Iraqi Journal of Statistical Science (20) 2011
The Fourth Scientific Conference of the College of Computer Science & Mathematics
pp [321-335]

Detecting and Administrating Hide Processes in Linux System

Rawaa Putros Qasha*

ABSTRACT

Hiding processes in Linux system is an essential part of rootkits actions and
malicious program. So, it is very important to monitor and administrate the system
hidden processes to ensure the safety and reliability of the computer system. Also,
process administration can be a vital factor in determining the stability of a running
system.

The aim of this research is to detect hide processes in Linux system depending
on /proc system files and offer tools for monitoring these processes in addition to
monitoring and administrating all other processes in the system to ensure that the
required processes are running and that the total number of each type of running
process is appropriate to maintain system stability.

The software offers capability for displaying processes in the system including
hidden processes with full information about them. And it offers options for killing
or suspending a process, change process priority and viewing the memory map and
the memory status for a given process.

The work has been run successfully on Linux operating system, Ubuntu
distribution, version 10.4, and developed using C++ GUI programming with Qt 4
package and number of shell commands.

-

Lyl

Cre AL 25al))y FOOLKItS calllad (he Ll Toia (Sl alas 3 cilallaall o lid) 2ey
ASails L gulall Al Adsee 5 Al e ST Alad) 8 Al iladleally aSail) 3l lan agall
ol aslis Ayl aad 8 Lss Sale 05 of oSaall (e clallaally

aldaill cilile e alaeWh Sl alas 6 dgsall cladbed)l GLEST ga Candl 138 e Caagl)
Glalaall &8 e 3ylasdly e oo Db Clileal) o380 &lhal ol i Slsay nskais /proc
Lulie 05 lleal) (o gs3 IS Jlea) 2aad) oy doxd Lgllaall clleal) of (e oSTU GUal)
Al b e Lalall

e Lecturer\ College of Computers Sciences and Math.\ University of Mosul

Received:1/10 /2011 Accepted: 21 /12 /2011

Detecting and Administrating Hide Processes in Linux System

Al ilogles o Bl Cllaall @l 8 Ly Sl 8 el e i) el i

S A ey Cilleal) Al s NS Aipme dlee st 5 ol Baamte CHLA adlyy . Lgie
5K0A0) Alla

¢ 10.4 oyl @l gl Ay o oSl danll ala e o lady Jeall 134 Gl
Shell a5l (e 2205 QT4 daja ae desupl) a2iiusall dgals daay CH+ dlasiuly sl sy

1. Introduction

Linux is a member of the large family of Unix-like operating systems, which
are a multiprocessing and multi-user operating system.

Like every multiprocessing system, Linux adopts the magical effect of an
apparent simultaneous execution of multiple processes [1].

As a multi-user system, Linux allows many users to access the system at the
same time. Each user can run many programs, or even many instances of the same
program, at the same time. The system itself runs other programs to manage system
resources and control user access [14]. Therefore the system is full of processes
either user or system process.

Malware needs to be executing on a system before it can perform any damage
to it. An infected file cannot damage the system unless it gets executed in some or
the other manner. As a result, the detection of any malware that is running on the
system is of paramount importance. The most common manner in which a binary is
executed is in the form of a process. Rootkits try and hide the presence of this
process from the system.

A hidden process executes in a manner that is unobservable by many of the
operating system’s accounting and reporting functions [10].

Hidden process control, or the ability to inspect a running process and alter its
execution, is a basic requirement security tool may require controlling opportunities.
All such requirement necessitates the ability to observe the current state of a running
process and to impose changes in its execution [17].

In order to fine-tune the system, it’s important to know what is currently
running, which resources are hidden, and when processes start up. From there, you
can tweak configurations: disable undesirable processes, enable necessary
housekeeping, and adjust your kernel to better handle your needs.

The default Ubuntu installation includes some basic processes that check
devices, tune the operating system, and perform housekeeping. Some of these
processes are always running, while others start up periodically, which may produce
unexpected processes that can cause huge problems; administrators should know
exactly what is running and when [5].

[322]

The Fourth Scientific Conference of the College of Computer Science & Mathematics

2. Process Concept:

The concept of a process is fundamental to any multiprogramming operating
system [1].

A process can be defined either as "an instance of a program in execution" or
as the "execution context" of a running program.

It is a collection of data structures that fully describes how far the execution of
the program has progressed.

Processes are like human beings: they are generated, they have a more or less
significant life, each process has just one parent and they optionally generate one or
more child processes, and eventually they die [12].

Processes are object code in execution: active, alive, running programs. But
they’re more than just object code—processes consist of data, resources, state, and a
virtualized computer [2].

2.1 Process in Linux

A process is the abstraction used by Linux to represent a running program. It's
the object through which a program's use of memory, processor time, and /O
resources can be managed and monitored [3][5].

When a process is created, it is almost identical to its parent. It receives a
(logical) copy of the parent's address space and executes the same code as the parent,
beginning at the next instruction following the process creation system call [1].

2.1.1 Components of a Process:

A process consists of an address space and a set of data structures within the
kernel. The kernel’s internal data structures record various pieces of information
about each process. Some of the more important information are [4][10]:

e PID: process ID number the kernel assigns a unique ID number to every
process. Most commands and system calls that manipulate processes require
you to specify a PID to identify the target of the operation. PIDs are assigned
in order as processes are created.

PPID: (parent PID) is the PID of the parent from which it was cloned.
The process’s address space map

The current status of the process

The execution priority of the process

Information about the resources the process has used

Information about the files and network ports that the process has opened

[323]

Detecting and Administrating Hide Processes in Linux System

Some of these attributes may be shared among several processes to create a
“thread group,” which is the Linux analog of a multithreaded process in traditional
UNIX [5].

2.1.2 Process Scheduling

All preemptive multitasking operating systems, including Linux, implement a
priority scheme for scheduling. The Linux kernel uses a process scheduler to decide
which process will receive the next time slice. It does this using the process priority
[neil].

Linux schedules the parent and child processes independently. And it
promises that each process will run eventually—no process will be completely
starved of execution resources [18].

Linux does not schedule processes willy-nilly. Instead, applications are
assigned priorities that affect when their processes run. UNIX has historically called
these priorities nice values, lowering a process’ priority, allowing other processes to
consume more of the system’s processor time [16].

A process’s scheduling priority determines how much CPU time it receives.
The kernel uses a dynamic algorithm to compute priorities, taking into account the
amount of CPU time that a process has recently consumed and the length of time it
has been waiting to run [5]

2.1.2.1 Niceness

The “niceness” of a process is a numeric hint to the kernel about how the
process should be treated in relationship to other processes contending for the CPU.
The nice value is a property that exists for every process. It is not, as is often
misunderstood, the priority of a process. It is a number that influences the priority
property of a process [5].

The nice value dictates when a process runs. Linux schedules runnable
processes in order of highest to lowest priority: a process with a higher priority runs
before a process with a lower priority. The nice value also dictates the size of a
process’ time slice. Legal nice values range from —20 to 19 inclusive, with a default
value of 0. The lower a process’ nice value’, the higher its priority.

You may specify that a process is less important—and should be given a
lower priority by assigning it a higher niceness value. A higher niceness value means
that the process is given a lesser execution priority; conversely, a process with a
lower (that is, negative) niceness gets more execution time [11].

[324]

The Fourth Scientific Conference of the College of Computer Science & Mathematics

3. The /proc File System:

Linux systems support a special file system called /proc. /proc is a window
into the running Linux kernel. Files in the /proc file system don’t correspond to
actual files on a physical device. Instead, they are magic objects that behave like
files but provide access to parameters, data structures, and statistics in the kernel
[11][12].

The “contents” of these files are not always fixed blocks of data, as ordinary
file contents are. Instead, they are generated on the fly by the Linux kernel when you
read from the file [2].

The /proc file system holds information on each running process as well as
hardware-related information on your system.

Each process has a subdirectory under /proc named after its process ID, which
exists for the lifetime of the process. Images of active processes are stored here by
their process ID number contains detailed and technical information [9].

The /proc file system started out holding just process information. Now it
holds all sorts of operating system and hardware data.

The /proc file system appears to be a normal directory on disk. Inside /proc
each process, for example, has a directory under /proc. The directory name is the
process ID number [3][17].

Process-specific information is divided into subdirectories named by PID.
These directories appear and disappear dynamically as processes start and terminate
on the system. Each directory contains several entries providing access to
information about the running process. From these process directories the /proc file
system gets its name [5][neil]. Some of these subdirectories are used in this work, as
follows:

1. Stat : General process status information, contains details information about the
process itself, and a lot of status and statistical information about the process.
Table (1) show most usable information in stat subdirectory.

Table (1) some fields of stat subdirectory

Field Content
Pid Process id

Tcomm | filename of the executable

State state (R is running, S is sleeping, D is sleeping in an
uninterruptible wait, Z is zombie, T is traced or stopped)

Ppid process id of the parent process

Nice nice level

start code | address above which program text can run

[325]

Detecting and Administrating Hide Processes in Linux System

2. Statm : Memory usage information, contains more detailed information about
the process memory usage. Its seven fields are explained in table (2).
Table (2) Contents of the statm

Field Content
size total program size
resident | size of memory portions (pages)
shared number of pages that are shared
trs number of pages that are 'code’
Irs number of pages of library
drs number of pages of data/stack
dt number of dirty pages

3. pmap: Memory mapping information, displays information about files mapped
into the process’s address. For each mapped file, maps displays the range of
addresses in the process’s address space into which the file is mapped, the
permissions on these addresses, the name of the file, and other information as
shown in the following format[11]:

address perms offset dev inode pathname

08048000-08049000 r-xp 00000000 03:00 8312 /opt/test
08049000-0804a000 rw-p 00001000 03:00 8312 /opt/test

Where:

"address": is the address space in the process that it occupies.

"perms": is a set of permissions, r=read, w = write, x = execute
s = shared, p = private (copy on write).

"offset": is the offset into the mapping.

"dev": is the device (major:minor), and

"inode": is the inode on that device. 0 indicates that no inode is associated
with the memory region, as the case would be with BSS (uninitialized
data).

"pathname": shows the name associated file for this mapping.

4. Signals in Linux

Signals are mechanisms for communicating with and manipulating processes
in Linux. A signal is a special message sent to a process. Signals are asynchronous;
when a process receives a signal, it processes the signal immediately, without
finishing the current function or even the current line of code. There are several

[326]

The Fourth Scientific Conference of the College of Computer Science & Mathematics

dozen different signals, each with a different meaning. Each signal type is specified
by its signal number, but in programs, signal can be referred to by its name. In
Linux, these are defined in /usr/include/bits/signum.h. A process may also send a
signal to another process [9][11].

Signals are a mechanism for one-way asynchronous notifications. A signal
may be sent from the kernel to a process, from a process to another process, or from
a process to itself. Signals typically alert a process to some event, such as a
segmentation fault, or the user pressing of Ctrl-C [16].

The Linux kernel implements about 30 signals (the exact number is
architecture dependent), table (3) lists a number of Linux signals. Each signal is
represented by a numeric constant and a textual name [6][neil].

Table (3) Some of Linux Signals

Signal Name Description

SIGALRM Alarm clock

SIGHUP Hangup

SIGINT Terminal interrupt

SIGABORT *Process abort

SIGKILL Kill (can’t be caught or ignored)
SIGQUIT Terminal quit

SIGTERM Termination

Signals are process-level interrupt requests. About thirty different kinds are
defined, and they’re used in a variety of ways [5]:
* They can be sent among processes as a means of communication.
* They can be sent by the terminal driver to kill, interrupt, or suspend processes
* They can be sent by the administrator (with kill) to achieve various results.
* They can be sent by the kernel when a process commits an infraction such
as division by zero.
* They can be sent by the kernel to notify a process of an “interesting” condition
such as the death of a child process or the availability of data on an
I/O channel.

6. Implementing Hidden Process Administration

Process management in Linux was achieved using system call functions and
dealing with /proc system files or bash shell commands. The software is developed
using Qt package, which is a cross-platform, graphical, application development
toolkit that enables compiling and running applications on Windows, Mac OS X,
Linux, and different brands of Unix[15][10].

[327]

Detecting and Administrating Hide Processes in Linux System

A large part of Qt is devoted to provid a platform-neutral interface to
everything, ranging from representing characters in memory to creating a
multithreaded graphical application [8].

Process administration software includes the following parts:

» Detecting Hidden Process: all process in the system and information about each
one is extracted from /proc through /stat folder for each process including: PID
(process 1D), stat), PPID process parent ID, Nice value, either the process is
hidden or not, and executable path.

Extracting information from /proc is performed as follows:

QDir dir(""/proc'");

QFilelnfoList list = dir.entryInfoList();
for(int i=1; i<list.size();++i)
{
QFilelnfo fileInfo = list.at(i);
if(Hidden == 1)
get_OnlyHide(fileInfo.fileName());
else
get_task(fileInfo.fileName());
}

Linux does not provide any tools or commands to display hidden processes in
the system. So to display hidden process in this work, the following steps are
performed:

1- Running ps shell command to obtain a snapshot of the process in the system
except hidden ones [13][15].

2- Obtaining all processes in the system including hidden processes from /proc file
system.

3- Compare between the results from step 1 and 2, then display every process
produced only from step 2 and not contained from the result of ps command, then
display hidden process information.
void ProcessAdmin::ShowHidden()

{ // run ps command to compare result with /proc

p->start("'ps -e'");

}
void ProcessAdmin::get OnlyHide(QString id)
{
QString fileName =""/proc/'"+id+"/stat"’;
int {=0;
QFile file(fileName);
if(file.open(QIODevice::ReadOnly))

{

[328]

The Fourth Scientific Conference of the College of Computer Science & Mathematics

QTextStream stream(&file);
QString line;
line = stream.readLine();
QStringList list = line.split("' ");
foreach(QString pid, pidList)

if(pid == list[0])

=1;

if(f==0)

{
treeNode = new QTreeWidgetltem(ui->treeWidget);
treeNode->setText(0, list[0]); // PID
treeNode->setText(1, list[1]); / name
treeNode->setText(2, list[2]); // stat
treeNode->setText(3, list[3]); / PPID
/] get priority
bool ok;
int ret = getpriority(PRIO_PROCESS,list[0].toInt(&0k,10));
treeNode->setText(4, QString::number(ret));
treeNode->setText(5, "True');

}

file.close();

}
}

» Starting new process: depending on a process name supported by the user:
QProcess run;
run.execute(ui->lineEdit->text());

» Monitoring process execution and termination by offering the following
options:

e Kill a single process either using process ID or name [13]. Killing
operation is performed by sending a signal to the process using kill system
call function as follows:

void ProcessAdmin::KillProc()

{
int pid = ui->treeWidget->currentltem()->text(0).toInt();
kill(pid,SIGTERM);

}

Where SIGTERM: is the signal to be send to the process to terminate it:

[329]

Detecting and Administrating Hide Processes in Linux System

e Kill a process and all its descendent children, a recursive function is
developed to search for all children for a given process, then kill the child
starting from the last one.
void ProcessAdmin::recuKill(int pid)

{
QDir dir("/proc");
int ppid,childld;
QFilelnfoList list = dir.entryInfoList();
for(int i=0; i<list.size();++i)
{
QFilelnfo fileInfo = list.at(i);
QString fileName =""/proc/'"+fileInfo.fileName()+'/stat";
QFile file(fileName);
if(file.open(QIODevice::ReadOnly))
{
QTextStream stream(&file);
QString line;
line = stream.readLine();
QStringList list = line.split("" ");
QString ppids = list[3];
ppid = ppids.tolnt();
if(pid == ppid)
{
QString child = list[0];
childId = child.toInt();
recuKill(childId);
kill(childId,SIGTERM);

}
}
;
kill(pid,SIGTERM);
}

e suspend and resume a process:
kill(pid,SIGSTOP); //To suspend a process
kill(pid,SIGCONT); //To resume a suspended process
» Scheduling process by changing its priority through process nice value using
setpriority system function:
void ProcessAdmin::SetPriority()

{

int nice = ui->lineEdit_2->text().toInt();

[330]

}

The Fourth Scientific Conference of the College of Computer Science & Mathematics

int pid = ui->treeWidget->currentltem()->text(0).toInt();
int ret;
ret = setpriority(PRIO_PROCESS,pid,nice);
if(ret ==-1)
QMessageBox::information(this ,"error","error ");

» Displaying memory map for any process by exploring the information stored by
the system in folder pmap in the /proc system folder as follows:
void pmapinfo::get task(QString id)

{

}

QString fileName ="/proc/'"+id+"/maps"';
int =0,
QFile file(fileName);
if(file.open(QIODevice::ReadOnly))
{
QTextStream stream(&file);
QString line;
line = stream.readAll();
ui->listWidget->addItem(line);
file.close();

}

» Displaying Process memory status information that is located in Statm folder in
/proc file system for any selected process:
void ProcessMem::get task(QString id)

{

QString fileName =""/proc/"+id+"/statm"';
int =0;
QFile file(fileName);
if(file.open(QIODevice::ReadOnly))
{
QTextStream stream(&file);
QString line;
line = stream.readLine();
QStringList list = line.split(" ");
treeNode = new QTreeWidgetltem(ui->treeWidget);
treeNode->setText(0, id);
treeNode->setText(1, list[1]);
treeNode->setText(2, list[2]);
treeNode->setText(3, list[3]);

[331]

Detecting and Administrating Hide Processes in Linux System

treeNode->setText(4, list[4]);
treeNode->setText(5, list[5]);
treeNode->setText(6, list[6]);
treeNode->setText(7, list[7]);
file.close();
}
}

6. Hidden Process Administration Software:
Research application was developed using QT package. It contains the
following windows:
1. Main application windows as shown in figure(1), contains the following menu
options:
e File: includes:
e Show submenu includes:
e All: to view full information about each.
e Hidden: to display only hidden processes.
e New task: To start a new process.
o Exit
e Control : includes:
Kill: to kill a single process.
Kill ptree: to kill process and all its descending children.
e Suspend: to suspend a process.
e Resume: to resume a suspended process.
e Process info: includes:
e Process memory map: to view process memory map info.
e Process memory status: to view process memory status info.

[332]

The Fourth Scientific Conference of the College of Computer Science & Mathematics

File Control Process Info

PID PMName Stat PPID MNice Hide =
1 (init) s 0 0 False
10 (ewents/1) 5 2 -5 False I
11 (khelper) s 2 -5 False
137 (kseriod) S 2 -5 False
1545 (atafo) 5 2 -5 False
15489 (ataj1) s 2 -5 False
1550 (ksuspend_... S 2 -5 False
1551 (ata_aux) s 2 -5 False
1552 (khubd) s 2 -5 False
179 (pdflush) s 2 0 False
180 (pdflush) s 2 0 False
181 (kswapdo) s 2 -5 False
2 (kthreadd) S 0 -5 False
222 {aiof0) s 2 -5 False
223 (aiof1) 5 2 -5 False
2269 (scsi_eh o) s 2 -5 False
2270 ([erei ah 11 S 2 -5 Ealze -

€l [v]

Mew nice value [

Set l

Figure (1) Process Administration Software main window
To change the nice value for a selected process, a new nice value must
be entered through the text box then the set button must be pressed.
2. The second window is used to display selected process memory map as shown
in figure (2).

Address perms offse dev inode pathname

08048000-08055000 r-xp 00000000 07:00 327050 /homefzaid/ProcessAdmin/ProcessAdmin
0B055000-08056000 rw-p 0000d000 07:00 327050 fhomejzaid/ProcessAdmin/ProcessAdmin
08056000-0840e000 rw-p 0BOS6000 00:00 0 [heap]

b52ac000-b52ad000 ---p b52ac000 00:00 O

b52ad000-b5aad000 rw-p b52ad0oo 00:00 0

b5aad000-b5b0d000 rw-s 00000000 00:09 1376275 [/SYSWVO0000000 (deleted)

b5b0d000-b5b24000 r--p 00000000 07:00 114373 Jjusrfshareffontsftruetype/ttf-dejavu/Dejavusans-Bold
b5b94000-b5c25000 r--p 00000000 07:00 114374 jusr/shareffonts/truetypejttf-dejavu/DejavusSans.ttf
b5c25000-b5d29000 rw-p b5c25000 00:00 O

b5d22000-b5dba000 r--p 00000000 07:00 114374 jusrfshareffontsftruetypefttf-dejavu/DejavusSans ttf
b5dba000-b5dcad00 r-xp 00000000 07:00 8935 fusrilib/gtk-2.0/2.10.0fimmodulesfim-scim-bridge .so
b5dca000-b5deb000 rw-p 00010000 07:00 8935 jusrflibfgtk-2.0/2.10.0fimmodulesfim-scim-bridge.so
b5dcb000-b5dce000 r-xp 00000000 07:00 824228 Jlibflibgpg-error.s0.0.3.0

b5dce000-b5def000 rw-p 00002000 07:00 824228 Jlibjlibgpg-error.so.0.3.0

bsdcfoo0-bSe1a000 r-xp 00000000 07:00 824226 Jlibjlibgerypt s0.11.2.2

b5e1a000-b5e1c000 rw-p 00048000 07:00 824225 libjlibgerypt.so.11.2.3

b5elc000-b5e2b000 r-xp 00000000 07:00 802071 Jusr/libflibtasnl.s0.3.0.12

:_f_: |!]

Enter PID: |6752]k Display |

Figure (2) Process Memory Map window

[333]

Detecting and Administrating Hide Processes in Linux System

3. Third window depicted in figure (3), is used to view memory status information
for any selected process.

(- ProcessMen x|
PID Total process ¢ Size resident i Memory Share Text Size Size of shared Memory for sti number of dirty pages =
6287 3777 1366 1155 B 0 145 0
6289 7852 2588 561 91 0 6318 0
6296 7931 4854 2653 248 0 2077 0
6298 5166 1153 855 14 0 194 0
6299 6299 2850 1993 45 0 832 0
6301 5894 2152 1578 76 0 456 0
6305 7262 472 374 6 0 6316 0
6379 15182 1598 1274 5 0 11016 0
6382 1343 535 460 25 0 70 0
6387 7671 2368 1963 60 0 326 0
6390 3460 639 546 27 0 2152 0
6406 6878 3604 2342 5 0 1120 0
6408 6005 2619 1905 16 0 573 0
6422 5830 2524 1870 8 0 544 0
6432 10702 3103 2258 14 0 5064 0
6437 11351 3930 2567 10 0 5313 0 L
RA2NO RROQ 2481 105 an n 1n325 n b

Get

Figure (3) Process Memory Status window
7. Related Works:

Many efforts and works had been made to detect hidden processes in different
systems. James, Jeffrey and John present a method for detecting hidden processes,
whether running on the Windows or Linux operating system, requires the
examination of each thread to ensure that its corresponding process descriptor is
appropriately linked. Accordingly, both require added functionality to the operating
system [7]. In [19] the researchers are presented a new VMbased approach called
Libra to detect hidden processes implicitly. Like previous VM-based security
services, Libra is resilient to kernel-mode guest malware attack by virtue of its
location within a VMM layer.

8. Conclusion

This research supports interface that deals with a /proc file on Linux. This
interface allows tracing processes to read detailed process state from. Our hidden
process control implementation supports both a larger set of operations and more
finely-grained control than that are offered by ps terminal command. Extracting
process information from /proc programmatically is difficult to implement also
running shell command from the QT and obtain its results is a hard task.

Hidden Process Detection and administration tools for Linux system can be
considered an important part in the system to ensure that the required processes are
running and any unwanted processes can be controlled.

[334]

The Fourth Scientific Conference of the College of Computer Science & Mathematics

References

1. Daniel P.Bovet, 2005, “Understanding the Linux Kernel”, Marco Cesati,
O'Reilly.

2. Dee-Ann LeBlanc, 2002, “Linux System Administration Tools”,
http://www.linuxjournal.com/article/5918.

3. Eric Foster-Johnson, John C. Welch, and Micah Anderson, 2005, “Beginning
Shell Programming”, Wiley Publishing, Inc.

4. Eric Uday Kumar, “User-mode memory scanning on 32-bit & 64-bit
windows”, 2010, J Comput Virol (2010) 6:123—141 DOI 10.1007/s11416-
008-0091-3.

5. Evi Nemeth, Garth Snyder, and Trent R. Hein, 2007, “Linux Administration
handbook”, Pearson Education, Inc, 2nd Ed.

6. Graham Glass and King Ables, 2006, “Linux for Programmers and Users”,
Prentice Hall.

7. James Butler; Jeffrey L. and John Pinkston, “HIDDEN PROCESSES: The
Implication for Intrusion Detection”, 2003, 2003 IEEE ISBN 0-7803-7808-3.

8. Jasmin Blanchette and Mark Summerfield, 2008, “C++ GUI Programming
with Qt 4”, Prentice Hall, 2nd Edition.

9. John Fusco, 2007, “The Linux Programming Toolbox”, Pearson Education,
Inc.

10.Linux Reference Manual, Section 5, proc.

11.Mark Mitchell, Jeffrey Oldham, and Alex Samuel, 2001, “Advanced Linux
Programming”, New Riders Publishing.

12.Matthew West, 2005, “System administration”, The Shuttleworth Foundation.

13.Neal Krawetz, 2007, “Hacking Ubuntu”, Wiley Publishing, Inc.

14 Neil Matthew & Richard Stones, 2007, “Beginning Linux Programming”,
Wiley Publishing Inc, 4th Edition.

15.Philip J. Hollenback, 2008, “Process monitoring with ps-watcher”,
http://www.linux.com/archive/feature/148189.

16.Robert Love, 2007, “Linux System Programming”, O’Reilly Media Inc.

17.Ron Peters, 2009, “Experts Shell Script”, APress.

18.Simone Demblonand and Sebastian Spitzner, 2004, “Linux Internals”, the
Shuttleworth Foundation.

19.Wei Li, Long Chen; Hongjiang Ji; Tong Zhang, “Improvement of Real-Time
Process Monitor Technology on Linux Based on Mandatory Running
Control”, 2011, IEEE 978-1-4244-8728-8/1.

20.Yan W.; Jinjing Z.; Huaimin W., “Implicit Detection of Hidden Processes
with a Local-Booted Virtual Machine”, 2008, International Conference on
Information Security and Assurance, [EEE DOI 10.1109/ISA.2008.22.

[335]

http://www.linuxjournal.com/user/801059
http://www.linuxjournal.com/article/5918
http://www.hollenback.net/

