed". New York, NY, USA: McGraw-Hill, ISBN 0-07-252493-6 (alk. paper) 1.
  3. B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed. New York, NY, USA: McGraw-Hill, 2017.
  4. C. Xie, Z. Yu, and C. Tan, An X/Ku dual-band switch-free reconfigburable GaAs LNA MMIC based on coupled line, IEEE Access, vol. 8, pp. 160070160077, Aug. 2020.
  5. C.-Y. Hsiao, T.-Y. Su, and S. S. H. Hsu, CMOS distributed amplifiers using gatedrain transformer feedback technique, IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 29012910, Aug. 2013.
  6. C.W. Kim, M.S. Kang, P.T. Anh, H.T. Kim, S.G. Lee" An ultra-wideband CMOS low noise amplifier for 35 GHz UWB system" IEEE J. Solid State Circ. 40 (2005) 544547, doi: 10.1109/JSSC.2004.840951
  7. Deepak Prasad, Krishna Datta" A novel design of UWB low noise amplifier for 210 GHz wireless sensor applications ", Sensors International 21 September 2020, doi: https://doi.org/10.1016/j.sintl.2020.100041
  8. Enis Kobal, Teerachot Siriburanon''A Compact, Low-Power, Low-NF, Millimeter-Wave Cascode LNA with Magnetic Coupling Feedback in 22-nmFD-SOI CMOS for 5G Applications', IEEE, VOL. 70, NO. 4, APRIL 2023
  9. F. Ellinger, Radio Frequency Integrated Circuits and Technologies, Springer Germany, Berlin, 2007.
  10. G. Nikandish and A. Medi, Unilateralization of MMIC distributed amplifiers, IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 30413052, Dec. 2014, doi: 10.1109/TMTT.2014.2361341
  11. H. Zhang, X. Fan, and E. S. Sinencio, A low-power, linearized, ultra-wideband LNA design technique, IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 320330, Feb. 2009, doi: 10.1109/JSSC.2008.2011033
  12. Jiye Liu, Shubin Liu" A 2631 GHz Linearized Wideband CMOS LNA Using Post-Distortion Technique", IEEE, VOL. 32, NO. 9, SEPTEMBER 2022, doi: 10.1109/LMWC.2022.3168086
  13. Jiye Liu, Shubin Liu"A 28-/39-GHz Dual-Band CMOS LNA With Shunt-Series Transformer Feedback" IEEE, VOL. 33, NO. 1, JANUARY 2023, doi: 10.1109/LMWC.2022.3201087
  14. K. W. Kobayashi, D. Denninghoff, and D. Miller, A novel 100 MHz-45 GHz input-termination-less distributed amplifier design with low-frequency low-noise and high linearity implemented with a 6 Inch 0.15-um GaN-SiC wafer process technology, IEEE J. Solid-State Circuits, vol. 51, no. 9, pp. 20172026, Sep. 2016, doi: 10.1109/JSSC.2016.2558488
  15. Kateryna Smirnova, Christian Bohn" Ultralow-Power W-Band Low-Noise Amplifier Design in 130-nm SiGe BiCMOS"IEEE, d 21 May 2023, doi: 10.1109/LMWT.2023.3279574
  16. Kopa and A. B. Apsel, Distributed amplifier with blue noise active termination, IEEE Microw. Compon. Lett., vol. 18, no. 3, pp. 203205, Mar. 2008, doi: 10.1109/LMWC.2008.916814
  17. Mohammad Billa "6-9 GHz Low-Noise Amplifier Design Implementering"Master of Science Thesis carried out at the Department of Science and Technology (ITN) in Linkping University, June 14, 2010
  18. O. El-Aassar and G. M. Rebeiz, Design of low-power sub-2.4 dB mean NF 5G LNAs using forward body bias in 22 nm FDSOI, IEEE Trans. Microw. Theory Techn., vol. 68, no. 10, pp. 44454454, Oct. 2020, doi: 10.1109/TMTT.2020.3012538
  19. O. El-Gharniti, E. Kerherv, and J.-B. Bgueret, Modeling and characterization of on-chip transformers for silicon RFIC, IEEE Trans. Microw. Theory Techn., vol. 55, no. 4, pp. 607615, Apr. 2007, doi: 10.1109/TMTT.2007.893647
  20. Omar El-Aassar; Gabriel M. Rebeiz " Design of Low-Power Sub-2.4 dB Mean NF 5G LNAs Using Forward Body Bias in 22 nmFDSOI",Year:2020 | Volume: 68, Issue: 10 | Journal Article | Publisher: IEEE
  21. S. Mondal and J. Paramesh, A reconfigurable 28-/37-GHz MMSEadaptive hybrid-beamforming receiver for carrier aggregation and multistandard MIMO communication, IEEE J. Solid-State Circuits, vol. 54, no. 5, pp. 13911406, May 2019, doi: 10.1109/JSSC.2018.2888844
  22. T.-K. Nguyen, C.-H. Kim, G.-J. Ihm, M.-S. Yang, and S.-G. Lee, CMOS low-noise amplifier design optimization techniques, IEEE Trans. Microw. Theory Techn., vol. 52, no. 5, pp. 14331442, May 2004, doi: 10.1109/TMTT.2004.827014
  23. Tran Van Hoi " Study and design of wide band low noise amplifier operating at C band", Vietnam Journal of Mathematics April 2013
  24. V. Bhagavatula, T. Zhang, A. R. Suvarna, and J. C. Rudell, An ultra-wideband IF millimeter-wave receiver with a 20 GHz channel bandwidth using gain-equalized transformers, IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 323331, Feb. 2016.
  25. Vikas Chauhan, Nadine Collaert" A 120140-GHz LNA in 250-nm InP HBT ", IEEE, 5 July 2022, doi: 10.1109/LMWC.2022.3189607
  26. Xu Yan, Haorui Luo "Design and Analysis of a Cascode Distributed LNA With Gain and Noise Improvement in 0.15-m GaAs pHEMT Technology", IEEE, VOL. 69, NO. 12, DECEMBER 2022, doi: 10.1109/TCSII.2022.3196817
  27. Xu Yan, Jingyuan Zhang "A Broadband 1043-GHz High-Gain LNA MMIC Using Coupled-Line Feedback in 0.15-m GaAs pHEMT Technology" IEEE, VOL. 32, NO. 12, DECEMBER 2022, doi: 10.1109/LMWC.2022.3193007
  28. Yanhui Lu1, Qinghua Tang" Design of a 1GHz~4GHz ultra-wide band low noise amplifier" 978-1-4244-7941-2/10/$26.00 2010 IEEE, doi: 10.1109/ICIECS.2010.5677741
  29. Z. Pan, C. Qin, Z. Ye, and Y. Wang, A low power inductorless wideband LNA with Gm enhancement and noise cancellation, IEEE Microw. Wireless Compon. Lett., vol. 27, no. 1, pp. 5860, Jan. 2017, doi: 10.1109/LMWC.2016.2629969
Download this PDF file

Statistics

How to Cite

[1]
M. T. Yassin, S. Saleh, K. K. Mohammed, and H. H. H. Hausien, “Advanced Techniques for Enhancing Low-Noise Amplifier Performance: A Review”, AREJ, vol. 29, no. 1, pp. 35–45, Mar. 2024.