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   Forecasting accuracy of evaporation time series is an importance to control 

environmental impacts, damages, and risks affecting especially plant life and growth, 

and thus that impact on human and animal life. Evaporation data are considered from 

climate time series, which are characterized by its nature a non-linearity data, as they 

suffer from the problem of heterogeneity because they contain many seasonal and 

periodic components, and necessarily that complexity may lead to inaccurate forecasts. 

The time stratified method will be used in this study with the proposed forecasting 

methods to achieve greater homogeneity and less complex temporal behavior. Two 

forecasting methods will be used, represented by the regression tree (RT) method and 

the integrated autoregressive and moving average (ARIMA)model, and it is proposed to 

hybridize them with a method that combines both within the hybrid ARIMA-RT model 

as a way to improve forecasting results by dealing more accurately with the non-linearity 

data. The effect of wavelet transformations (WT) will also be tested with both the 

ARIMA model and the hybrid ARIMA-RT model, and whether it will have a role in 

improving forecasting results. A time series modeling structure will be adopted to 

determine the input structure of the RT model within the proposed hybrid approach by 

using multiplicative seasonal ARIMA. Also, the use of WT will be limited to filtering a 

random errors series (residuals), which the rest of its time lags depended on, represented 

by the moving average variables process. The forecasting results of the proposed 

methods might comparisons with the traditional forecasting method. This study was 

concerned with investigating various methods for forecasting evaporation time series for 

an agricultural meteorological station in the city of Mosul, Iraq for hot and cold seasons. 

The results of this study reflected the superiority of the hybrid method compared to the 

traditional ARIMA model. The results also included that forecasts were clearly affected 

by the use of WT. it can be concluded that the ARIMA-RT hybrid model has a clear role 

in improving the accuracy of forecast results through this study. Using WT leads to a 

slight improvement in the accuracy of forecasts, and it may vary according to the data 

and its nature and homogeneity. 
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1. Introduction 

    The diversity of patterns and components within the behavior of climate time series data in general and evaporation 

data in particular suffers from the problem of non-linearity as is most climate and environmental data because of its 

complexity in terms of seasonal and periodic fluctuations that affect the homogeneity of the data, which will lead to 

additional complications and obstacles in analyzing as time series and forecasting it, and this may negatively affect the 
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accuracy of the forecast results, as the results may be unsound. The accuracy of forecast results for evaporation may 

depend on the selection of the appropriate method used for analysis and forecasting mainly. 

    The problem of data heterogeneity due to the effects of seasonal and periodic patterns, the evaporation time series 

data will be divided into two seasons; the first is the hot season, which includes data for the months (May-September), 

and the cold season, which includes data for the months (November-March). The autoregressive and integrated moving 

average (ARIMA) model is one of the most famous time series models that is commonly used for univariate time series 

analysis as a traditional statistical model for forecasting. The ARIMA model is a linear model that may not be suitable 

for dealing with data that suffer from non-linearity problems. However, the ARIMA model is often used with climate 

data as with climate variables, including variable evaporation time series (1, 2). Two forecast methods, represented by 

the regression tree (RT) and the ARIMA model will be proposed and then hybridized by reconciling them together 

within the hybrid ARIMA-RT model as a developed method used to improve forecasting results by dealing well with 

the problem of non-linearity data. Wavelet transformations (WT) will be used also with both the ARIMA model and 

the hybrid ARIMA-RT model to test the role of their effect in improving forecasting results in two developed models, 

namely ARIMA-Wavelet and RT-Wavelet, based on the ARIMA model. 

    In previous studies, many researchers used the ARIMA model in the presence of the WT effect with many time 

series data, whether climate or other, as in (3  ,4 ) . In light of the presence of the WT effect, the RT model was used, and 

it was also used after reconciling it in the hybrid ARIMA-RT model to forecast many series data. The results of this 

study reflected the superiority of the hybrid method compared to the traditional ARIMA model. The results included 

that forecasts were unaffected by the use of WT clearly. There was a clear improvement in the forecasting accuracy of 

the ARIMA-Wavelet model compared to the traditional ARIMA model. In the case of comparing the two hybrid 

models, ARIMA-RT and RT-Wavelet, there was no clear effect and role for using WT. This is because the basic 

development and improvement was accomplished after proposing RT after reconciling it with ARIMA to deal well 

with the problem of nonlinearity. From this study, it can be concluded that the ARIMA-RT hybrid model has a clear 

role in improving the accuracy of forecast results. As for using WT, it leads to an improvement in the accuracy of 

forecasts in the absence of introducing the effect of RT and reconciling it with traditional models, and this effect may 

vary depending on the data, its nature, and its homogeneity. 

 

2. Materials and methods  

The framework for this study will include: 

a. Data initialization. 

b. Modeling using ARIMA models. 

c. Using the WT method with the residuals series resulting from the ARIMA model and forecasting using the 

ARIMA-Wavelet hybrid method. 

d. Modeling using the RT method based on the ARIMA model structure, referred to as the hybrid ARIMA-RT 

model. 

e. Modeling RT method based on hybrid ARIMA-Wavelet method structure and referred to as the hybrid RT-

Wavelet model. 

f. Comparison of forecast results using ARIMA, ARIMA-Wavelet, ARIMA-RT, and RT-Wavelet methods. This 

framework can be illustrated as in Figure 1 below. 

 
 Figure 1: The general framework of the study 

2.1 Autoregressive Integrated Moving Average (ARIMA) Model 

   The reason of unstable the time series is the variance or the series average, or both, change with time (unstable). 

Then some manipulations can be performed on the time series for the purpose of achieving stability in it. If the variance 

varies by time, then we can perform some transformation formulas on the data to achieve stability in it. This type of 

transformations is called power transformations. The condition of stability in the time series can also be achieved 

through the method of differences for unstable series, which is called (first-order differences), as it represents the  first 

difference between two consecutive observations values (𝑊𝑡 = 𝑍𝑡 − 𝑍𝑡−1), and when stability is not achieved, one 

resorts to differences from Higher rank or seasonal rank. The ARIMA model is one of the traditional models for 

univariate time series forecasting. The Box-Jenkins method will be adopted in its four stages: identification, parameter 

estimation, diagnostic examination, and forecasting. As an optimal method for analyzing time series, the multiplicative 

seasonal ARIMA model [ARIMA(p,d,q)(P,D,Q)s] was used, which takes the following general mathematical formula. 
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  are the seasonal parameters of the auto regression and the moving averages respectively, S 

represents the seasonal period, p indicates the rank of the autoregressive model, d represents the number of differences 

necessary to achieve stability, q symbolizes the rank of the moving averages, P indicates the rank of the seasonal 

autoregressive model, Q symbolizes the rank of the seasonal moving averages, D represents the number of seasonal 

differences necessary to achieve stability, B is the backshift operator, t
a is the white noise with zero arithmetic mean 

and variance 
2

a , and we can write it as follows 
2
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   It is necessary, when analyzing a time series, to draw the time series graphically in order to identify many of its 

features, especially determining whether the time series is stable or unstable, in addition to other features. The 

autocorrelation and partial autocorrelation functions are useful tools for demonstrating the stability of a time series.  

The stability condition of an ARIMA model require that that the mean and variance are constants (independent of time 

t) . In many cases, time series are unstable and the reason for this is due to a change in the mean over time, for example 

it has a general trend, or due to a change in the variance of the series over time. If the time series is unstable, we can 

achieve weak stability in it, or sometimes we call it second-order stability (7 ,8 ) . 

    Beginning to identify the features of the series and determine the ranks of the polynomials in the (ARIMA) model 

and the number of parameters (p, q, P, Q) after achieving the stability of the series. The table below shows a simplified 

methodology for determining the ranks of the polynomials in (ARIMA) and the number of parameters in the model 

through the (ACF) (PACF) functions. This is a summary of the recognition phase of the Box and Jenkins methodology. 

After completing the first stage or step, which is identifying the hypothetical (ARIMA) model using the Box-Jenkins 

method, the second step is estimating the model parameters through the model’s potential function method. Such 

estimates are referred to as maximum potential estimates. 

    From the statistical aspect, the non-significance of the estimated parameters is one of the reasons that impair the 

accuracy of the model. Therefore, the null hypothesis will be tested, which states that the parameter estimates are not 

significantly different from zero, that is, equal to zero, as the critical value of the (t) test is the tabular value multiplied 

by the estimated standard error of the parameter. If the absolute value of the value calculated for the t-test for each 

estimator is at least equal to the critical value, then the null hypothesis, meaning that the estimator is significant, will 

be rejected. The significance of all model parameters is one of the most important conditions that must be achieved as 

one of the most important diagnostic examination procedures. Also, the autocorrelation state of the residual’s series 

can be used to test whether the residuals series is identical to the white noise process 𝑎𝑡 ∼ 𝔦. 𝔦. 𝑑 𝑁(0, 𝜎𝑎
2) . Therefore, 

the autocorrelation function of the residuals must not contain significant correlation coefficients as an enhancement 

measure to pass the diagnostic tests. There are other tests to diagnose the quality of the model, but the significance of 

the parameters and the ACF status of the residuals are among the most prominent and most important for the model to 

be qualified to be used to forecast future values with good performance (9, 10). 

    From the statistical aspect, the non-significance of the estimated parameters is one of the reasons that impair the 

accuracy of the model. Therefore, the null hypothesis will be tested, which states that the parameter estimates are not 

significantly different from zero, that is, equal to zero, as the critical value of the (t) test is the tabular value multiplied 

by the estimated standard error of the parameter. If the absolute value of the value calculated for the t-test for each 

estimator is at least equal to the critical value, then the null hypothesis, meaning that the estimator is significant, will 

be rejected. The significance of all model parameters is one of the most important conditions that must be achieved as 

one of the most important diagnostic examination procedures. Also, the SACF of residuals series can be used to test 

whether the residuals series is identical to the white noise process  [𝑎𝑡 ∼ 𝔦. 𝔦. 𝑑 𝑁(0, 𝜎𝑎
2). Therefore, the autocorrelation 

function of the residuals must not contain significant correlation coefficients as an enhancement measure to pass the 
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diagnostic examination. There are other tests to diagnose the quality of the model, but the significance of the parameters 

and the ACF status of the residuals are the most prominent and most important for the model to be qualified to be used 

to forecast future values with good performance. 

 

2.2 Regression Tree (RT) Model 

    Regression trees are a case of decision trees. Decision trees are defined as a graph that shows the actions that can 

be taken from natural states and their probabilities, and they are one of the forecasting models used in statistics, data 

mining, and machine learning. Decision trees are also important in analyzing decision issues that contain a series of 

decisions or a series of sequentially occurring states of nature. 

    Decision trees are created by dividing the original data set to form the root node of the tree and then dividing it 

into subgroups until the leaves represent the final decisions. Regression trees differ from classification trees which are 

the second type of trees, whose are forecasting results are categorical, just as the dependent variable in them is originally 

of the categorical type, while regression trees differ in terms of their outputs and forecasts, which are real values, 

because the dependent variable in them is a continuous variable. This method is based on the consideration that all 

elements of the studied society form one group and are then divided into two or more groups, subdivided, and so on. 

The process of branching and decision-making takes place through breaks represented as logical sentences and 

mathematical conditions placed on the joints of the tree in the form of nodes that branch into two or more branches, 

leading to the leaves as purposeful endings that represent the final decisions when the stopping order determined by 

the researcher is achieved (11 ) . 

The design of the classification and regression tree goes through several stages: (12 ,13 )  

1. The construction or building stage. This stage consists of several steps, which are: 

a. Determine the dependent variable y . 
b. Choosing explanatory variables 

1 2 3, , ,x x x .  
c. Choosing the origin node so that it is suitable for the research goal. 

d. Determining the rules of branching (fission). 

2. The process of division or fragmentation. 

3. Stopping process. 

4. Pruning process. 

5. Assembly process. 

6. Draw the tree. 

   On each node t  ,  there are two subjects. The first one that expresses the left node resulting from the branching at 

the point t , and the subject ( )r t  expresses the right node resulting from the branching at the point t . The following 

figure 2 shows the regression tree. 

 
Figure 2: General structure of the regression tree 
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  The regression tree is designed using the characteristics of the data sets taken from the elements of sample size n, 

which include the observations values of the variables x  𝑥1 , 𝑥2, 𝑥3, … and the observation values of the corresponding 

groups in the dependent variable y . 
  ( )N t  is the number of sample elements that belong to the region ( )R t  corresponding to the node t , which is 

distributed among a number of groups that make up the dependent y  according to their properties. ( )jN t  represents 

the number of sample elements that belong to the region ( )R t  and to the group 
jG , as the following relationship is 

satisfied. 

1
( ) ( )

g

jj
N t N t

=
=  (3) 

The probabilities of belonging and distribution to groups can be calculated as follows (14) .  

The probability that any element i   of the samples belongs to the region ( )R t  corresponding to the node t  can be 

calculated as follows.  

( )
( ( ))

N t
P i R t

n
 =  (4) 

The probability that any element i  of the samples belonging to the region ( )R t corresponding to the node t   belongs 

to the group 
jG  can be calculated as follows. 

( )
( / ( ))

( )

j

j

N t
P G i R t

N t
 =  (5) 

Also, the probability that the sample elements corresponding to the node t  are distributed as a node to the left and a 

node to the right can be calculated, respectively, as follows. 

[ ( )]
[ ( )]

N l t
P l t

n
=  (6) 

[ ( )]
[ ( )]

N r t
P r t

n
=  (7) 

The probability that any element of the sample corresponding to the node t   will go to the left node or the right node 

can be calculated, respectively, as follows. 

[ ( )] [ ( )]

( ) ( )
l

P l t N l t
P

P t N t
= =  (8) 

[ ( )] [ ( )]

( ) ( )
r

P r t N r t
P

P t N t
= =  (9) 

Thus, the features of each group corresponding to the node t  can be determined according to what is proportional to 

it in terms of the number of sample elements to which it belongs from the region ( )R t , according to their probabilities. 

The probabilities corresponding to the groups are compared and the group that corresponds to the greatest probabilities 

is chosen (15) . 

( / ) max ( / )K jP G t P G t=  (10) 
Wavelet Transform (WT)   (16 ,17 )  

     Wavelet Transform or Wavelet Analysis is a mathematical analytical method used to process signals for many 

practical applications. The basis of this theory is based on Fourier's theory, which is a method used to represent periodic 

signals in the form of a sine and cosine series. This conversion transfers the signal from the time domain to the frequency 

domain and vice versa. The wavelet transform is considered a complement to spectral analysis, which depends on the 

conversion from the time domain to the frequency domain based on the rules of complex trigonometric or exponential 

functions that lead to the detection of periodicity in the wavelet movement by relying on the conversion to the field of 

measurement and displacement using the rules of orthogonal functions that lead to detection. About the regularity or 

irregularity of wave movement. 

   This short-time Fourier transform represents the signal using a specific window depending on its temporal and 

frequency resolution. The main problem in this conversion is the loss in time and frequency. High accuracy is obtained 

for signals that change quickly when using a small window, but this accuracy is not high for signals that change slowly 

and when using a large window, the exact opposite happens. For this reason, the theory of wavelet transformation is 

developed, so the wavelet transform is divided into three types: continuous wavelet transform, discrete wavelet 
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transform, and wavelet packet transform. Perhaps the most famous types of wavelet functions can be represented 

graphically as follows: 

   
Haar function and Mexican hat function Daubchies functions db2 and db9 Bi-orthogonal functions bior 2.6 

Figure 3: Some types of wavelet transform functions 

   Wavelets emerged an interest statistical in 1989 when Mallat introduced a multiple analysis method for processing 

discrete data (18) . And (19 )  also showed that the contracted wavelet has ideal statistical properties that are desirable in 

problems associated with noise reduction. There are several useful applications for wavelets, such as data compression, 

image feature detection, and noise reduction from time series. 

The Measurements of Forecasting Error  (20 )  
  One of the most important criteria used to express the accuracy of forecast data is as follows: 
The mean absolute percentage errors is: 

1

1
100

n
t

t t

e
MAPE

n y=

=   (11) 

 (12) 
n represents the number of observations, 

ty   is the variable of the original time series at time t, while ˆ
ty   represents 

the forecast variable, and 
te  represents the residuals series at time t. 

Results and Conclusions 

Data Used in this Study 
   The ARIMA model will be studied using the Box-Jenkins method methodology and the RT method with the 

wavelet transform effect to analyze evaporation time series data in the city of Mosul/Iraq after separating it into hot 

and cold seasons. Data were taken from the Agricultural Meteorological Observatory at the location specified by 

longitude E = 43.16 and latitude N = 36.33. Because of the data it contains, it is due to the heterogeneity between the 

different seasons and the diversity of the seasonal seasons and their fluctuations. To achieve greater consistency, the 

data was separated into two seasons, the first being the cold months (November-December-January-February-March). 

The second season is hot for months (June - July - August - September). The study data included 372 hot season 

observations and 303 cold season observations as daily data. About 20% of the end-of-season time series data will be 

allocated as test period data and used as hypothetical future data used to test models built on the training period data. 

Therefore, the training data for the hot season will include (292 observations), while it will be (80 observations) at the 

end of the hot season as a testing period. As for the training period for the cold season, it will contain (243 observations) 

and (60 observations) for the cold time series as data for the test period. 

Steps For The General Framework Of The Practical Aspect 

1. Alignment of evaporation time series data for homogeneity with data set for the training and testing periods for 

each season. 

2. Building an ARIMA model based on the Box-Jenkins methodology. 

3. Taking the right side of the ARIMA models as input for the RT method and setting it as an input matrix whose 

number of columns is the number of terms of the right side and the number of rows represents the number of 

observations of the training period. The target variable ty   is the one on the left side of the ARIMA model. 

4. Using the WT method to analyze the components of the residuals series resulting from the ARIMA model and 

obtain forecasts from the ARIMA-Wavelet hybrid method for the training and testing periods for the two seasons. 

5. Modeling the training data for each season using the RT method, relying on the structure of the ARIMA models 

for each season and obtaining forecasts from the hybrid ARIMA-RT model for the training and testing periods. 

6. Modeling the training data for each season using the RT method, relying on the structure and results of the hybrid 

ARIMA-Wavelet method for each season, and obtaining forecasts from the hybrid RT-Wavelet model for the training 

and testing periods. 

7. Comparing the forecast results for the training and testing periods and for all seasons for the evaporation time 

series using the ARIMA, ARIMA-Wavelet, ARIMA-RT, and RT-Wavelet methods through the forecast error criterion. 
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ARIMA Model 

The Box-Jenkins methodology is applied to analyze time series and obtain the best models that express the behavior 

of the data. The first step is to identify and diagnose the state of stability and the necessity of achieving it, while 

determining the ranks of the model. To reveal the stability of the data, the series will be plotted with the ACF and PACF 

functions. Figures 4 and 5 below show the time series plotting of evaporation and the ACF and PACF functions for the 

hot and cold seasons. 

 

 
Figure 4. Time series plotting of evaporation, ACF and PACF for the hot season 

 

 
Figure 5. Time series plotting of evaporation, ACF, and PACF for the cold season 

   Figures 4 and 5 above show the unitability (since more than 5% of correlation coefficients out of confidence 

interval)of the evaporation time series for the hot and cold seasons. Therefore, stability will be achieved by taking 

successive and seasonal differences. Through experimentation and testing, two decisions were made in parallel to 

achieve stability. In the first, one regular team and one seasonal team were taken, respectively. In the second, only one 

regular team was taken, for both seasons. It turned out that both decisions were correct, and each of them gave a 

different advantage than the other, while it turned out that the data was completely stable after making both decisions. 
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To determine the ranks of the models, the ACF and PACF functions are drawn. Figures 6 and 7 show the ACF and 

PACF after achieving stability with both of the above decisions for the hot and cold evaporation seasons, respectively. 

 

d=1 

 

d=1   
D=1 

Figure 6. Time series plotting of evaporation, ACF and PACF for the hot season 

 

d=1 

 

d=1   
D=1 

Figure 7. Time series plotting of evaporation, ACF, and PACF for the cold season 

 

  From Figures 6 and 7 above, and according to the similar behavior of the ACF and PACF functions in both the hot 

and cold seasons, the best ARIMA models will be as follows: 

1. The first model: ARIMA(0,1,2) for both seasons and the results of significance are as in Table 1 below. 

2. The second model: ARIMA(1,1,1)(0,1,1)5 for both seasons and the results of significance are as in Table 2 below. 
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Table 1. Parameter values and their significance for the ARIMA(0,1,2) model for both hot and cold seasons. 

Hot Season   Cold Season  
Type Parameter Calc. t p-value   Type Parameter Calc. t p-value  

1  0.4128 7.14 0.000   
1  0.4216 7.12 0.000  

2  0.1837 3.18 0.002   
2  0.3881 6.55 0.000  

 
Table 2. Parameter values and their significance for the ARIMA(1,1,1)(0,1,1)5 model for both hot and cold 

seasons. 

Hot Season   Cold Season  
Type Parameter Calc. t p-value   Type Parameter Calc. t p-value  

1  0.2886 2.75 0.006   
1  0.5228 7.89 0.000  

1  0.7182 9.32 0.000   
1  0.9354 34.06 0.000  

1  0.9726 49.33 0.000   
1  0.9446 30.79 0.000  

 
From Tables 1 and 2 above, for both seasons, it is clear that all estimated parameter values for the ARIMA(0,1,2) 

and ARIMA(1,1,1)(0,1,1)5 models are significant. The ACF function was also tested for the residuals of the above 

models and it turned out that it conforms to the conditions of good models. Thus, the above two models have 

successfully passed the diagnostic tests. Table 3 below shows the MAPE error criterion values for the training and 

testing periods for both hot and cold seasons for the above two models. 
 

Table 3. MAPE error criterion values for ARIMA models for the training and testing periods for hot and cold 

seasons. 

Models 
Hot Season   Cold Season  

Training Testing   Training Testing  

ARIMA(0,1,2) 7.48748 59.96663   17.49708 48.69273  

ARIMA(1,1,1)(0,1,1)5 7.56499 60.77533   16.68917 56.71475  

From Table 3 above, it is noticeable that preference varies from one model to another and it is not possible to judge 

the better predictive performance of one model over the other. 
 

RT model 

   The structure of the models that were concluded as the best ARIMA models and referred to above was relied upon 

to be used in building the structure of the input regression tree models, whose foundations, equations, and methods of 

use in the theoretical aspect are indicated, and it is conventionally referred to as the hybrid ARIMA-RT model. Table 

4 below shows the MAPE error criterion values for the training and testing periods for both hot and cold seasons for 

the hybrid ARIMA-RT model based on the above ARIMA models.  
 

Table 4 the MAPE error criterion values for the hybrid ARIMA-RT model for the training and testing periods 

for both hot and cold seasons  

Models Hot Season   Cold Season  
Training Testing   Training Testing  

ARIMA(0,1,2) 4.16565 32.97756   8.174444 63.02950  

ARIMA(1,1,1)(0,1,1)5 5.04347 32.41332   10.77235 66.52910  
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Table 4 above, it is noticeable that the preference varies from one RT model to another, and it is not possible to judge 

the better forecasting performance of one model over the other. Comparing the results to table 3 and 4 above, the hybrid 

ARIMA-RT model most likely outperformed the ARIMA model, unlike the results of the testing period for the cold 

season only. 
 

Wavelet Transform 

   The wavelet transform WT was used in this study to purify the variable of the residuals series of the ARIMA model, 

which is referred to as the hybrid ARIMA-Wavelet model, then returned it to the original ARIMA model from which 

it was taken. The residuals series variate of the hybrid ARIMA-RT model was also purified based on WT in the same 

previous manner and is referred to as the hybrid RT-Wavelet model. This purification is carried out through the analysis 

of the components and periodic influences that control the non- linear and heterogeneous behavior of the original series 

and the resulting uncertainty in the modeling, which negatively affects the forecast performance and the forecasting 

residuals affected by all these influences and obstacles, using rules and foundations that lead to detecting regularity or 

irregularity of wave movement. Using the ready-made tool in the MATLAB system regarding stochastic modeling with 

one-dimensional regression estimators, it therefore requires determining the type and level of the wave function, in 

addition to the importance of structuring the inputs and organizing their numbers and dimensions in a scientifically 

correct manner. The Haar wave functions are used, as well as db1, db2, and db3 at the fifth level, after obtaining the 

results, the priority forecasting performance was concluded after using the db2 function for the hot season and the db3 

function for the cold season. The results were as in table 5 below, which shows the values of the MAPE the error 

criterion for the training and testing periods for both the hot and cold seasons for the ARIMA-Wavelet and the hybrid 

RT-Wavelet model, according on the previously mentioned ARIMA model. 
 

 
Table 5. values of the MAPE for the hybrid ARIMA-Wavelet and RT-Wavelet models, based on ARIMA for 

the training and testing periods for both the hot and cold seasons. 

Models 
Hot Season   Cold Season  

Training Testing   Training Testing  

ARIMA-Wavelet 
ARIMA(0,1,2) 1.67931 61.99826   2.833533 49.71198  

ARIMA(1,1,1)(0,1,1)5 1.61756 62.81019   3.405706 57.24044  

RT-Wavelet 
ARIMA(0,1,2) 4.07420 32.95010   8.176733 63.02666  

ARIMA(1,1,1)(0,1,1)5 5.05101 32.40999   10.79895 66.52363  

 
  By comparison with results of the previous tables and from table 5 above, the forecasting performance of the hybrid 

ARIMA-Wavelet model was superior in the training periods and its failure to perform well in the testing periods, which 

may be explained by the lack of observations in it when compared to the testing period. As for the hybrid RT-Wavelet 

model, it didn’t add anything new to the accuracy of forecast performance expect for a slight improvement compered 

to the original hybrid ARIMA-RT model, which lead us to the increase in the number of techniques and methods used 

to reach good forecasts may be negatively reflected in the complexity of the methodology of the proposed method, with 

the absence of noticeable improvement in forecast accuracy. figures 8 and 9 below illustrate and compare forecast 

errors (residuals) graphically for the hot and cold seasons and for the training and testing periods. 
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Figure 8. comparison of evaporation time series forecast errors for models used for the hot seasons 
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Figure 9. comparison of evaporation time series forecast errors for models used for the cold seasons 

  
 Figures 8 and 9 above give a clearer picture than the results of the forecast performance of the ARIMA, ARIMA-

Wavelet, ARIMA-RT, and RT-Wavelet methods reported in the previous tables. From the above figures, the superiority 

of the forecasting  performance of  the hybrid ARIMA-Wavelet and RT-Wavelet  models in the training and testing 

periods is evident through the smoothness that characterizes the residuals of the two models, which indicates a high 

behavioral match of the original evaporation series variable with the corresponding forecast series  variable for the hot 

and cold seasons periods and for the two seasons, which reflects the high quality of forecasting  performance of the 

hybrid ARIMA-Wavelet and RT-Wavelet  methods. 
 
 

Conclusions 
   In this research, the traditional method represented by the ARIMA models and the machine learning method 

represented by RT model were used, in addition to the use of wavelet transform WT as a specialized method in 

analyzing complex seasonal and cyclical components and patterns, and dismantling and purifying them from obstacles 

and heterogeneous compounds in order to forecast evaporation time series data after dividing It into the hot and cold 

seasons, and two periods for the training and testing. From the results and discussion obtained, it is possible to conclude 

the advantage of using both of the hybrid ARIMA-Wavelet and RT-Wavelet models in forecasting for the training and 

testing periods for evaporation data in particular or other climate data with similar behavior, due to their superiority in 

forecasting compared to the two ARIMA and ARIMA-RT models. Also the model and ARIMA-RT model have a really 

effective in improving forecasting when compared to the forecasting performance of the traditional ARIMA model. 

The traditional ARIMA model doesn’t have the ability to deal with non-linearity data and forecast it. The methodology 

of dividing the data into hot and cold seasons addressed the problem of heterogeneity in the data due to the diversity of 

seasonal and cyclical components in the data.  
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 مع التحويلات المويجية للتنبؤ بالسلسلة الزمنية للتبخر  ARIMAإستخدام النموذج الهجين لشجرة الانحدار و 

 2نعم سالم فاضل و 1زينة مضر البزاز

 العراق.  الموصل، جامعة الموصل، كلية علوم الحاسوب والرياضيات، قسم الاحصاء والمعلوماتية،1,2

المؤثرة خصوصا على حياة النبات    للتحكم في التأثيرات والأضرار والمخاطر البيئية  من الاهمية بمكانأمر    للتبخرإن دقة التنبؤ بالسلاسل الزمنية  :  الخلاصة
من خطية البيانات  خية والتي تتميز بطبيعتها غير ال بيانات التبخر من السلاسل الزمنية المنا  . تعتبرونموه وبالتالي تأثير ذلك على حياة الانسان والحيوان

 . تنبؤات قليلة الدقةإلى  ذلك التعقيد بالضرورة  قد يؤدي  و مشكلة عدم التجانس لاحتوائها على العديد من المركبات الموسمية والدورية،    خلال ما تعانيه من
اسلوبين    استخدام  مع اساليب التنبؤ المقترحة. سيتم  في هذه الدراسةالزمني    لتحقيق تجانس اكبر وسلوك زمني اقل تعقيدا سيتم استخدام اسلوب التراصف

باسلوب  تنبؤيين الا  متمثلان  والمتوسطونموذج     regression tree (RT)نحدارشجرة  الذاتي   integrated ية  التكامل  ةالمتحرك  اتالانحدار 

autoregressive and moving average  (ARIMA)    ومنهما يتم اقتراح تهجينهما باسلوب يجمع كليهما ضمن النموذجARIMA-RT    الهجين
البيانات. خطية  عدم  مع  اكبر  بدقة  التعامل  خلال  من  التنبؤ  نتائج  لتحسين  المويجية   كأسلوب  التحويلات  تأثير  اختبار  سيتم   Waveletكذلك 

transformations (WT)    مع كل من نموذجARIMA     والنموذجARIMA-RT    .سيتم اعتماد الهجين وهل سيكون له دور في تحسين النتائج التنبؤية  
كذلك فان   . ضمن الأسلوب المقترح الهجين  RTلتحديد هيكلية مدخلات نموذج الموسمي المضاعف  ARIMAباستخدام  السلاسل الزمنية  نمذجة هيكلية

كة. سيقتصر على فلترة سلسلة الاخطاء العشوائية )البواقي( والتي تعتمد عليها باقي تخلفاتها الزمنية المتمثلة بمتغيرات المتوسطات المتحر   WT  استخدام
السلاسل ب المتنوعة للتنبؤ ب بالبحث في الاساليهذه الدراسة  . اهتمتللتنبؤومقارنتها بالطريقة التقليدية  للأساليب المقترحة سيتم إجراء مقارنات لنتائج التنبؤ 

الجوية الزراعية في مدينة الموصلللتبخر ل الزمنية   بنموذج  مقارنة   الاسلوب الهجينالعراق. عكست نتائج هذه الدراسة تفوق    ، حدى محطات الأرصاد 
ARIMA  عدم تأثر التنبؤات بصورة واضحة في ظل استخدام  كما تضمنت النتائج   ي.التقليدWT  .  من خلال هذه الدراسة يمكن استنتاج ان النموذج

فانه يؤدي الى تحسن بسيط في دقة التنبؤات وقد تختلف باختلاف    WTاما استخدام    .له دور واضح في تحسين دقة نتائج التنبؤ  ARIMA-RTالهجين  
 البيانات وحسب طبيعتها وتجانسها.

  ؛ شجرة الانحدار؛ التحويل المويجي؛ التنبؤ؛ التبخر. ARIMAنموذج مات المفتاحية:الكل

 


