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 This paper will present the Goel distribution as the occurrence rate of the non-

homogeneous Poisson process (NHPP) to improve its occurrence rate, it is proposed to be 

called the Generalized Goel Process (GGP). As for the estimation of parameters of this 

process, a number of methods were discussed, the maximum likelihood estimator (MLE) 

was suggested and after that – a modification to this method was necessary due to the fact 

that it was impossible to find estimators using it. An intelligent algorithm of the likelihood 

function was added with the parameter and was known as the Modified Maximum 

Likelihood Estimator (MMLE). MMLE was then compared with another intelligent 

method the Particle Swarm Optimization (PSO) in estimating occurrence rate of the 

proposed Goel process to determine the best estimator of the process. Besides, the paper 

contains the simulation of the mentioned process and an example of its practical usage. 

The simulation and application results showed that the MMLE approach gave higher 

accuracy estimates than the PSO algorithm for the majority of the studied sample sizes, 

especially for the larger sizes. 
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1. Introduction 

 

The Non-homogeneous Poisson Process (NHPP) analyses and models failure data in repairable systems. This 

process is one of the important stochastic processes, which is a generalization of the homogeneous Poisson process. 

NHPP assumes that the number of events that occur in a process period is a Poisson distribution with independent 

increments. Furthermore, the occurrence of events in NHPP is monotonic over a period, which is a function of time 

called the intensity function, and is denoted by 𝜆(𝑡) [4,15]. 

Goel process (GP) is a well-known reliability engineering model used to analyse the failure data of repairable 

systems. It is a non-homogeneous Poisson process that assumes that the failure rate of a system decreases over time 

due to the presence of some latent failures that are gradually eliminated during the system's operation. This process 

was introduced in 1979 by Jitendra Goel and Kiyoshi Okumoto [3], and it has been widely used in the reliability 

analysis of complex systems in various fields such as engineering, finance, and healthcare. It depends on the following 

assumptions [10]: 

• The probability of failures at time 𝑡 is Poisson distributed with mean rate function 𝑚(𝑡). 

• If 𝛥𝑡 is approaching 0 the total count of failures taking place in the interval (𝑡, 𝑡 + 𝛥𝑡] is related to the expected 

number of non-suspected errors. 

• That means for any given finite subset of times (𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛) the number of failures that occur in each of 

the interval’s 𝑡𝑖 − 𝑡𝑖−1 are independent. 

https://stats.uomosul.edu.iq/article_185239.html
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2741-5084
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In conclusion, the Goel process is a useful tool to assess the reliability of the complicated systems, and the method is 

applied in practice to enhance the reliability and safety of systems in many fields. 

 

2. Material and methods  

 
In this section, the theoretical background of the generalized Goel process (GGP) shall be presented as well as two 

parameter estimation methods, namely the Modified Maximum Likelihood Estimation (MMLE) and Particle Swarm 

Optimization (PSO) algorithms. Furthermore, a presentation of the proposed algorithms for the assessment of the rate 

of occurrence of GGP will be given. 

 

3. Generalized Goel process 

This paper will therefore present the Goel distribution as a rate of occurrence for the NHPP to improve on its rate 

of occurrence whereby the newly developed process is known as the Generalized Goel process (GGP). As for the 

estimation of parameters in this process, a number of methods were discussed, the maximum likelihood estimator 

(MLE) was suggested and after that a modification to this method was necessary due to the fact that it was impossible 

to find estimators using it. An intelligent algorithm of the likelihood function was added with the parameter and was 

known as the Modified Maximum Likelihood Estimator (MMLE). MMLE was then compared with another intelligent 

method the Particle Swarm Optimization (PSO) in estimating occurrence rate of the proposed Goel process to 

determine the best estimator of the process. Besides, the paper contains the simulation of the mentioned process and 

an example of its practical usage. 

Supposing the process {𝑁(𝑡), 𝑡 ≥ 0} represents the NHPP, number of events occurring in a time interval (0, 𝑡] 
follows a Poisson distribution with a density function [13]: 

𝑝[𝑁(𝑡) = 𝑛] =
𝑒−𝑚(𝑡)[𝑚(𝑡)]𝑛

𝑛!
      , 𝑛 = 1,2,3,                                                                                                                     (1) 

where 𝑚(𝑡) represents the process parameter, is the mean occurrence rate, and is defined as follows: 

𝑚(𝑡) = 𝐸[𝑁(𝑡)] = ∫ 𝜆(𝑢) 𝑑𝑢
𝑡

0
 , 0 ≤ 𝑡 < ∞                                                                                                                    (2) 

where 𝜆(𝑢) denotes the rate of occurrence of a non-homogeneous stochastic process or intensity function, which is 

described by the Generalized Goel distribution as follows: 

𝜆(𝑡) = 𝑎𝑏𝑐𝑒−𝑏𝑡𝑐
𝑡𝑐−1; 𝑡 ≥ 0, 𝑎, 𝑏 > 0, 𝑐 > 1                                                                                                                 (3) 

where 𝑎, 𝑏  and 𝑐 are the parameters for generalized Goel distribution, parameter a is the expected total number of 

failures, parameters 𝑏 and 𝑐  represent the quality of the testing process.  It can be seen that 𝜆(𝑡) increases at the 

beginning of the process and then decreases when 𝑎, 𝑏 > 0 and 𝑐 > 1, 𝜆(𝑡) reaches its maximum at 𝑡 = (
𝑐−1

𝑏𝑐
)

1
𝑐
. 

It is proposed to use a modified maximum likelihood estimator and Particle Swarm Optimization algorithm to 

estimate the parameters of this process. 

 

3.1 Modified Maximum Likelihood Estimation (MMLE)  

Another common classification of estimators is the maximum likelihood estimator (MLE) which is a common 

efficient estimator to estimate the parameters of the distribution given the data. This method also determines the 

maximum likelihood estimates of the parameter values, that is, the probability of obtaining the observed data when a 

particular set of parameter values are assumed [7]. Nevertheless, it has been reported that MLE may in some 

circumstances give non-biased parameter estimates, which could be more realistic should the sample size be small or 

the distribution of the population be complicated. It is also noted that in such cases, some changes can be made to the 

MLE to try enhance the quality of the estimates [17]. 

 

MMLE was intended as an extension of the MLE method for estimating the GGP parameters since the estimators 

for this process cannot be easily derived via the MLE method, thus yielding more reliable estimations of the model 

parameters. 

All in all, MMLE is a versatile modification of MLE good for its application in improving the relative error of the 

estimated parameters when MLE cannot be used. 

Suppose that {𝑁(𝑡), 𝑡 ≥ 0} is a GGP with the occurrences rate defined by the formula (3), then the joint probability 

function of the times of occurrence (𝑡1, 𝑡2, … , 𝑡𝑛)  where (0 < 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤  𝑡𝑛 ≤ 𝑡0) defined by [2, 3]: 

𝑓𝑛(𝑡1, 𝑡2, … , 𝑡𝑛) = ∏ 𝜆(𝑡𝑖)𝑒−𝑚(𝑡0)𝑛
𝑖=1                                                                                                                    (4) 

Therefore, the GGP parameter represents the mean occurrences rate time, as: 

𝑚(𝑡) = ∫ 𝜆(𝑢) 𝑑𝑢
𝑡

0
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         = ∫ (𝑎𝑏𝑐𝑒−𝑏𝑢𝑐
𝑢𝑐−1) 𝑑𝑢

𝑡

0
 

         = 𝑎[1 −

𝑒−𝑏𝑡𝑐
]                                                                                                                                                                                        (5) 

Hence, likelihood function of the GGP for the time period (0, 𝑡] with the intensity function 𝜆(𝑡) is: 

𝐿 = ∏ (𝑎𝑏𝑐𝑒−𝑏𝑡𝑐
𝑡𝑐−1𝑛

𝑖=1 )𝑒−𝑎[1−𝑒−𝑏𝑡𝑐
]                                                                                                            (6) 

 

To estimate the process parameters using the maximum likelihood method, we start by taking the natural logarithm of 

formula (6) to obtain the log-likelihood function given by equation (7): 

 

𝑙𝑛 𝐿 = 𝑛 𝑙𝑛 𝑎 + 𝑛 𝑙𝑛 𝑏 + 𝑛 𝑙𝑛 𝑐 − 𝑏 ∑ 𝑡𝑖
𝑐𝑛

𝑖=1 + ∑ 𝑙𝑛 𝑡𝑖
𝑐−1𝑛

𝑖=1 − 𝑎(1 − 𝑒−𝑏𝑡0
𝑐
)                                                (7) 

 

To estimate the values of the parameters 𝑎, 𝑏, and 𝑐, we derive equation (7) with respect to each parameter and set 

the resulting derivative equal to zero. This gives us the following system of equations: 

 
𝜕 𝑙𝑛 𝐿

𝜕𝑎
=

𝑛

𝑎
− (1 − 𝑒−𝑏𝑡0

𝑐
)  

𝑎̂ =
𝑛

1−𝑒−𝑏̂𝑡0
𝑐̂                                                                                                                                                                             (8) 

𝜕 𝑙𝑛 𝐿

𝜕𝑏
=

𝑛

𝑏
− ∑ 𝑡𝑖

𝑐𝑛
𝑖=1 − 𝑎𝑒−𝑏𝑡0

𝑐
 𝑡0

𝑐    

𝑏̂ =
𝑛

∑ 𝑡𝑖
𝑐̂𝑛

𝑖=1 +𝑎̂𝑒−𝑏̂𝑡0
𝑐̂

 𝑡0
𝑐̂
                                                                                                                                          (9) 

𝜕 𝑙𝑛 𝐿

𝜕𝑐
=  

𝑛

𝑏
− 𝑏 ∑ 𝑡𝑖

𝑐𝑛
𝑖=1 𝑙𝑛 𝑡𝑖 + ∑ 𝑙𝑛 𝑡𝑖

𝑐𝑛
𝑖=1 𝑙𝑛(𝑙𝑛 𝑡𝑖) − 𝑎𝑒−𝑏𝑡0

𝑐
 𝑏𝑡0

𝑐 𝑙𝑛(𝑙𝑛 𝑡0)  

𝑐̂ =
𝑛

𝑏̂ ∑ 𝑡𝑖
𝑐̂𝑛

𝑖=1 𝑙𝑛 𝑡𝑖−∑ 𝑙𝑛 𝑡𝑖
𝑐̂𝑛

𝑖=1 𝑙𝑛(𝑙𝑛 𝑡𝑖)+𝑎̂𝑒−𝑏̂𝑡0
𝑐̂

 𝑏𝑡0
𝑐̂ 𝑙𝑛(𝑙𝑛 𝑡0)

                                                                                                    (10) 

where 𝐿, 𝑛 and 𝑡𝑖 are respectively the log–likelihood function given by equation (6), the total number of failure and 

occurrence times. These equations can be estimated by using iterative techniques like Newton-Raphson or 

Expectation- Maximization algorithms to compute 𝑎, 𝑏 and 𝑐, which can give maximum likelihood values [8, 12, 14]. 

We observed that solving the system of equations which is obtained from differentiation of the equation (7) with 

respect to ”𝑎”, ”𝑏”, and ”𝑐” is not at all possible using common algebraic solutions because of the fact that the system 

is heavily nonlinear. Thus, herein, we suggest the new approach based on the maximum likelihood method modified 

by the incorporation of one of the most effective artificial intelligence methods: particle swarm optimization (PSO). 

 

3.2 Particle Swarm Optimization (PSO) 

PSO stands for Particle Swarm Optimization and is an optimization technique that was conceptualized to mimic 

socially engaging behavior. It was identified by Eberhart and Kennedy in 1995, and has been applied in a number of 

disciplines including civil engineering, finance, and computer science to name but a few, to solve optimization. It 

begins with a population of candidate solutions called particles and moves in the search space relying on the best 

particle discovered so far. It is governed by their current positions, velocities as well as by the acceleration coefficients 

and is updated on each iteration of the algorithm [1]. 

 

The PSO algorithm works to find the best solution, which is done by modifying the particle’s position and velocity 

in the whole swarm. Stopping an algorithm is related to the stopping criteria which include reaching to the maximum 

number of iterations as well as getting a satisfactory solution. The main strengths of PSO include the simplicity of the 

algorithm, as well as the relative ease with which it can be implemented; also, for PSO, both continuous and discrete 

optimization problems can be solved.  

 

The PSO algorithm is a metaheuristic optimization technique that can be used to find the optimal solution to an 

optimization problem. The algorithm starts by initializing a population of candidate solutions called particles. Each 

particle has a position and a velocity in the search space. The algorithm then evaluates the fitness of each particle 

using a fitness function that measures how well the particle satisfies the objective of the optimization problem. It 

updates the position and velocity of each particle at each iteration of the algorithm based on its own experience and 

the experience of the other particles in the swarm. The updated equations for the position and velocity of a particle 

are as follows [9]: 
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𝑉𝑖
𝑡+1 =   𝜔𝑉𝑖

𝑡 +  𝑐1𝑟1( 𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖
𝑡) +  𝑐2𝑟2( 𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖

𝑡)                                                                                               (11) 

𝑋𝑖
𝑡+1  =   𝑋𝑖

𝑡 +  𝑉𝑖
𝑡+1                                                                                                                                            (12) 

𝑤𝑖𝑡ℎ    𝑋𝑖
0     ~   𝑈(𝑋𝑀𝑖𝑛  , 𝑋𝑀𝑎𝑥),     

𝑖. 𝑒.     𝑋𝑖
0  =  𝑋𝑀𝑖𝑛 + 𝑟𝑖 (𝑋𝑀𝑎𝑥 −  𝑋𝑀𝑖𝑛)   , 𝑟𝑖 ~   𝑈(0 , 1)  

 

where; 𝑉𝑖
𝑡+1 is the velocity of particle 𝑖 at iteration 𝑘, 𝜔 is a positive constant, referred to as inertia weight, 𝑐1 and 𝑐2 

are the acceleration coefficients, 𝑃𝑏𝑒𝑠𝑡 is the personal best position of the particle 𝑖, 𝑔𝑏𝑒𝑠𝑡 represents the global best 

position obtained up. The dimensions of inertia weight determine how much the swarm’s search is focused on 

exploitation of a particular part of the search space or how much the swarm is just looking for new areas to explore. 

In most cases, it is designed to be defined as reducing from an initial value to a final value in the algorithm. 

Acceleration coefficients regulate interaction of the personal and global best positions with movements of the particles. 

PSO algorithm keeps on adjusting the position and velocity of each particle until a stopping condition is reached which 

may include a maximum number of iterations has elapsed, or a good solution is reached or obtained. Each particle is 

consists of 3-vector [5]: 

 

• X-vector: is a vector for the particle in the search space to show its current position for the particle. 

• V vector: this vector defines the velocity of the particle; this velocity decides the path and movement of the 

particle in the search space. 

• P-vector (𝑃𝑏𝑒𝑠𝑡): stores the coordinates of the improving position averagely achieved by the particle while in 

movement in the space of the search. 

 

In PSO, the fitness function (the objective function) is simultaneously used to assess (evaluated), at the same time 

particles are initialized and then computed; after which, a loop is begun to search for an optimum solution, in which 

at that time personal best (this is the best value for each particle) and the global best value (this is the best value for 

the whole swarm of particles) are determined. When a loop begins the velocities of particles are first updated by the 

personal and global best values Then the updating of the position of each particle is done by the current velocity of 

the particle. Finally, the loop is terminated by use of a stopping criterion which is predetermined [16]. 

 

The fitness is calculated during the initial phase of PSO where a population of particles are randomly generated in 

the search space. This position is then used to compute the bead personal best position for each particle and the PSO 

global best position of the established swarm. Within the iteration process velocity of each particle is proposed taking 

into consideration the personal as well as the global best position and velocity of the particle. This is followed by a 

movement of the position of each particle by the steps of its new velocity. This procedure is done for a fixed number 

of steps or until a stop criterion is met which may include fitness level achievement or reaching a maximum number 

of steps [6,11]. 

 

Therefore, the steps of PSO algorithm can be described as follows:  

1. Initiation process should commence with position initialization and sometime the particles are randomly 

positioned. 

2. Assess the quality of a particular particle based on the measures of its fitness function. 

3. The best position must be updated until you find a new position that is local and better of the previous one. 

4. If the current position is better than the previous best position found so far, then update the global best position. 

5. Use the formula given by equation (11) to determine the velocity of each particle. 

6. To update the position of the particle, we shall use equation (12). 

Fill steps (2-6) until the termination criteria is attained. 

 

3.3 Parameter Estimation for GGP  

 
In this section, we will describe two algorithms to estimate the parameters of the GGP using two different methods. 

The first method is the MMLE, which incorporates the PSO algorithm with the maximum likelihood method, and the 

second method is the PSO algorithm directly for estimation. The algorithms are described as follows: 

 

Algorithm (1): MMLE (MLE-PSO) method  

1) For the GGP, we also have the data likelihood function given data set D. 

2) Take the natural logarithm of the likelihood function of GGP. 
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3) Substituting the resulting equations obtained by differentiating of equation (7) with respect to 𝑎, 𝑏, and c with 

PSO algorithm. 

4) Initialize PSO parameters, including the population size (𝑁 = 50), maximum number of iterations (𝑖𝑚𝑎𝑥 =
100), PSO constants, the acceleration coefficients C1 = C2 = 1, (𝑟1 = 𝑟2 = 0.1); note that the maximum and 

minimum values for inertial weight is: Different with equation (3), the maximum value of transfer entropy is 

𝜃max = 0.9, 𝜃min = 0.4. 

5) Randomly position and integrate the particle’s velocities at the start of evolution, or generate the first population 

of particles. 

6) For each particle in the population, calculate the fitness value which is the negative log-likelihood function. 

7) Replace personal best positions and velocities of each particle by the result of the fitness function. 

8) Update the global best position of the population along with the global best velocity of the population. 

9) Then, apply the PSO algorithm in updating the positions and the velocities of each particle. 

10) Calculate the health of all the new position in the landscape in terms of the fitness function. 

 

Algorithm (2): PSO method  

1) Initialize PSO parameters, including the population size (𝑁 = 50), maximum number of iterations (𝑖𝑚𝑎𝑥 =
100), PSO constants, the acceleration coefficients C1 = C2 = 1, (𝑟1 = 𝑟2 = 0.1); note that the maximum and 

minimum values for inertial weight is: 𝜃max = 0.9, 𝜃min = 0.4. 

2) Propose an initial state and, in particular, randomly place and assign velocities to particles. 

3) Evaluate the fitness function for each particle in the population, which is maximum percentage error (MPE), 

according to the formula below: 

𝑀𝑃𝐸 = ∑1≤𝑖≤𝑛
𝑚𝑎𝑥   [

|𝑆𝑖−𝑆̂𝑗|

𝑆𝑖
]                                                                                                                                     (13) 

where 𝑆𝑖 =  ∑ 𝑋𝑗
𝑖
𝑗=1 , 𝑆̂𝑖 =  ∑ 𝑋̂𝑗

𝑖
𝑗=1  . 

 

4) Update the personal best positions and velocities of each particle according to the fitness function of the used 

problem. 

5) Record the global best position and velocity of the population according to an individual’s personal best of 

position and velocity. 

6) The PSO algorithm has to be used to update the positions and velocities of each particle present in the 

environment. 

7) Assessing the new positions means that the fitness of such positions must be evaluated to determine the possibility 

of accepting those new positions. 

8) If it is however reached then return the best solution found in the process of carrying out the search. If not go to 

the next step 4. 

 

4. Results and Discussion 

4.1 Simulation  

 
In this section, a comprehensive simulation study is conducted to compare two estimation methods in order to 

arrive at the best estimate of the required parameter. The five stages that follow are an explication of the design 

simulation experiments. 

 

Stage 1 for the simulation is all about generating data. In the course of this work, a simulated data values are 

created with the use of GGP distribution with known parameters. The obtained data will be employed to assess the 

degree of the correspondence between the methods of estimation used in the study. The number of observations and 

values which are employed in the process of simulation can be defined referring to the features of the studied process. 

It is advised to target an 𝑛 sufficiently high so as to have good estimation of the parameters which is largely determined 

by the computations in the case of a large data sample. 

 

MMLE (MLE-PSO) Algorithm on Stage 2: Estimating Parameters. However, in this stage, no matter how wide 

the sense is, the authors propose the MMLE method with PSO algorithm to estimate the parameters of the GGP 

distribution. This is done several times and the final parameter estimates are recorded after the run of the algorithm. 

The MPE and RMSE are computed for the estimates of all sets of parameters. 
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Stage 3: Estimation of parameters using PSO algorithm directly. Finally in this stage, we use PSO right on the 

model to estimate the parameters of the GGP distribution. The algorithm is operated many times, and the parameter 

estimates that the algorithm produces at each trial run are noted. RMSE values are determined for all kinds of the 

parameter estimations. 

 

The fourth stage is the comparing of the estimation methods after the four estimation techniques have been applied 

to a specific problem. In this stage, RMSE values obtained from MMLE and PSO algorithm directly are compared to 

select the best estimation method, according to the following form: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝜃𝑖̂ − 𝜃)2𝑁

𝑖=1                                                                                                                                     (14) 

In general, the simulation study provides researchers with a convenient tool with which they can compare the relative 

performance of a number of estimation methods in order to select the method that yields the most accurate parameter 

estimates. The above selected method can then be employed to estimate the parameters of the GGP distribution for 

real data in organizations, analysis and decision making. 

 

Table 1: RMSE of estimated parameters for simulated GGP using PSO and MMLE methods with sample sizes of 𝑛 =
50, 100. 

 

Sample size parameters Method RMSE (𝑎̂) RMSE (𝑏̂) RMSE (𝑐̂) 

50 

{𝑎 = 0.75, 𝑏 = 0.5, 𝑐 = 0.75} 
PSO 0.0292 0.0261 0.0659 

MMLE 0.0111 0.0250 0.0654 

{𝑎 = 0.75, 𝑏 = 0.75, 𝑐 = 0.5} 
PSO 0.0156 0.0603 0.0603 

MMLE 0.0101 0.0433 0.0594 

{𝑎 = 0.75, 𝑏 = 0.75, 𝑐 = 0.75} 
PSO 0.0620 0.0624 0.0615 

MMLE 0.0582 0.0286 0.0505 

100 

{𝑎 = 0.75, 𝑏 = 0.5, 𝑐 = 0.75} 
PSO 0.0207 0.0452 0.0466 

MMLE 0.0079 0.0247 0.0462 

{𝑎 = 0.75, 𝑏 = 0.75, 𝑐 = 0.5} 
PSO 0.0110 0.0426 0.0427 

MMLE 0.0071 0.0306 0.0420 

{𝑎 = 0.75, 𝑏 = 0.75, 𝑐 = 0.75} 
PSO 0.0438 0.0441 0.0435 

MMLE 0.0412 0.0202 0.0357 

Table 1 reports on a simulation study undertaken to fit random variables to the GGP distribution having different 

sample sizes (𝑛 = 50,100) and a different set of parameters a, b and c. Two estimation procedures, the PSO algorithm 

and the proposed MMLE estimators were compared based on the Root Mean Squared Error (RMSE) of the 

parameters’ estimates. The following value of RMSE was obtained where a small value of RMSE indicates better 

performance of the estimation method. The table summarizes the results in terms of the RMSE of the estimated 

parameters of the model by the different methods under different sample size. 

For every combination of the samples size and parameters values the table shows the RMSE of the estimated 

parameters 𝑎, 𝑏 and 𝑐 defined with the PSO ans MMLE. The results demonstrate that, on the whole, MMLE yields 

smaller RMSE than PSO and these improvements augmented with the sample size. 

 

4.2 Application for Real Data 

In this paragraph, the application was applied to real data that characterized the outage of electric power generation 

units within days of Mosul gas station in north Nineveh Governorate for the period from 01/05/2019 to 30/06/2021. 

The first test implies confirmation that the data used is suitable for the process being observed. This is done by 

analyzing actual data and by using logarithmic scales to construct the number of cumulative days with power outages. 

This kind of data distribution configuration means that the majority of these points are arranged in a straight line 

Hence, the collection and the details contained therein conform to the rate of occurrence of the GGP. Using 

MATLAB\R2017b language, the following figure was obtained: 
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Figure 1: The graph for testing the suitability of the power outage data under study for the GGP.  

 

Figure 1 shows cumulative number of outages in days with times of occurrence on a logarithmic scale for the data 

under study. It is noted that the scatterplot shows that there is a linear behaviour of the data, and then the possibility 

of modelling such data with GGP. 

To evaluate the performance of the proposed GGP estimation methods, the daily outage rate of the electrical power 

generation units during the study period was estimated using MATLAB/R2017b language. The expected number of 

downtimes for the electrical unit was obtained and we calculated the RMSE between the real and estimated values. 

The results of this analysis are shown in the table below. 

 

 

Table 2: RMSE values obtained from different methods used to estimate the time rate of occurrence of GGP. 

 

Method RMSE 

MMLE 0.5958* 

PSO 0.7454 

 

This has shown in table 2, that of all the two methods that was used in estimating the occurrence rate time for the 

GGP process that the MMLE method has a lower RMSE value than the PSO method. This implies that the proposed 

MMLE method is more efficient in estimating the parameters of GGP process than the other methods. The figure 

below shows the estimated time rate functions of GGP using both MMLE and PSO methods, compared to the 

cumulative real data values representing the power outage of the electric generation units at the Mosul gas station in 

northern Nineveh Governorate: 

 

 
Figure 2: Estimates of the cumulative time rate of power outages for generation units compared to real data. 
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The evidence shown in figure 2 uses the time rate functions of the GGP where the MMLE outperforms the PSO in 

the estimation of the time rate functions by being nearer to the actual data. 

 

5. Conclusion 

  

The objective of the study is to evaluate the GGP process parameters using the new MMLE method which 

integrates the PSO and MLE procedures together with the direct PSO procedure. The two methods were also analyzed 

with respect to its accuracy through simulation using root mean square error (RMSE). The simulation studies also 

revealed that use of MMLE approach yielded higher accuracy as compared to the PSO algorithm for most of the 

sample size under investigation especially for the larger sample size values. Furthermore, the proposed method was 

also applied on the real cumulative data of power outages of the electricity generation units in Mosul gas station in 

the north of Nineveh Governorate. From the results in the table, we observed that the results from the applied method 

which employed the MMLE are also similarly good as the simulated results and therefore we conclude that MMLE 

gave a relatively better estimation of the GGP parameters when compared to the employed PSO algorithm. 
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 توظيف طرائق ذكائية لتقدير معلمات عملية كول المعممة المقترحة
 

 مثنى صبحي سليمان 
 . ، جامعة الموصل، الموصل، العراقعلوم الحاسوب والرياضيات، كلية الإحصاء والمعلوماتيةقسم 

اقترح تسميتها بعملية  وتم  ( لتحسين معدل حدوثها،  NHPPكمعدل حدوث لعملية بواسون غير المتجانسة )  Goelستقدم هذه الورقة توزيع    :الخلاصة
Goel ( المعممةGGP أما بالنسبة لتقدير .)( معلمات هذه العملية، فقد تمت مناقشة عدد من الطرق، واقترح استخدام مقدر الإمكان الاعظمMLE  وبعد )
  كان من الضروري تعديل هذه الطريقة نظرًا لحقيقة أنه كان من المستحيل العثور على مقدرين يستخدمونها. تمت إضافة خوارزمية ذكية لدالة   -ذلك  

بطريقة ذكية أخرى وهي تحسين سرب الجسيمات   MMLE(. ثم تمت مقارنة  MMLEا باسم مقدر الإمكان الاعظم المعدلة )الامكان مع المعلمة وتم تسميته
(PSO  في تقدير معدل حدوث عملية )Goel    المقترحة لتحديد أفضل مقدر للعملية. بالإضافة إلى ذلك، تحتوي الورقة على محاكاة للعملية المذكورة ومثال

لغالبية أحجام العينات  PSOأعطى تقديرات ذات دقة أعلى من خوارزمية  MMLEلي. وأظهرت نتائج المحاكاة والتطبيق أن أسلوب على استخدامها العم
 . المدروسة، وخاصة للأحجام الأكبر

 . ، المحاكاةPSOالمعممة، تقدير المعلمات، مقدر الإمكان الأعظم،  كولعملية  الكلمات المفتاحية:

 


