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Improving the Learning Rate of the Back Propagation Algorithm by   
Aitkin Process 
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باستخدام صيغة أيتكين ـخوارزمية الانتشار العكسيتحسين عامل التعلم ل  

صلخستالم  

لتدريب الشبكات   Back propagation  (BP) خدم خوارزمية الانتشار العكسي تست

الباً ما غإلا أن هذه الخوارزمية  )FFMNN(ات التغذية الأمامية وذ تعددة الطبقاتالعصبية الم

قت اللازم، ولكن الاختيار المناسب ومما يؤدي إلى زيادة القيمة صغرى محلية  باتجاهتنحرف 

نتغلب على التقارب البطـيء لخوارزميـة    هذايقلص الوقت المطلوب للتدريب وبلعامل التعلم 

الانتشـار   جديـد لخوارزميـة  تعلم امل ع اشتقاق في هذا البحثتم ). BP(الانتشار العكسي 

بميـزة اسـتخدامه    عامل التعلم المقتـرح حيث يتمتع  باستخدام صيغة  أيتكين) BP(العكسي 

ات البعد وذ جموعات التدريبجداً للشبكات الكبيرة وم اًمناسبن بذلك يكووفقط  لمشتقة الأولىل

دالـة  : تم اختبار كفاءة الصيغة المقترحة باستخدام مسائل الاختبار القياسـيةِ  وهـي  . الكبير

وأخيـرا  ) XOR(مسألة لـو، ) Heart Problem(مسألة القلب  الاختبار القياسية المتضمنة

  . (Function Approximation)   مسألة تقريب الدوال
Abstract 
   The Back Propagation Algorithm is used for training feed Forward 
Multilayer Neural  Networks (FFMNN).But often this algorithm takes 
long time to converge since it may fall into local minimu,  for this reason 
we need a long time to train the network. The suitable choice of the 
learning rate helps us to escape from slow convergent for the BP and 
reduce the time of learning. In this paper, we derived a new adaptive 
learning rate for the BP algorithm, our derivation  is based on the Aitkin's 
process. The most important distinct feature of our approach is the 
computing of the learning rate needs only first order derivatives and is 
suitable for large training sets and large networks. Its efficiency is proved 
on the standard test functions including heart , XOR and function  
approximation problems . 
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1. Introduction    
    Methods to speed up the learning phase and to optimize the learning 
process in Feed Forward Neural  Networks (FFNN) have been recently 
studied and several new adaptive  learning algorithms have been 
discovered     
[Abbo&Zena(2011),Jarmo,et.al.(2003),Johansson,etal.(1990),Kostopoulo
s,et.at, Plagianakos,et.al.(1998), Sabeur & Farhat (2008), 
Zulhadi,etal.(2010)]. Some of them introduce the momentum term 
[Daniel,etal.(1997), Huajin,etal.(2011)], others use  the alternative cost 
functions or dynamic adaptation of the learning parameters 
[Shahla,etal.(1997), Steven & Narciso(1999)]. Many apply special 
techniques of initialization  of weights [Nguyen & Widrow(1990)]. 

 Most of them apply the higher order gradient optimization  routines to 
minimize the appropriately error function [Amir,et.al.(2005), 
Livieris&Pintelas(2008),Mollar(1993), Rumelhart,etal. (1986)], the 
multivariable function that depends on the weights of the network. 
However there is still the problem of accelerating the learning process, 
especially when large training sets and large network are used. The neural 
networks training can be formulated as minimization a non-linear 
unconstrained optimization problem [Livieris,et.at (2009)]. The energy or 
cost function to be minimized is defined in the usual way as the squared 
difference between the destination and the actual responses of the  output 
neurons over all P training samples. Let us assume the multilayer FFNN 
of N input and M output neurons. The number of hidden layers may be 
arbitrary just as the number of neurons in the layers. The supervised 
learning of this net is equivalent to the minimization of the energy 
function (the error function ), which can be written as follows: 
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The variables Oi  and Ti stand for actual and desired response of  i_th 
output neurons, respectively. The superscript denotes the  particular 
learning pattern. The vector w is composed of all weights in the net.  

Summation of the actual errors takes place over all M output neurons 
and all P learning data (x,T), where the N-dimensional vector x is the 
input vector and the M-dimensional vector T is the destination (Target) 
vector associated with x. 
Back Propagation (BP) is a learning procedure that adjusts the weight 
vector w through a steepest descent with respect to E in weight space: 

kkk gww  1 γ−=+                                         ..………      ሺ2ሻ 
   Where )( kk wEg ∇= , γ is the learning rate which is constant γ∈(0,1) and 

kw  is a vector representing the weights at iteration (epoch) step k. Though 
the procedure is widespread-dependent, disadvantages. First 
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convergence is fast only if the parameter setting is nearly optimal. 
Furthermore, the convergence rate is slow (linear) and decreases rapidly 
as the problem size increases. Finally, convergence is guaranteed only if 
the learning rate γ is small enough [Kuan & Hornik (1991), Rumelhart, 
et.al.(1986)]. The main problem then is to determine a priori what small 
enough means. In other words, for shallow minimum the learning rate is 
often too small where as  for narrow minimum it is often too large and the 
procedure never converges therefore the BP algorithm with constant 
learning rate (which is called classical BP i.e. CBP) tends to inefficient 
[Rumelhart, et.al. (1986.)].  

The remainder of this paper is organized as follows. Section 2 
presents a brief summary of Aitkin's process, section 3  presents the 
proposed BP algorithm (AIBP algorithm say). Section 4, reports our 
experimental results and in section 5 are presented our concluding 
remarks. We summarize the CBP algorithm as follows, 
CBP Algorithm: 
Step(1): initialization : Number of epochs, k=1, γ∈(0,1) error goal=eg, 
            stopping criteria 0 >ε . Choose wk randomly and compute 

)( kk wEg ∇= . 
Step(2):check for convergence: If ε<kg  or E(wk) < eg  
             stop wk is the  optimal else go to step (3). 
step(3): set kk gd −=  and update variable kw  : 
             wk+1=wk+  γ dk  ,     set   γ=0.01 and  Compute 11   , ++ kk Eg  . 
Step(4): set   1+= kk  and go to step (2)   
  
2. Accelerated with Aitkin's  ∆2  process 

When a sequence or an iterative process is slowly converging, a 
convergence acceleration process has to be used. It consists in 
transforming the slowly converging sequence into a new one which, 
under some assumptions converges faster to the same limit. Aitken's 
process is the most well known sequence transformation. It has been 
proved that able to accelerate the convergence linearly converging 
sequences [Clade & Michela (2007)].   
Let {wk}∞ be a linearly convergent sequence of values converging to be 
some paint *w  that is for   *wwe kk −= . 
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To investigate the construction of a sequence ∞}{ kw which converges 
more rapidly to *w  [Clade & Michela (2007)].  Suppose that wk generated 
by the equation (2), k=1,2,3  converges linearly so it satisfies : 

           )( **
1 wwww kk −=−+ µ                               …………..   (4) 
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Solving equations (4) and (5) for *w  while eliminating µ   leads to   
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 In general, the original assumption (3) will not be true, nevertheless it 
is expected that the sequence {wk}∞, defined by : 
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converges more rapidly to *w  than original sequence {wk}∞. The point 
kw  is better approximation of *w  than wk or w k+1  . The formula (7) can 

be written [3] in the equivalent form as : 
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Where ,...4 ,3 ++= kki  , we see that the formula (8) is suitable when 
the sequence wk is real or complex numbers, for a vector sequence a 
scalar transformation could be used separately on each component or 
some modifications are made. 

 
3. Proposed Learning Method 

  Derivation of the Method 
In this section we present a modified Back Propagation (AIBP) 

algorithm by simple multiplicative modification of the learning rate. The 
idea is to modify the steepest descent  method by introducing a relaxation 
of the following form : 

   kkkk dww   1 αγ+=+     ……………  (9) 
   where γ  is the learning rate which is  used in a classical BP and it has     
constant value, αk∈ (0,1) is the relaxation parameter and kgd kk    , ∀−= . 
To derive the value of αk , assume that 1  , +kk ww   are generated by the 
algorithm(CBP) and let kkk wws −= +1  and   kkk ggy −= +1 . from 
equations (2) and (8) we have:  

kkk gww  1 γ−=−+                 …….……..   (10)                                                     
kkkk ywww  2 12 γ−=+− ++    .…………… (11)                                                     
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use equations (10) and (11) in the equation (8) and multiply the 
numerator and denominator of the last term in (8) by ky  to get 

: k
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We see from equation (12),  to compute iw  we need only two points 
namely   kw and 1+kw . Therefore our algorithm can be stated as: 

Given kw  compute 1+kw  using CBP then other points can be computed 
as:  112 +++ += kkkk dww γα . To insure  the descent property for d we 

choose  
     11 ++ −= kk gd instead of kk yd =  
We summarize our suggested algorithm (AIBP) as: 

Step(1): Number of epochs  k=1 , γ∈ (0,1) , error gol =eg,  0>ε ,choose 
            kw and compute )( kk wEg ∇= . Set  kk gd −= ,  1=kα . 
Step(2): Test for convergence: If  egwE k <)( or  ε<kg   stop else go to 
              step(3). 
Step(3): Update the variables : If 1=k . kkk dww γ+=+1    and compute  

               1111 set  and ,  ,  , , ++++ −== kk
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              else   kkkk dww γα+=+1    and compute 
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      Step(4);  Set k=k+1 and go to step(2). 
 
3.2 Convergence Analysis: 

In general there is no an algorithm which is convergence in all cases , 
therefore in convergence analysis for algorithms often some mild 
assumptions are made. Under the following assumption we show that our 
algorithm (AIBP) is globally convergent: 

1. Assume that the Error function is bounded below on the level set  
      )}()( :{ 1wEwEwS k ≤=  
2. )(wE  is convex function on the convex set S and αk ∈ (0,1) ∀ k. 
   
The following theorem (which is similar to one given in                 

[Andrei (2005)]  gives the convergence of AIBP algorithm. 
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Theorem(1): 
     Suppose that )(wE is strongly convex on S, with  MWE   )(2 ≤∇ where M 
is a positive constant. If αk given in (14) has an accumulation point 

)1 ,0(∈α , then the sequence kw  generated by AIBP algorithm 
convergence linearly to *w . 
Proof: 
   Let us consider 
       )()( kkkk gwE γαα −=Φ  
 Then by Taylor theorem we have: 
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Since E is assumed to be convex it follows that )(αΦ  is convex function 
and 
 kk E=Φ )0(   and  
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    the reminder of the proof is similar to theorem 2 in [Andrei (2005)] 
hence is omitted .   We conclude that 
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Since 0 1 →− +kk EE  for large k  therefore 0→kg  
 
4. Experiments and Results: 

A computer simulation  has been developed to study the performance 
of the learning algorithms. The simulations have been carried out using 
MATIAB(7.6) the performance of the AIBP has been evaluated and 
compared with batch versions of the classical Back propagation (CBP) 
known as (traingd) see appendix, in the neural network toolbox, adaptive 
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BP (ABP) (traingda) . Toolbox default values for the heuristic parameters 
of the above algorithms are used unless stated otherwise. The algorithms 
were tested using the initial weights, initialized by the Nguyen –Widrow 
method [Nguyen & Widrow (1990)] and received the same sequence of 
input patterns . The weights of network are updated only after the entire 
set of patterns to be learned has been presented .             

For each of the test problems, a table summarizing the performance of 
the algorithms for simulations that reached solution is presented . The 
reported parameters are min the minimum number of epochs, mean the 
mean value of epochs, Max the maximum number of epochs, Tav the 
average of total time and Succ, the succeeded simulations out of (50) 
trails within error function evaluations limit.    
If an algorithm fails to converge within the above limit considered that it 
fails to train the FFNN, but its epochs are not included in the statistically 
analysis  of the algorithm, one gradient and one error function evaluations 
are necessary at each epoch. 
  
4.1  Problem (1): (Speect Heart Problem)  

This data set contains data instances derived from Cardiac Single 
Proton Emission Computed Tomography (SPECT) images from the 
university of Colorado [Livieris, et.al (2009), Livieris, et.al (2011)]. The 
network architectures for this medical classification problem consists of 
one hidden layer with 3 neurons and an output layer of one neuron. The 
termination criterion is set to E ≤ 0.1 within limit of 2000 epochs, table(1) 
summarizes the results of all algorithms i.e for 50 simulations the 
minimum epoch for each algorithm  is listed in the first column (Min), the 
maximum epoch for each algorithm is listed in the second column, third 
column contains (Mean) the mean value of epochs and (Tav) is the 
average of time for 50 simulations and last columns contains the 
percentage of succeeds of the algorithms in 50 simulations.  

 
    Table(1): Results of simulations for the Heart problem 
Algorithms Min Max Mean Tav Succ 
CBP 1955 1955 1955 0.0901s 2 % 
ABP 211 1596 680.47 0.032197s 98 % 
AIBP 167 1207 500.88 0.024648s 68 % 
 

Form table (1), we note that the algorithm ABP is the beast algorithm 
with respect to the succeeded simulations, while AIBP is the beast with 
respect to the epochs number and time. 
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4.2 Problem (2): Continuous Function  Approximation:  
The second test problem we consider is the approximation of the 

continuous trigonometric function: )3cos(*)sin()( xxxf = . 
The network architecture for this problem is 1-15-1 FNN (thirty 

weights, sixteen biases) is trained to approximate the function f(x), where     
x∈[-π,π] and the network is trained until the sum of the squares of the 
errors becomes less than the error goal 0.001. The network is based on 
hidden neurons of logistic activations with biases and on a linear output 
neuron with bias. Comparative results are shown in table (2). 
Table(2): Results of simulations for the function approximation  problem 
Algorithms Min Max Mean Tav Succ 
CBP fail -- -- -- 0.0% 
ABP 736 1986 1247.3 0.057405 64% 
AIBP 227 1455 651.66 0.038281 88% 

Form table (2), we conclude that the algorithm AIBP is the beast 
algorithm with respect to the succeeded simulations, number of epochs 
and the time. 
 
4.3 Problem (3):(XOR Problem) 

 The last  problem we have encountered is the XOR Boolean function 
problem, which is considered as a classical problem for the FFNN 
training . The XOR function maps two binary inputs to a single binary 
output. As it is well known this function is not linearly separable. The 
network architectures for this binary classification problem consists of 
one hidden layer with 3 neurons and an output layer of one neuron. The 
termination criterion is set to E ≤ 0.001 within the limit of 1000 epochs, 
table (3) summarizes the result of all algorithms i.e for 50 simulations the 
minimum epochs for each algorithm  is listed in the first column (Min), 
the maximum epoch for each algorithm is listed in the second column, 
third column contains (Mean) the mean value of epochs and (Tav) is the 
average of time for 50 simulations and last columns contain the 
percentage of succeeds of the algorithms in 50 simulations.  
 
  Table(3): Results of simulations for the XOR function   
Algorithms Min Max Mean Tav Succ 
CBP fail -- -- -- 0.0% 
ABP 89 866 287.5 0.014633 64% 
AIBP 29 831 147.35 0.0076288 74% 

 
Form table (3), we conclude that the algorithm AIBP is the beast 

algorithm with respect to the succeeded simulations, number of epochs 
and the time. 
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Appendix  

1- traingd: is matlab function (in the matlab toolbox) utilizes steepest 
descent direction with constant step-size to minimize error function 
E (training the network) known as standard Back propagation 

2- traingda:  is matlab function (in the matlab toolbox)  utilizes 
steepest descent direction with adaptive step-size to minimize error 
function E (training the network) known as standard Adaptive 
Back propagation  
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