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     Variable selection is important for the analysis of high-dimensional data in many fields, 

including in the field of biology, signal processing and collaborative filtering. For example, 

microarray experiments allow one to measure thousands of variables (genes and proteins) 

simultaneously. The datasets resulting from these experiments are usually very large in 

terms of the number of predictors (P) and often small in terms of the number of biological 

samples (n). In regression analysis, this problem is often called the" big and small p-n 

problem " (p-n-n) and represents a major obstacle to traditional statistical methods.  In this 

paper, we compare three different main methods for selecting variables for linear regression 

models: Adaptive Lad Lasso, Split Regularized Regression (SRR) and DLasso (AIC, GIC, 

BIC, CGV). In a simulation study, we show the performance of the methods considering 

the median model error. The case where the number of candidate variables exceeds the 

number of observations is considered as well. Also, the simulation study is used in 

determining which methods are best in all of the linear regression scenarios.  
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1. Introduction 

    Variable selection is important for high-dimensional data analysis in many research areas such as biology, signal processing, 

and collaborative filtering. For example, microarray experiments allow one to measure thousands of variables (genes, proteins) 

simultaneously. The data sets generated by these experiments are generally very large in terms of the number of predictors (𝑝) 

and often small in terms of the number of biological samples (𝑛). In regression analysis, this problem is often termed the “large 

𝑝 and small 𝑛 problem” (𝑝 ≫ 𝑛) and presents a major barrier to traditional statistical methods. 

    With the development of computer and data collection technologies, the database sizes continue to grow and various statistical 

methodologies have been developed over the past several decades to cope with the challenges presented by these data. In 

particular, there are major challenges in parameter estimation, model, and variable selection.   Several regression methods have 

been proposed for fitting multiple regression models, especially for the case when 𝑝 ≥ 𝑛  where the least-squares method could 

not be used. 

      Tibshirani proposed Lasso (Least Absolute Shrinkage and Selection Operator) [1], which minimizes the residual sum of 

squares subject to an 𝐿1-norm constraint. The Lasso penalty results in some coefficients being estimated to be completely zero, 

thus performing estimation and variable selection simultaneously. Following the seminal paper of Tibshirani [1], various 

extensions of the Lasso were developed, for example, the adaptive Lasso [2], Smoothly Clipped Absolute Deviation (SCAD) 

[3], etc. 
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     Quantile regression, introduced by Koenker and Bassett [4], could be used when an estimate of the various quantiles (such 

as the median) of a conditional distribution is of interest. This allows one to see and compare how some quantiles of the response 

variable may be more affected by some predictor variables than other quantiles.  

     Some methods have combined regularized and robust regression methods to perform variable selection in high-dimensional 

data with outliers. For example, Rosset and Zhu [5] proposed the Huber Lasso method which combines Huber’s criterion loss 

with a Lasso penalty. The LAD-adaptive Lasso method is proposed by Wang et al. [6], combining the idea of Least Absolute 

Deviance (LAD) and adaptive Lasso. Lambert-Lacroix and Zwald [7] developed Huber’s Criterion with an adaptive Lasso which 

combines Huber’s loss function and adaptive Lasso penalty.  

     Fujisawa and Eguchi [8] introduce the gamma divergence for regression. It measures the difference between two conditional 

probability density functions. Arnold and Tibshirani [9] implemented the dual algorithm and their implementation is available 

in the R package genLasso. Taddy [10] proposed the gamma Lasso (GL) algorithm which can be seen as a computationally 

more attractive, multi-convex relaxation of best variable selection. Yi and Huang [11] developed an algorithm, called 

Semismooth Newton Coordinate Descent (SNCD), to obtain better efficiency and scalability for computing the solution paths 

of penalized quantile regression. Qin et .al [12] proposed a method called Maximum Tangent Likelihood Estimation (MTE).   

Christidis et al. [13] introduced the Split Regularized Regression (SRR) method which can be seen as a computationally more 

attractive, multi-convex relaxation of best-split selection. Zhu et .al [14] proposed Whitening Lasso (WLasso) to remove the 

correlations by applying a whitening transformation to the data before using the generalized Lasso criterion designed by 

Tibshirani and Taylor [15].  

In the next section, we will give an overview of some group variable selection methods in linear regression. 

 

2. Material and methods  

    We start from the standard model for multiple linear regression to describe the regression regularization methods. Let the 

data (𝑥1, 𝑦1),.   .    . , (𝑥𝑛, 𝑦𝑛), and the design matrix denoted by 𝑿 = (𝑥1
𝑇, .  .  , 𝑥𝑛

𝑇 )𝑇 , the general linear model is usually written 

as 

 𝑦 = 𝑿𝛽 + 𝜖                                                                                                                                                                                 (1) 

 Here 𝛽 = (𝛽1, .   .    .  , 𝛽𝑝)𝑇  are the regression coefficients  𝜖 = (𝜖1, .  .  . , 𝜖𝑛 )𝑇~ 𝑁(0, 𝜎2𝐼𝑛) are the random errors, 𝑥𝑖 are the 

regressors for observation𝑖 , 𝑖 = 1,.  .   . , 𝑛 and 𝑦 = (𝑦1  , .   .   .  , 𝑦𝑛)𝑇. The ordinary least squares (OLS) method estimates 𝛽 by 

minimizing the residual squared error, i.e.  𝛽̂𝑂𝐿𝑆 = 𝑚𝑖𝑛
𝛽

{(𝑦 − 𝑿𝛽)𝑇(𝑦 − 𝑿𝛽)}. 

In general, OLS tends to give estimators with low biases but high variances, and better prediction accuracy can usually be 

obtained by lowering the variance with a little increased bias. 

 

2.1 Lasso Regression 

      Tibshirani [1] proposed the Lasso penalty, a regularization technique for simultaneous estimation and variable selection for 

large data sets. The Lasso estimate 𝜷̂ is defined by: 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑚𝑖𝑛
𝛽

{∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )
2𝑛

𝑖=1 }  ,   s. t.    ∑ |𝛽𝑗|𝑝
𝑗=1 ≤ t,   t ≥ 0.                                                                                          (2) 

An equivalent form of the Lasso is, 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑚𝑖𝑛
𝛽

{∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )
2𝑛

𝑖=1 + λ ∑ |𝛽𝑗|𝑗 }                                                                                                                         (3) 

or 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑚𝑖𝑛
𝛽

‖𝑦 − 𝑥𝛽‖2
2 + λ‖𝛽‖1                                                                                                                                                (4) 

lambda is the parameter deciding the weight on minimizing the RSS compared to the penalty term is the sum of the absolute 

value of coefficients. 

     The Lasso minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than 

a constant. In other words, Lasso is a regression shrinkage method typically used in models with a large number of variables but 

relatively few observations. The main purpose of Lasso is to perform variable selection while fitting the regression line to the 

data. This is done by shrinking certain coefficients but in addition setting some of the coefficients also to zero. Lasso performs 

a 𝐿1 regularization by adding a penalty to the objective under optimization. This penalty is the sum of the absolute value of 

coefficients and determines which coefficients to shrink and how much.  
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2.2 Adaptive Lasso 

      Zou [2] proposed a new version of the Lasso, which is called the adaptive Lasso. The penalized least squares with the 

adaptive Lasso are defined as 

𝛽̂adaptive Lasso = 𝑚𝑖𝑛
𝛽

{∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )
2𝑛

𝑖=1 + λ ∑ 𝑤̂|𝛽𝑗|𝑝
𝑗=1 }                                                                                                   (5) 

Instead of simply using the absolute value of the parameters as the penalization, adaptive weights are added for penalizing 

different coefficients differently. Zou (2006) suggested the use of stated weights, 𝑤̂𝑗 =
1

|𝛽̂𝑗|
𝛾 , where  𝛽̂𝑗 comes from minimizing 

the OLS or Lasso and 𝛾 is a user-chosen constant. The choice of 𝑤̂𝑗 is very important and Zou [2] suggested using OLS while 

𝛾 can is chosen by K-fold cross-validation. The adaptive Lasso selects the true set of nonzero coefficients with probability 

tending to one. 

 

2.3 Lad Lasso 

     Wang et al. [6] developed combined methods from Least Absolute Deviation (LAD) regression that is useful for robust 

regression, and also Lasso which is a popular choice for shrinkage estimation and variable selection, becoming Lad Lasso. The 

LAD-Lasso can be written as (Wang et al., [6]). 

 𝛽̂𝐿𝑎𝑑 𝑙𝑎𝑠𝑠𝑜 = min
𝛽

∑ |𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 |𝑛

𝑖=1 + 𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1                                                                                                                 (6) 

As can be seen, the LAD- criterion combines the LAD criterion and the Lasso penalty, and hence the resulting estimator is 

expected to be robust against outliers and also to enjoy a sparse representation. 

 

2.4 Adaptive Lad Lasso 

     The Lad estimator is more robust than the OLS estimator, especially when datasets are subject to heavy-tailed errors or 

outliers. Lasso is a popular choice for shrinkage estimation. Adaptive Lad-Lasso is combining the two classical ideas to put 

forward a robust detection method to estimate change points in the mean-shift model. The basic idea is to convert the change 

point estimation problem into a variable selection problem with a penalty. The Adaptive Lad-Lasso can be written as (Lambert-

Lacroix and Zwald, [7]) 

𝛽̂𝑙𝑎𝑑𝑙 = min
𝛽

∑ |𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 |𝑛

𝑖=1 + 𝜆 ∑ 𝑤̂𝑗
𝑙𝑎𝑑𝑙𝑝

𝑗=1 |𝛽𝑗|                                                                                                                (7) 

where 𝑤̂𝑗
𝑙𝑎𝑑𝑙 = (𝑤̂1

𝑙𝑎𝑑𝑙 , .  .  . , 𝑤̂𝑝
𝑙𝑎𝑑𝑙) is a known weights vector. In this model, the estimator is robust to outliers because the 

squared loss has been replaced by the 𝑙1-loss. 

 

2.5 Split Regularized Regression (SRR) 

      Christidis et al. [13] recently introduced the Split Regularized Regression (SRR) method which can be seen as a 

computationally more attractive, multi-convex relaxation of best-split selection. In high-dimensional regression, the proposed 

method builds an ensemble of models by splitting the set of covariates into different but possibly overlapping groups. A penalty 

term is introduced to encourage diversity between groups, and model stacking is used to generate accurate predictions. 

The SRR-supervised variable clustering problem is to simultaneously estimate 𝐾 models, one for each cluster, then predict the 

target based on the average coefficient vector across clusters. SRR estimates multiple sparse coefficient vectors and encourages 

these vectors to be as diverse as possible. 

     Although SRR does not explicitly search for variable clusters, they may be inferred from the coefficient vectors: a variable 

belongs to a given cluster if its coefficient in the corresponding coefficient vector is nonzero. This approach can identify 

overlapping clusters and does not force coefficients of variables in the same cluster to tend towards the same value. The objective 

function of SRR is 

𝐽(𝑏1,  .   .    . , 𝑏𝐾) = ∑ {
1

2𝑛
‖𝑦 − 𝑋𝑏𝑘‖2

2𝐾
𝑘=1 + 𝛿[𝛼 ∑ |𝑏𝑗𝑘|

𝑝
𝑗=1 + (1 − 𝛼) ∑ 𝑏𝑗𝑘

2𝑝
𝑗=1 ] + 𝜆 ∑ ∑ |𝑏𝑗𝑘||𝑏𝑗𝑔 |

𝑝
𝑗=1𝑔≠𝑘 }                              (8)                                                                                     

     The matrix 𝐵 = [𝑏1,  .   .    . , 𝑏𝐾] is essentially a cluster membership matrix, where variable 𝑗 belongs to cluster 𝑘 if 𝑏𝑗𝑘 ≠ 0. 

Variables can belong to multiple clusters, but hard clusters 𝐶1,  .   .    . , 𝐶𝐾 can also be defined such that 𝐶𝑘: {𝑗|𝑘 = 𝑎𝑟𝑚𝑎𝑥𝑙|𝑏𝑗𝑙|}. 

Maximal diversity is achieved when the rows of 𝐵 contain only one nonzero element and thus each variable belongs to a single 

cluster (i.e. |𝑏𝑗𝑘||𝑏𝑗𝑔 | = 0 ∀ 𝑗, 𝑘, 𝑔). The final vector of regression coefficients used for prediction is an average across all 

vectors 𝑏𝑘:  

 𝑏̅ =
1

𝐾
∑ 𝑏𝑘

𝐾
𝑘=1  . 

     Like many of the coefficient-grouping methods, cluster assignment is more of a side effect than a principal objective of SRR. 

Moreover, the best solutions in terms of prediction error tend to be complex models with extensive cluster overlap. As a result, 

variables are assigned to clusters with less certainty, and the clustering performance is less optimal. 
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2.6 DLasso 

      Haselimashhadi and Vinciotti [16] proposed a new penalty term that is capable of producing similar results to other well-

known penalty functions in the context of regularized. The new penalty is differentiable and this penalty opens up the possibility 

of using it in many contexts where differentiability plays a key role. For example, a differentiable objective function could lead 

to more effcient implementations of parameter estimation procedures for certain models or to improved model selection criteria 

by a more accurate estimation of the bias term. The method is implemented in the R package DLASSO freely available from 

CRAN, http://CRAN.R-project.org/package=DLASSO. 

 

3. Simulation Study 

      In this section, we compare some regularized regression methods in low-dimensional with sparse and non-sparse 

coefficients(𝑝 = 15, 𝑛 =  100) and high-dimensional with sparse coefficients (𝑝 =  100 ,  𝑛 =  50)settings. For the sparse 

settings, we use a classical simulation setting, e.g. Yu et al. [17] and Li et al.[18], where 𝑦 =  𝛽0 +  𝑥𝛽 +  𝑢. We draw the 

independent variables 𝑥 from a multivariate normal distribution,  𝑁(0, Σ𝑥). The pairwise covariance between  𝑥𝑖 and 𝑥𝑗 is set to 

be  (Σ𝑥)𝑖𝑗 = 𝑟|𝑖−𝑗| . For the error 𝑢, we choose a range of distributions in order to test the robustness of the methods to departures 

from normality. In particular, we consider the following cases: 𝑢 ∼  𝑁(0, 1), We design a mixture normal distribution with large 

outliers, similar to Lambert-Lacroix and Zwald [7], by drawing 90% of the data from 𝑎 𝑁(0, 1) distribution and 10% from a 

𝑁(0, 100) distribution, Laplace distribution, mixture of two Laplace distributions, t-distribution with 3 (𝑡3) degrees of freedom 

and Gamma(3, 1). Under all these cases, we compare the regularized regression methods described in the previous section, 

namely adaptive Lad Lasso (Xu and Ying, [19]; Lambert-Lacroix and Zwald, [7]), Split Regularized Regression (SRR) and 

DLasso (AIC, GIC, BIC, CGV). For the adaptive Lad Lasso we adapt some of the functions in the 𝑝𝑎𝑟𝑐𝑜𝑟 R package,for the 

SRR method, we use the R package 𝑆𝑝𝑙𝑖𝑡𝑅𝑒𝑔 and for the DLasso (AIC, GIC, BIC, CGV) methods, we use the R package 

𝐷𝐿𝐴𝑆𝑆𝑂.For the correlation 𝑟, we experiment both with 𝑟 =  0.95 and 𝑟 = 0.5. For the 𝛽 values we consider three cases: 

(1)   𝛽𝑗  =  (3, 1.5, 0, 0, 2, 0, . . . , 0), which corresponds to the very sparse case with structures in the predictors. 

(2)   𝛽𝑗 = ( 1, 0, 0,0,5, 0, 1, 0, 0, 5,0,1,0, . . . , 0) ), which corresponds to the sparse case with structures in the predictors. 

(3)   𝛽𝑗 = 0.1  for all 𝑗, which corresponds to a dense case. 

3.1 Simulation 1: low-dimensional with very sparse coefficients (Case 1) 

      In this section, we consider low-dimensional data with very sparse coefficients set with 𝑝 =  15  and 𝑛 =  100. Table 1A, 

Table 1B, and Figure1 report the results of the simulation. We consider both the case of low correlation (𝑟 =  0.5) and that of 

high correlation (𝑟 =  0.95) of the predictors. The top panels report the median model error over 500 iterations (similar results 

for the mean error), with the model error computed by(𝛽̂ − 𝛽)
𝑇

𝑆𝑥(𝛽̂ − 𝛽), where 𝛽̂ are the estimated parameters and 𝑆𝑥 the 

sample covariance. The bottom panels report the true positives which are the number of correctly found non-zero coefficients. 

Here three correspond to the case of all non-zero coefficients being correctly detected.  

     Our results show that: the DLasso (GIC, BIC) methods do not perform well when the predictors are highly correlated; the 

adaptive Lad Lasso and the Split Regularized Regression (SRR) methods outperform all other methods for most error 

distributions. 

 

Table1A: Average Median Model Error over 500 replications for the case: p = 15, n = 100, r = 0.5,  and β  values as in 

simulation1, Best method indicated in bold.  

 

 

   

Table1B: Average Median Model Error over 500 replications for the case: p = 15, n = 100, r = 0.95, and β  values as in 

simulation1, Best method indicated in bold.  

 DLasso AIC DLasso GIC DLasso BIC DLasso CGV SplitReg adaptive LAD 

N(0,1) 0.061 0.063 0.058 0.059 0.074 0.046 

Normal. M 0.132 0.192 0.128 0.126 0.134 0.070 

Laplace 0.139 0.222 0.140 0.133 0.146 0.038 

Laplace. M 0.117 0.176 0.116 0.113 0.115 0.041 

t3 0.170 0.321 0.187 0.160 0.189 0.050 

G(3,1) 0.976 1.898 1.846 1.003 0.218 0.107 

 DLasso AIC DLasso GIC DLasso BIC DLasso CGV SplitReg adaptive LAD 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349417/#R3
http://cran.r-project.org/package=DLASSO
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Figure1: Comparison of regularized regression methods under different error distributions, for low (left) and high (right) correlated predictors. 

The top panels plot the median model error over 500 replications for simulation1 and the bottom panels the average true positives when p =
 15  and  n =  100 . 
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Normal. M 0.157 0.217 0.159 0.149 0.106 0.122 

Laplace 0.185 0.230 0.191 0.179 0.121 0.055 

Laplace. M 0.154 0.191 0.141 0.137 0.097 0.052 

t3 0.252 0.314 0.259 0.233 0.172 0.089 

G(3,1) 1.363 1.956 1.912 1.730 0.179 0.163 
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3.2 Simulation 2:  high-dimensional with very sparse coefficients (Case 1) 

     We consider a similar setting to simulation 3.1 but with different sample size and several predictors. In particular, we consider 

a high-dimensional example with very sparse coefficients with 𝑝 =  100   and 𝑛 =  50.Table 2A, Table 2B and Figure 2 report 

the median model error over 500 replications, with the model error computed in the same way as in Figure1.  

 

Table 2A: Average Median Model Error over 500 replications for the case: p = 100, n = 50 , r = 0.5, and β values as in 

simulation 2, Best method indicated in bold.  

 

Table2B: Average Median Model Error over 500 replications for the case: p = 100, n = 50, r = 0.95, and β  values as in 

simulation 2, Best method indicated in bold.  

 

 DLasso AIC DLasso GIC DLasso BIC DLasso CGV SplitReg adaptive LAD 

N(0,1) 0.946 0.274 0.252 0.306 0.291 0.081 

Normal. M 1.717 0.799 0.382 0.378 0.454 0.134 

Laplace 1.928 1.063 0.573 0.528 0.490 0.085 

Laplace. M 1.530 0.684 0.416 0.474 0.448 0.069 

t3 2.281 1.319 0.732 0.563 0.628 0.123 

G(3,1) 2.799 2.634 2.413 2.031 0.923 2.039 

 DLasso AIC DLasso GIC DLasso BIC DLasso CGV SplitReg adaptive LAD 

N(0,1) 0.628 0.234 0.184 0.203 0.178 0.335 

Normal. M 1.373 0.849 0.370 0.329 0.330 0.299 

Laplace 1.447 1.007 0.410 0.338 0.363 0.141 

Laplace. M 1.087 0.668 0.287 0.269 0.297 0.096 

t3 2.004 1.411 0.673 0.450 0.448 0.277 

G(3,1) 2.822 2.662 2.523 1.972 0.526 0.421 
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Figure 2: Comparison of regularized regression methods under different error distributions, for low (left) and high (right) 

correlated predictors. The top panels plot the median model error over 500 replications for simulation 2 and the bottom panels 

the average true positives when p =  100  and  n =  50 . 

 

     The results support the performance of the methods: DLasso (AIC, GIC) do not perform well when the predictors are highly 

correlated, and the adaptive Lad Lasso method outperforms all other methods as departures from normality increase. This is 

particularly evident in the case 𝐿𝑎𝑝𝑙𝑎𝑐𝑒. 𝑀 and 𝑡3. 

 

3.3 Simulation 3: low- dimensional with non-sparse coefficients (Case 2) 

     To investigate the performance of variable selection methods, we set up a new simulation where we have 𝛽𝑗  as in case 2, 

that is a sparse situation. Table 3A, Table 3B and Figure 3 report the median model error over 500 replications for the cases 

𝑝 =  50  and 𝑛 =  100 
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Table3.A: Average Median Model Error over 500 replications for the case: p = 50, n = 100 , r = 0.5, and β  values as in 

simulation 3, Best method indicated in bold.  

 

Table3B: Average Median Model Error over 500 replications for the case: p = 15, n = 100, r = 0.95, and β  values as in 

simulation3, Best method indicated in bold.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 DLasso AIC DLasso GIC DLasso BIC DLasso CGV SplitReg adaptive LAD 

N(0,1) 0.260 0.228 0.221 0.222 0.159 2.788 

Normal. M 0.388 0.785 0.355 0.360 0.291 2.260 

Laplace 0.400 0.851 0.366 0.365 0.302 2.776 

Laplace. M 0.389 0.632 0.339 0.347 0.250 2.562 

t3 0.521 1.148 0.523 0.472 0.409 2.429 

G(3,1) 1.537 3.618 3.566 1.657 0.450 2.400 

 DLasso AIC DLasso GIC DLasso BIC DLasso CGV SplitReg adaptive LAD 

N(0,1) 0.757 0.428 0.460 0.513 0.117 0.366 

Normal. M 0.968 0.819 0.744 0.826 0.203 0.712 

Laplace 1.091 0.865 0.787 0.847 0.209 0.496 

Laplace. M 1.036 0.741 0.684 0.738 0.188 0.488 

t3 1.133 1.107 0.977 0.933 0.275 0.426 

G(3,1) 2.944 3.564 3.526 2.678 0.352 0.610 
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Figure 3: Comparison of regularized regression methods under different error distributions, for low (left) and high (right) 

correlated predictors. The top panels plot the median model error over 500 replications for simulation 3 and the bottom panels 

the average true positives when p =  50  and  n =  100 . 

 

     From the results in Table 3A, Table 3B and Figure 3, our simulation study confirms that the SRR outperforms all other 

methods as departures from normality increase. This is particularly evident in the case when the predictors are highly correlated. 

 

3.4 Simulation 4:  high-dimensional with non-sparse coefficients (Case 2) 

     To investigate the performance of variable selection methods, we set up a new simulation where we have 𝛽𝑗  as in case 2, 

that is a sparse situation. Table 4A, Table 4B and Figure 4 report the median model error over 500 replications for the cases 

𝑝 =  100  and 𝑛 =  50. 
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Table 4A: Average Median Model Error over 500 replications for the case: p = 100, n = 50 , r = 0.5, and β values as in 

simulation 4, Best method indicated in bold.  

 

Table 4B: Average Median Model Error over 500 replications for the case: p = 100, n = 50 , r = 0.95, and β values as in 

simulation 4, Best method indicated in bold.  
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 DLasso AIC DLasso GIC DLasso BIC DLasso CGV SplitReg adaptive LAD 

N(0,1) 0.942 0.410 0.417 0.507 0.452 1.515 

Normal. M 1.739 1.000 0.731 0.826 0.782 2.378 

Laplace 1.893 1.107 0.793 0.863 0.775 2.108 

Laplace. M 1.607 0.892 0.693 0.830 0.729 1.648 

t3 2.282 1.466 0.953 0.786 0.839 2.549 

G(3,1) 2.864 2.694 2.578 3.347 1.174 2.328 

 DLasso AIC DLasso GIC DLasso BIC DLasso CGV SplitReg adaptive LAD 

N(0,1) 0.701 0.264 0.236 0.247 0.237 0.459 

Normal. M 1.428 0.901 0.438 0.409 0.388 0.542 

Laplace 1.514 0.919 0.491 0.449 0.424 0.772 

Laplace. M 1.298 0.749 0.428 0.410 0.379 0.666 

t3 2.038 1.324 0.642 0.500 0.496 0.469 

G(3,1) 2.852 2.799 2.742 1.949 0.658 0.543 
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Figure 4: Comparison of regularized regression methods under different error distributions, for low (left) and high (right) 

correlated predictors. The top panels plot the median model error over 500 replications for simulation 4 and the bottom panels 

the average true positives when p =  100  and  n =  50. 

 

      From the results in Table 4A and Table 4B and Figure 4 our simulation study confirms the performances of the adaptive Lad 

Lasso and the SRR methods outperform all other methods for most error distributions, Furthermore, the results show how 

DLasso (AIC) is the worst performing method in the case of departure from normality especially when the predictors are highly 

correlated. 

 

3.5 Simulation 5: low- dimensional with non-sparse coefficients (Case 3) 

      To investigate the performance of variable selection methods, we set up a new simulation where we have 𝛽𝑗  as in case 3, 

that is a non-sparse situation. Table5A, Table 5B and Figure 5 report the median model error over 500 replications for the cases 

𝑝 =  15  and 𝑛 =  100. 

 

Table5.A: Average Median Model Error over 500 replications for the case: p = 15, n = 100 , r = 0.5, and β  values as in 

simulation 5, Best method indicated in bold.  
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 DLasso AIC DLasso GIC DLasso BIC DLasso CGV SplitReg adaptive LAD 

N(0,1) 0.387 0.139 0.304 0.386 0.085 0.219 

Normal. M 0.456 0.230 0.292 0.456 0.124 0.256 

Laplace 0.446 0.245 0.333 0.446 0.132 0.243 

Laplace. M 0.430 0.217 0.287 0.429 0.122 0.249 

t3 0.377 0.310 0.344 0.377 0.163 0.221 

G(3,1) 0.428 1.955 1.891 0.371 0.198 0.269 
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Table5B: Average Median Model Error over 500 replications for the case: p = 15, n = 100, r = 0.95, and β  values as in 

simulation5, Best method indicated in bold.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Comparison of regularized regression methods under different error distributions, for low (left) and high (right) 

correlated predictors. The median model error is plotted over 500 replications for simulation 5 when p =  15  and  n =  100 . 

 

      From the results in Figure 5, Table 5A and Table 5B our simulation study confirms that the SRR outperforms all other 

methods as departures from normality increase. This is particularly evident in the case when the predictors are highly correlated. 

 

3.6 Simulation 6:  high-dimensional with non-sparse coefficients (Case 3) 

      To investigate the performance of variable selection methods, we set up a new simulation where we have 𝛽𝑗  as in case 3, 

that is a non-sparse situation. Table 6A, Table 6B and Figure 6 report the median model error over 500 replications for the cases 

𝑝 =  100  and 𝑛 =  50. 

 

Table 6.A: Average Median Model Error over 500 replications for the case: p = 100, n = 50 , r = 0.5, and β values as in 

simulation 6, Best method indicated in bold.  
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 DLasso AIC DLasso GIC DLasso BIC DLasso CGV SplitReg adaptive LAD 

N(0,1) 0.922 0.123 0.131 0.149 0.040 0.094 

Normal. M 1.027 0.216 0.215 0.238 0.066 0.125 

Laplace 0.740 0.243 0.246 0.316 0.067 0.091 

Laplace. M 0.976 0.197 0.202 0.224 0.059 0.090 

t3 0.768 0.307 0.308 0.374 0.083 0.099 

G(3,1) 0.564 1.064 0.917 0.570 0.095 0.141 

 DLasso AIC DLasso GIC DLasso BIC DLasso CGV SplitReg adaptive LAD 

N(0,1) 0.949 0.686 0.828 1.780 0.779 1.675 

Normal. M 1.720 1.160 1.082 2.043 1.170 2.220 

Laplace 1.827 1.229 1.041 1.677 1.175 1.848 

Laplace. M 1.610 1.077 0.977 1.794 1.265 1.723 
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Table 6B: Average Median Model Error over 500 replications for the case: p = 100, n = 50 , r = 0.95, and β values as in 

simulation 6, Best method indicated in bold.  

 

 

 
Figure 6: Comparison of regularized regression methods under different error distributions, for low (left) and high (right) 

correlated predictors. The median model error is plotted over 500 replications for simulation 6 when p =  100  and  n =  50 . 

      From the results in Table 6A and Table 6B and Figure 6 our simulation study confirms the performances of the SRR method 

outperform all other methods as departures from normality increase, Furthermore, the results show how adaptive Lad Lasso is 

the worst performing method in the case of departure from normality especially when the predictors are highly correlated. 

 

4. Concluding remarks  

      Many approaches are developed in statistics that rely on the assumption of normality. These approaches are not suited to 

data that show clear departures from normality. This is often the case when data are contaminated, resulting in the presence of 

outliers. In this paper, we have considered recently developed variable selection methods, such as the Adaptive Lad Lasso, Split 

Regularized Regression (SRR) and DLasso. In a high dimensional setting, when 𝑝 ≥  𝑛. In a simulation study, we show how 

the Adaptive Lad Lasso and the Split Regularized Regression (SRR) methods are superior to other methods, particularly for 

cases where there is a large departure from the normal distribution.   
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t3 2.304 1.534 1.217 1.536 1.234 1.584 

G(3,1) 2.838 2.427 2.220 1.982 1.732 2.187 

 DLasso AIC DLasso GIC DLasso BIC DLasso CGV SplitReg adaptive LAD 

N(0,1) 3.211 0.512 0.569 0.794 0.428 7.648 

Normal. M 1.983 0.863 0.752 0.878 0.674 9.493 

Laplace 2.289 0.956 0.816 0.942 0.703 10.072 

Laplace. M 2.050 0.774 0.760 0.879 0.633 11.435 

t3 2.749 1.399 0.962 1.059 0.844 7.312 

G(3,1) 2.745 2.676 2.591 2.264 1.022 7.942 
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 المتغيرات دراسة محاكاة لاختيار دلاسو: انحدار لاسو المكيف وانحدار المنظم المنفصل وانحدار

 

 الرحمن هاشمحسين عبد 
  قسم الرياضيات، كلية العلوم، جامعة دهوك، دهوك، العراق

 انحدار  (، وSRR، وانحدار المنظم المنفصل )انحدار لاسو المكيف  في هذا البحث نقارن ثلاث طرق رئيسية لاختيار المتغيرات لنماذج الانحدار الخطي:  :الخلاصة
الأساليب في دراسة محاكاة من خلال النظر في خطأ النموذج المتوسط. نحن نعتبر أيضًا الحالة التي يتجاوز  . نعرض أداء هذه  (AIC, GIC, BIC, CGV)لاسو

 فيها عدد المتغيرات المستقلة عدد المشاهدات. تحدد دراسة المحاكاة الطرق الأفضل في جميع سيناريوهات الانحدار الخطي.
 تسوية.  اختيار متغير ؛ لاسو ؛ لاسو ؛ الكلمات المفتاحية:

 

 

  

 

 

 

 

 

 

 

 

 
 

 

 

 


