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Tuberculosis (TB) is a globally deadly infectious disease responsible for 10 million new
cases and 1.5 million deaths annually. Shorter TB treatment regimens show promise in
reducing this problem, but there is an improved treatment success rate in South Africa,
while retreatment cases remain a concern. An important feature of time-to-event modelling
is its ability to consider transition probabilities of heterogeneous subgroups with different
risk profiles. Survival analysis is generally performed to accurately estimate the transition
probabilities associated with the risk profiles. This study explored the application of a
flexible parametric survival model for analysing censored time-to-event data among TB
patients. The data were obtained from East London Central Clinic-TB unit, Eastern Cape,
South Africa. In total, 174 patients were included in the analysis. The goodness of fit of the
models was explored using Akaike information criterion (AIC). We estimated the hazard
ratios (HR) and baseline cumulative hazards of our model, which are necessary to calculate
individual transition probabilities, and compared the model with the Cox model and
additive hazard model to determine the survival predictions of TB patients.The flexible
parametric survival model produced hazard ratio and baseline cumulative hazard estimates
that were similar to those obtained using the Cox proportional hazards model. The analysis
revealed that sex (HR=0.49, 95% ClI: 0.38, 0.62), antiretroviral therapy (ART), (HR=0.53,
95% CI: 0.34, 0.78), and diabetes (HR=0.58, 95% CI: 0.41, 0.78) were all statistically
significant factors associated with improved treatment survival in tuberculosis
patients.Flexible parametric survival models are a powerful tool for modelling time-to-
event data and individual transition probabilities. It is of great importance to fit models by
modelling the baseline, which makes it easier to make different types of predictions and
allows for non-proportional hazards since it is an interaction.

DOI 10.33899/igjoss.2024.185256, ©Authors, 2024, College of Computer Science and Mathematics University of Mosul.
This is an open-access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Tuberculosis (TB) is primarily caused by Mycobacterium tuberculosis, typically affecting the lungs [1]. Annually,
10 million people contract TB and 1.5 million people die from the disease, making it one of the deadliest
infectious diseases globally. It is the primary cause of death for those with HIV and significantly contributes to
antimicrobial resistance [1]. Poor outcomes from TB treatment are driven by the high rate of death and significant
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loss of follow-up [2], [3]. This issue of loss to follow-up is a major challenge experienced by the South Africa
National TB Programme [4]. One of the key advantages of shorter treatment regimens for tuberculosis-resistant
treatment is a reduction in the loss to follow-up rate [5].

The treatment success rate in South Africa for new smear-positive and smear-negative/ extrapulmonary TB
patients has improved by 79% and 76%, respectively [6]. This was achieved as a result of higher cure rates and
a decrease in the treatment default rate. However, the treatment success rate for retreatment cases remains low at
66.3% [6]. Of particular concern is the fact that up to 25% of sputum smear-positive TB cases are lost to follow-
up before treatment initiation, which may contribute to ongoing transmission of the disease and an increased risk
of death [7]. Furthermore, the mortality rate remains high even after completion of TB treatment, likely due to
HIV disease [8]. To address this issue, there is a need to expand access to antiretroviral therapy (ART) for all
HIV-infected TB patients to reduce HIV-related mortality among individuals with TB.

Understanding the effect of TB treatment on the time-to-death of TB patients by covariates such as gender, HIV
status, age, and many more, may provide valuable insights for health programs in South Africa and globally. To
achieve this target, flexible parametric hazards (PH) models and Additive hazard (AH) models were used in
survival analysis to study the time-to-event data, which provide a flexible and versatile framework to capture
complex hazard functions and assess the impact of covariates on survival probabilities in a more flexible way.
The concept of the flexible PH models is to use restricted cubic splines to approximate the baseline hazard
function in the context of the Cox proportional hazards model [9] and the AH model using kernel smoothing
techniques [10].

These models are a more adaptable approach to modelling survival data, which accommodates both non-linear
and time-dependent effects. The integration of time-dependent covariates is used to examine the changes in risk
factors over time. Furthermore, these models offer greater flexibility in capturing a wide range of survival
patterns, from monotonically increasing or decreasing hazards to more intricate shapes, by altering the number
and placement of spline knots [11]. Parametric models offer distinct advantages, including better suitability for
prediction, extrapolation, quantification of risks, modelling time-dependent effects, enhancing understanding,
and handling complex large datasets. However, the estimates from flexible parametric survival models are often
similar to those obtained from the Cox model.

In Cox regression, the baseline hazard function is not estimated, which can limit its ability to capture the true
underlying hazard function. In contrast, flexible parametric models offer an alternative approach by explicitly
modelling the baseline hazard using splines, enabling more accurate representations of complex hazard patterns
and facilitating better predictions, especially in scenarios with non-proportional hazards. The models provide a
parametric estimate of the baseline hazard without usual shape restrictions, making it highly flexible [9]. It can
be applied to both standard and relative survival models and is capable of fitting relative survival cure models
[12]. It can also be estimated on the log-hazard scale [13].

For this work, we investigated the use of flexible parametric methods to analyse censored time-to-event data in
patients with tuberculosis in a small population of South Africa. We described and compared flexible parametric
hazards (PH) models and Additive hazard (AH) models using a real-life case study of individual-level censored
data from the Tuberculosis Hospital and linked mortality data for the general population and people with HIV
status and stratified by ART status.

2. Methods

The Cox Proportional Hazards (Cox PH) Model
In survival data analysis, the Cox model is a widely used statistical method to assess the relationship between
covariates and the hazard rate over time while making no assumptions about the shape of the hazard function.

The model is written as:
h(t|X) = ho(t)ePrXatBaXet +BpXp 0

In(h(t]X)) = In(ho()) + B1 X1 + - + BpXp
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where h(t|X) is the hazard rate at time ¢t for a given set of covariates X, hy(t) is the baseline hazard rate, and
B1 + B, + - + B, is the coefficients of the covariates X; + X, + --- + X, on the hazard rate. The integrated form

of the model is:

1

H(tIX) = fho(.“)d.u 651X1+~--+l3’po — Ho(t)eB1X1+.4.+Bpo (2)
0
where H(t|X) is the cumulative hazard function.
The model does not assume a specific distribution for survival times but estimates the relative risk of covariates
about the shape of the baseline hazard function. But, the underlying shape of the hazard function is often ignored
[14].
Additive hazards

The additive hazards models have a general form of H(t|x:0) = n(t,x;0). Recently, the default model
specification for survival without specifying the smoothness has cumulative hazard function as:

H(t|x;m) = B()ns + t(x'n,)
where B(t) is a natural spline design matrix with parameter ng, and n,, is the parameter for x. The hazard function
is given as

h(t|x;m) = B'(t)ns + (x'ny)
Let A(t) be the hazard rate at time ¢ for a specific event of interest, the additive hazards model can be expressed
as:

Log(l(t)) =B'X + a(t)

where A(t) is the hazard rate for the event, X is the vector of covariates, 8’ is the vector of regression coefficients,
and a(t) is the function of time ¢ that captures the smooth or time-varying effects. The additive hazards model
assumes that the log-hazard rates for the event are linearly related to the covariates (8'X) and include time-
varying components (a(t)). The implementation of Additive hazard models offers flexibility by allowing the
modelling of the baseline hazard using splines and accommodating both constant hazards and smooth time-
varying effects.
3. Flexible Parametric Survival Models

Let the survival function S(t|x) = P(T > t|x) for a random variable T at time ¢t with covariate x = x; written

as.

S(t]x) = exp| —exp (s(log(t); y) + Z Bi xi> 3)

where y is the parameter, B;x; is the coefficient of covariate indexed i, and s(y;y) is the parametric smooth
function. Within this framework, a smooth function is used to model the baseline log cumulative hazard function
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and a linear predictor to model the covariates. However, the hazard function and cumulative hazard function are
modelled as:

H(t|x) = —log(S(t|x)) = exp <s(log(t); )+ Z B, xi> @
d d(s(og(t);
h(t|x) = EH(HJC) = exp (S(log(t);y) + Z B xi) x W )

Now, considering two sets of covariates, x = x,; and x = x,;, the hazard ratio can be expressed as:

h(t|x2) _ eXp(s(lOg(t);Y) + Zi,Bi le.) X w

M) (soB (1) + 5 ) x LEUED:)

= exp( D i G — 120 (6)

If x,; = x;; + 1 and x,;" = xq;" for i’ # i, then the hazard ratio is equal to exp(3; B;) forall ¢ and other covariate
values. The model can be incorporated with time-dependent effects of covariates x on the log-hazard scale given

as:
In(h(t|x)) = s(log(t);y) + xB + Z s(log(t);yp)Xp (7N
p=1

where s(log(t); y,) is the restricted cubic spline function, s(log(t);yp) denotes the spline function for the pth
time-dependent effect, and P is the number of time-dependent effects.

The restricted cubic splines within the models are employed to model the log cumulative hazard or the log
cumulative odds [9], [11]. These splines are piecewise cubic functions connected at specific positions referred to
as knots. To ensure smoothness, the first and second derivatives of the overall function are enforced to be
continuous at the knots, and the function is linearly constrained before the first knot and after the last knot. The
complexity of these spline functions is dictated by user-defined degrees of freedom, which equate to the number
of knots minus one. Knot positions can either be defined by the user or set to be evenly spaced percentiles of the
observed event-time distribution [13].

However, s(log(t); y,) with knots k, + k, + -+ + k,. is expressed as:

k-1

s(log(); ¥o) =Yoo + ) vo™@
=1

where 7;(a) is the basis function for the Ith time defined as:

( )_{a forl =1
T =Wa-k)d—Ma—k)di—(1-2)(a—k)3, forl=2 .., K=1

where k, and k,. are the knots boundaries and 4, = Gk = kl)/(k — k)
K 1
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Using restricted cubic splines in flexible parametric survival models would help to capture both simple and
complex hazard functions in situations where standard parametric models may have challenges [15].

4.Study Setting and Design

This was a hospital-based retrospective individual-level censored data in TB patients reported for the treatment
in East London Central Clinic-TB unit, Eastern Cape, South Africa. This clinic is a specialized facility funded
by the provincial government, dedicated to the diagnosis, treatment, and prevention of TB, especially in patients
with HIV co-infections. The clinic offers a range of services, including antiretroviral treatments (ARTS), TB
services, and diagnostic tools with standard TB treatment protocols. Patient medical histories, from their initial
consultation to discharge, are recorded in the TB treatment registry, which is the official record-keeping system
for TB treatment under the Department of Health in South Africa.

5.Data Collection

In this study, data were gathered from medical records of hospitalized TB patients with HIV coinfection.
Information was extracted from TB record files and patients' medical files using a standardized TB card format
recommended by South Africa's Department of Health. The information includes gender, age, location, TB
category, HIV status, diabetes, weight, and antiretroviral therapy (ART).

Statistical analyses

We initiate our analysis by applying basic proportional hazard models to the TB dataset to identify the
contributing covariate factors. Initially, we employed a Cox regression model was used to analyze each single
covariate to determine whether the covariate is associated with improved survival of the TB patient. A flexible
parametric survival model was fitted with an additional argument (df =4) to specify four different degrees of
freedom for the baseline smoother. We compare the survival estimate of the flexible parametric survival model
with predictions from non-parametric Kaplan-Meier and Additive hazard model curves. All analyses were done
in R using rstpm?2 and flexsurv packages.

Ethics

Ethical clearance for the study was obtained from the Ethics Committee, University of Fort Hare, and
Department of Health, Eastern Cape chapter, South Africa.

6. Results

More than half of the patients were male (63.2%). The mean age of TB patients on treatment was 39.4 + 17.3
years (range: 14-80 years). Of all the TB patients, 79 (45.4%) were HIV-positive TB patients, 78.2% had
pulmonary TB, 77.6% had drug-resistance TB, 21.8% were placed on antiretroviral therapy and almost two-

thirds (60.9%) of the patients were treated without diabetes (Table 1).
Table 1: The Demographic Characteristics of the TB patients

Variables levels Number (%)
Sex Female 64 (36.8%)
Male 110 (63.2%)
Age Mean £ SD 39.4+17.3
Weight Mean + SD 86.5+17.4
HIV status Positive 79 (45.4%)
Negative 95 (54.6%)
Disease class ExtraPTB 38 (21.8%)
PTB 136 (78.2%)
TB type DR-TB 135 (77.6%)
MDR-TB 39 (22.4%)
ART Yes 38 (21.8%)
No 136 (78.2%)
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Diabetes No 106 (60.9%)
Yes 68 (39.1%)
Alcohol Yes 97 (55.7%)
No 77 (44.3%)
Smoking No 111 (63.8%)
Yes 63 (36.2%)
Substance use No 134 (77.0%)
Yes 40 (%)

As we did not assume proportional hazards for TB treatment risk and aimed to evaluate the risk ratio
instead of the attributable risk, we opted for a flexible parametric survival model. Unfortunately, the
results from the additive hazards regression models did not provide satisfactory outcomes. We
considered three different models for fitting the data, and based on the Akaike Information Criterion
(AIC=1421.628) and the log-likelihood estimate (-2 log L=1389.628), we determined that the flexible
proportional hazards (PH) model was the most suitable model. The results are summarized in Table 2,
with the flexible PH model being the preferred choice.

Table 2: Selection criteria for best model fit

Model AIC -2 log L

Cox-PH model 1913.6087 1891.6087
Additive hazards 1419.842 1391.842
Flexible PH model 1421.628 1389.628

The analysis results revealed that certain variables, including sex, ART, and diabetes, were identified as
treatment risk factors affecting the survival of TB patients, while the other clinic characteristics were
not statistically significant (Table 3). Notably, the result of the Cox proportional hazards model was
similar to the flexible parametric survival model in detecting the TB treatment risk factors, whereas the
results from the additive hazards model were notably different. From the model output. the hazard ratios
in the flexible model for estimating the TB treatment risk factors were lower and had more narrow
confidence intervals compared to the Cox regression model. Specifically, the analysis showed that sex
was significantly associated with improved treatment survival for TB patients (HR=0.49, 95% CI: 0.38,
0.62). Furthermore, ART was found to be statistically significantly associated with improved treatment
survival for TB patients (HR=0.53, 95% CI: 0.34, 0.78), and diabetes exhibited a similar statistically
significant association with improved treatment survival for TB patients (HR=0.58, 95% CI: 0.41, 0.78).
Table 3: Hazard estimates of TB treatment factors based on Cox model and Flexible model

Cox PH Flexible PH

Variables HR (95% C.I) Pr(>]z]) HR (95% C.I) Pr(>|zl)
Sex

Female 1 1

Male 0.510 (0.326, 0.798) 0.003 0.490 (0.382, 0.617) 0.002
Age 0.995 (0.983, 1.006) 0.354 0.994 (0.989, 0.998) 0.278
Weight 0.994 (0.981, 1.007) 0.373 0.993 (0.991, 0.995) 0.299
HIV-status

-tive 1 1

+tive 1.041 (0.694, 1.562) 0.846 1.058 (0.804, 1.359) 0.784
Class

EPTB 1 1

PTB 0.772 (0.464, 1.285) 0.320 0.789 (0.635, 0.966) 0.360
TB type

MDR-TB 1 1

DR-TB 1.321(0.789, 2.212) 0.230 1.346 (0.919, 1.886) 0.256
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ART

No 1 1

Yes 0.538 (0.313, 0.922) 0.024 0.526 (0.336, 0.777) 0.019
Diabetes

No 1 1

Yes 0.607 (0.391, 0.941) 0.026 0.579 (0.414, 0.784) 0.015
Alcohol

No 1 1

Yes 0.884 (0.576, 1.358) 0.574 0.892 (0.697, 1.121) 0.601
Smoking

No 1 1

Yes 0.715 (0.464, 1.102) 0.128 0.708 (0.493, 0.978) 0.117
Substance

No 1 1

Yes 0.835 (0.527, 1.322) 0.441 0.861 (0.571, 1.235) 0.521

Flexible parametric survival models are capable of estimating a wide range of parameters. However, the
prediction estimates from the flexible model were compared with predictions from the Additive model
and non-parametric Kaplan-Meier curves (Figure 1). The plot shows that the Flexible parametric
survival model has a better-predicted survival probability at each time point compared to other models.
The shape of the flexible model indicates a higher and improved survival rate among TB patients,
followed by the additive model and KM model suggests a lower survival rate among TB patients. The
overall pattern of the curves is steadily decreasing indicating consistent association with improved
treatment survival for TB patients, which contributes to the survival estimates up to the last observed
time.

In addition to the mortality rates, we obtained smooth predicted survival curves to facilitate comparisons
among different covariate groups within various sub-groups and time intervals. Figure 1 illustrates the
predicted survival probabilities on the time scale for gender and the use of antiretroviral therapy (ART),
which were found to significantly contribute to improved survival outcomes among TB patients. The
left panel shows the smooth predicted survival curves for the three models over the time since the
initiation of TB treatment, categorized by patient gender. The right Panel shows the corresponding
smooth predicted survival curves for patients on ART.
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Figure 1: Predicted survival rate for covariate sex and ART among patients on TB treatment

Figure 2 displays the predicted survival probabilities on the time scale for diabetes and HIV status, both of which
were identified as significant contributors to enhanced survival rates among TB patients. The left Panel exhibits
the smooth predicted survival curves for the three models over the time since the TB treatment initiation for
diabetic patients. Meanwhile, the right Panel displays the equivalent curves for patients with HIV status. It can
be seen from both figures that the survival proportions are higher for TB patients in the flexible model compared

to other models.

169



Iragi Journal of Statistical Sciences, Vol. 21, No. 2, 2024, pp (162-177)

o _| o
- ———  PH-diabetes=0 - \ ——  PH-hiv=0
EE PH-diabetes=1 X R PH-hiv=1
——+——  AH-diabetes=0 1 ——+——  AH-hiv=0
o _| ©
o ---3c---  AH-diabetes=1 o Soo--o AH-hiv=t
—<——  KM-diabetes=0 —<——  KM-hiv=0
R e KM-diabetes=1 \ R ol KM-hiv=1
o _| ©
=} oS
T ®
2 2
4 2
> >
@ (7}
<~ <~
° S
~ | ~
o <)
o | =
° T AT ‘\HHH \‘HH L1 ‘HH | ‘HH ‘ \‘\ S T AT ‘\HHH \‘HH Nl ‘HH | ‘HH ‘ ‘\
(0] 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time—to—Tuberculosis Treatment (days) Time—to—Tuberculosis Treatment (days)

Figure 2: Predicted survival rate for covariate diabetes and HIV status among patients on TB treatment

The spline coefficients are not interpretable on their own but they are used to predict the shape of the hazard
surface at different covariate values. Figure 3 displays four panels for viewing the estimated mortality rates among
TB patients from the flexible parametric model. The upper left panel shows the estimated mortality rates of female
patients on TB treatment and male patients on TB treatment. The upper right panel shows the estimated mortality
rates of patients without ART on TB treatment and patients with ART on TB treatment. The lower left panel
shows the estimated mortality rates of patients without diabetes on TB treatment and diabetic patients on TB
treatment. The lower right panel shows the estimated mortality rates of HIV-negative patients on TB treatment
and HIV-positive patients on TB treatment.
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Figure 3: Predicted estimate of Hazard ratios with 95% C.I for sex, ART, diabetes, and HIV status groups among
TB patients

The covariate sex panel shows that the mortality rates for both females and males are decreasing with male
patients having significantly lower mortality rates (improved survival rates) compared to female TB patients.
There was a complete overlap between the sex group's estimated mortality rates and survival proportions. Patients
treated with ART therapy also have lower mortality rates than patients without ART therapy. There was a small
overlap between the ART group's estimated mortality rates. Diabetic patients were observed to have a lower
mortality rate compared to patients without diabetes. The high mortality among patients without diabetes can be
due to a more severe disease for this group of patients. The overlap between the diabetes group's estimated
mortality rates is very small. There was little or significant overlap between the HIV group's estimated mortality
rates and survival proportions (Figure 4). Moreover, the peak of the surface, marked with green and red bands,
reflects group hazard ratios of 95% CI. As time progresses on the time scale, the mortality rate surface widens,
showing predicted clinical treatment observations [16].
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Figure 4: Overlap Predicted estimate of Hazard ratios with 95% C.I for sex, ART, diabetes, and HIV status groups
among TB patients

We assessed the time-varying covariate effects on TB treatment by estimating survival differences and hazard
differences to compare hazard and mortality rate ratios along with their 95% confidence intervals over time for
each group (Figure 5). We initially defined the survival differences based on the covariate pattern and
subsequently transformed them into an ‘exposed’ covariate pattern using the exposed function. From Figure 5, we
observed that the relative risk effect (hazard differences) of sex, ART, and diabetes slightly increases and the
mortality effect (survival differences) decreases rapidly with time after 100 days of TB treatment initiation.
Meanwhile, the relative risk effect (hazard differences) and mortality effect (survival differences) of HIV status
among TB patients are the same ( no increase or decrease) after 100 days of TB treatment initiation.
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Figure 5: The time-varying covariate effects on TB treatment using survival and hazard differences

7. Discussion

The flexible parametric survival model has been widely used in various fields, including applications in relative
survival and clinical decision-making [9], [11], [17]-[21]. However, its utilization in the context of TB treatment
has been relatively limited. In this article, we have employed the flexible parametric survival model to estimate
survival probabilities for patients undergoing TB treatment and juxtapose the results with additive hazard models
and the Cox proportional hazards model.

The flexible parametric model is an alternative approach for estimating survival probabilities. Unlike
conventional methods that rely on a priori transition probabilities, this approach uses individual patient data
directly to model survival. The integration of individual patient data with additional covariate information could
be worthwhile and lead to improved accuracy in predicting survival probabilities [22]. In our analysis, the flexible
parametric survival model provided reliable and smooth estimates of the baseline cumulative hazards [18].
According to the analyses of the flexible parametric survival models, the results obtained indicate that sex is
significantly associated with improved survival rates of patients on TB treatment. The result indicates that male
is significantly associated with a 51% lower risk of mortality rate [0.490 (95% Cl: 0.382, 0.617), p-value=0.002]
compared to female. This result is consistent with other earlier studies [23]-[25] in which standard survival
analyses were applied. Hence, it can be concluded that male patients had a higher improved survival rate of TB
treatment. There may be biological differences between males and females that can impact how they respond to
TB treatment, such as hormonal differences, which play a role in immune response and may explain this pattern,
which has also been observed in TB research studied in other areas [26], [27].

Our findings indicated that individuals who began the ART regimen experienced a 47.4% improved survival rate
following the initiation of TB treatment [0.526 (95% CI: 0.336, 0.777), p-value=0.0019]. This result supports the
recommendations to commence ART at earlier stages for all symptomatic individuals, irrespective of their CD4
cell counts. Previous studies have consistently demonstrated that the initiation of ART serves as a significant
predictor of mortality among TB patients concurrently receiving ART [28]-[33].
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The findings from our study also revealed that diabetes was significantly associated with improved survival rates
among TB patients. The result showed that TB patients have a 42% lower risk of mortality rate [0.579 (95% CI:
0.414, 0.784), p-value = 0.0015]. This is consistent with some studies with lower risk [34]-[36] and dissimilar to
other studies with higher diabetes risk among TB patients in different countries [37]-[39]. The observation of
improved survival rate among the patients may be attributed to several factors. TB and diabetes are known to
have complex biological interactions. TB can lead to a temporary state of insulin resistance, which can affect
glucose metabolism. This can result in lower blood sugar levels, reducing the likelihood of a diabetes diagnosis
during TB infection. TB and diabetes share some common symptoms. These overlapping symptoms might make
it more challenging to diagnose diabetes in TB patients, potentially leading to underdiagnosis. TB can be a severe
disease, and individuals with TB may not survive long enough to develop diabetes. This selective survival effect
could contribute to the observed improved survival rate among TB patients.

8. Conclusion

Using the flexible parametric survival model hazard can avoid splitting the survival data into intervals and avoid
making an assumption of constant hazard rates within the time intervals in estimating the hazard rates and
probabilities. The study highlights the importance of fitting models by modelling the baseline, which is easier to
make different types of predictions and allows for non-proportional hazards since it is an interaction. The results
from applying the three models revealed that sex, ART, and diabetes covariates were found to statistically
significantly improve the survival rate of TB treatment prognostic. The flexible parametric survival model hazard
ratios were compared with the additive hazard model and Cox proportional hazard model, and the effect estimates
obtained from the hazard models were different. The study recommends hospital authorities pay attention to
female TB patients who are HIV positive, on ART, and diabetic. The rate of mortality during TB treatment was
high for these groups. TB patients should be advised to adopt healthier lifestyles during treatment, which can
include better nutrition and increased physical activity. These lifestyle changes can reduce the risk of developing
diabetes.
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