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Abstract

In this paper, an operational matrix of integrations based on the
Haar wavelet method is applied for finding numerical solution of non-
linear third-order korteweg-de Vries-Burger's equation, we compared this
numerical results with the exact solution. The accuracy of the obtained
solutions is quite high even if the number of calculation points is small,
by increasing the number of collocation points the error of the solution
rapidly decreases as shown by solving an example. We have been
reduced the boundary conditions in the solution by using the finite
differences method with respect to time. Also we have reduced the order
boundary conditions used in the numerical solution by using the boundary
condition at x=L instead of the derivatives of order two with respect to
space.
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1.Introduction:

As a powerful mathematical tool, Wavelet analysis has been widely
used in image digital processing, quantum field theory, numerical
analysis and many other field in recent years.

Haar wavelets have been applied extensively for signal processing
in communications and physics research, and more mathematically
focused on differential equations and even nonlinear problems. After
discrediting the differential equation in a convential way like the finite
difference approximation, wavelets can be used for algebraic
manipulations in the system of equations obtained which may lead to
better condition number of the resulting system [11].

Using the operational matrix of an orthogonal function to perform
integration for solving, identifying and optimizing a linear dynamic
system has several advantages: (1) the method is computer oriented, thus
solving higher order differential equation becomes a matter of dimension
increasing; (2) the solution is a multi-resolution type and (3) the answer is
convergent, even the size of increment is very large [10].

The main characteristic of the operational method is to convert a
differential equation into an algebraic one, and the core is the operational
matrix for integration. We start with the integral property of the basic
orthonormal matrix, ¢(t) by write the following approximation:

ttt

[ o] 80Xy =090 (1)

Where o) =[a,(t) @) ... ¢, )] in which the elements
@, (t)3,(t).....®,,(t) are the discrete representation of the basis functions
which are orthogonal on the interval [0,1) and Q,is the operational matrix

for integration of ¢(t) [10].

Many authors have studied the solution for nonlinear third-order
korteweg-de vries-burger's (KdVB) equation.

EL-Danaf T. (2002) is discuss the solution of the modified
(KDVB) equation by using the collocation method with quintic splines
and comparison between the numerical and exact solution, also he discuss
the stability analysis of this method.

Darvishia M. T. , Khanib F. and Kheybari S. (2007) are using the
spectral collocation method to solve the KDVB equation numerically, and
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to reduce round off error, they are use central left and right darvishi's
preconditioning.

Lepik and Tamme (2007) derived the solution of nonlinear
Fredholm integral equations via the Haar wavelet method, they are find
that the main benefits of the Haar wavelet method are sparse
representation, fast transformation, and possibility of implementation of
fast algorithms especially if matrix representation is used.

Lepik Uio (2007) studied the application of the Haar wavelet
transform to solve integral and differential equations, he demonstrated
that the Haar wavelet method is a powerful tool for solving different
types of integral equations and partial differential equations. The method
with far less degrees of freedom and with smaller CPU time provides
better solutions then classical ones.

Zhi S. LI-Y. and Qing-J. C. (2007) are establishes a clear
procedure for finite-length beam problem and convection-diffusion
equation solution via Haar wavelet technique, The main advantages of
this method is its simplicity and small computation costs.

Bhatta D. (2008) is studied the modified Bernstein polynomials for
solve korteweg-de veries-burger's equation over the spatial domain. B-
polynomials are used to expand the desired solution requiring
discreitization with only the time variable.

AL-Rawi Ekhlass S. and Qasem A. F. (2010) found the numerical
solution for nonlinear Murray equation by the operational matrices of
Haar wavelet method and compared the results of this method with the
exact solution, they transformed the nonlinear Murray equation into a
linear algebraic equations that can be solved by Gauss-Jordan method.

G. Hariharan - K. Kannan (2010) are develop an accurate and
efficient Haar transform or Haar wavelet method for some of the well-
known nonlinear parabolic partial differential equations. The equations
include the Nowell-whitehead equation, Cahn-Allen equation, FitzHugh-
Nagumo equation, and other equations.

In this paper, we study the numerical solution for nonlinear third-
order korteweg-de vries-burger's equation by the operational matrices of
Haar wavelet method and we compare the results of this method with the
exact solution.

We organized our paper as follows. In section 2, the Haar wavelet
is introduced and an operational matrix is established. Section 3 function
approximation is presented. Section 4 we use Haar wavelets to solve
nonlinear KdVB equation. Section 5 Reducing of the order boundary
conditions used in the numerical solution is presented .Section 6 numerical
results are presented. Concluding remarks are given in section 7.

[95]



Numerical Solution for Non-linear Korteweg-de

2. Haar wavelet
The Haar functions are an orthogonal family of switched
rectangular waveforms where amplitudes can differ from one function to

another. They are defined in the interval [0,1] by [6]:

| ko _k+1/2

m m
» k+1/2 _  k+1 ...(2)
hl.(x): m m

0 otherwise in [0,1)

Integer m=2’ (j=0,,2,...,J) indicates the level of the wavelet;
k=0,1,2,...,m-1 is the translation parameter. Maximal level of resolution
is J. The indix 1 is calculated according the formula i=m+k+1; in the case
of minimal values. m=1,k=0 we have 1=2, the maximal value of 1 1s
i=2M =27"" It is assumed that the value i=1 corresponds to the scaling
function for which #, =1 in[0,1]. Let us define the collocation points
x, =(-0.5)/2M, (I=12,.,2M)and discredits the Haar function
h.(x) ; in this way we get the coefficient matrix H (i,/) = (h,(x,)), which
has the dimension 2M*2M.

The operational matrix of integration P, which is a 2M square
matrix, is defined by the equation: [8]

P(x) = [ () d 0
P, (x)= jiPlV (x)dx v=12,... ..(4)

These integrals can be evaluated using equation (2) and first four of
them are given:

X—a for xela,p)
Pyx)={y-x  forxelB.y) )
0 elsewhere
;(x—Ot)2 for xe[a, B)
11 )
})i,z(x): Am? _5(7_95) Jor xe[B,y) (6)
1
A’ for x [y,l)
0 elsewhere
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é(x—oz)3 for xela,p)
1 1 3
P G GRG0 forxelpy) . (7)
412()6—,3) for xe[y.))
m
0 elsewhere

We also introduce the following notation: [8]

1
D, =[P, (x)dx ..(8)
0

3. Function approximation
Any square integrable function u(x) in the interval [0,1] can be
expanded by a Haar series of infinite terms :

u(x)zic,.h,.(x) ie{ojUN ...09)
i=0
Where the Haar coefficients ¢, are determined as:

¢ =ju(x)h0 (x)ydx , ¢, =2 j u(x)h, (x)dx

0
i=2"+k, j=0, 0<k<2/, xe[0,)
Such that the following integral square error ¢ is minimized:

e:j{u(x)—fc,.h,.(x)} dx, m=2’/, jelolUN

Usually the series expansion of (10) contains infinite terms for smooth
u(x). If u(x) is piecewise constant by itself, or may be approximation as
piecewise constant during each subinterval, then u(x) will be terminated
at finite m terms, that 1s:

m—1

u(x) =Y ¢ h(x)=c(, by, (x) (10)
i=0
Where the coefficients ¢(,, and the Haar function vector #,, (x) are
defined as:
ety =leos €y s o) And R () = [ (), ()0 (6)]

Where T means transpose. [6]
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Fig. 1. First eight Haar functions [6]

4. Mathematical Model
Let us consider the nonlinear third-order korteweg-de Vries-
Burger's (KdVB) equation which has the form [5]:

a—u+8u Ou —v82u+ 83u—O 11
o, Mox. e Max (1
With the initial and boundary conditions:

u(a,t.) = p, u(b,t.) = p,

ou ou

- e = >

Ox. (a.%.) Ox. (b:1.)=0 =0 ...(12)
0u 0u

—(a,t.)=—(b,t.)=0

oz (1) =z (1)

u(x.,0)= f(x.) a<x.<b

where €, v and p are positive parameters. € is the coefficient of nonlinear
terms, v 1s the viscosity coefficient and p is the coefficient of the
dispersive term.
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Since the Haar wavelets are defined for x €[0,1], we must first

normalize equation (11) and initial-boundary conditions (12) in
regard to Xx.
We changing the variables [9]:
X :i(x*—a), t=t.—0, L=b-a
L

Then equation (11) and (12) becomes:
8u+8 ou v ou u 8314_

_ + = - =
ot L'ax Lo Do --(13)

With the initial and boundary conditions:

u(0,0)=p,  u(t)=p,

ou ou

—(0,t y=—(,¢)=0 t 20

ox ©.1) ox 1) ..-(14)

0’u 0’u

— (0, ) =—(1, )=0

ox? 0.2) ox* @)

u(x ,0)=f(Lx+a) 0<x <1

In the paper, -a% and '—>Z—u , means differentiation with

X

respect to (t) and (x) respectively.
Let us divide the interval (0,T] into N equal parts of length
At=T/N and denote to 7, =(s —1)At s=1,2,...,N.

We assume that «" (x,¢) can be expanded in terms of Haar
wavelets as follows:

W)=Y e Dh()=clh,(x)  relut,] (15)

Where the row vector ¢/, is constant in the subinterval e (z,,z,,].

Integrating (15) with respect to (t) from (z,) to (t) and third with
respect to (x) from (0) to (x) , we obtain:

u (x,t)y=@—-t)el h (x)+u (x,t,) ...(16)
u (x,0)=(t—t)c, P, (x)+[u (x,t,)—u (0,,)]
" ...(17)
+u (0,t)

u (x,t)=(t=t)c, P, (x)+[u (x,t,)—u (0,,)]

+x[u (0, )—u (0,¢)]+u (0,¢) +(18)
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u (x,t)=(t-t)c, Py(x)+[u (x,t)—u (0,,)=xu (0,¢,)]
2 (19
+x2[u"(o,z )—u (0,¢,)]+xu (0, )+u(0,1) (%)

Now the differential of equation (19) with respect (t), we get:
2

u'(x,f)=c’ P (x)+xzu°“(o,t Y+ xu” (0,2 )+u’(0,7) ...(20)

m " i3
We can be reduce the boundary conditionu* (0,¢ ), u* (0, ) and
u®(0,¢) in equation (20) by using the finite difference method , we
get:

(0400401

Then equation (20) becomes:

Co o u'©00)-u'(01))
u'(x,t)=c, b(x)+ { (t—t,) }

2
L {u‘(o,r )u‘(o,mHu(o,t)u(O,tS)}
(t—1,) (t—1,)

.21

Now, by substitute equations (16)-(21) in equation (13), we get:

v At At
C; P, (x) - 7 C; P, (x)+ IuL3

o hm<x>=—ju<x,rs>u'<x,rs>

2 ,, , , 1
2’“& b’ (0.1 )—u (O,ts)]—zt ' 0t )-u (O,ts)]—At[u(O,t)—u(O,tS)]

+I‘j2u"(x,ts)+]1}2[u"(0,t )—u"(O,tS)]—]’L;um(x,ts) (22)

The Haar coefficients vector ¢, is calculated from the

m)
system of linear equations (22). The solution of the problem is
found according to (19).
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5. Reducing of the order boundary conditions:

We can be reducing of order boundary conditions used in
equations (16)-(21) by using the boundary condition at x=1 and notation
(8) instead of the derivatives u (0,¢) and u'(0,z,).

The values of unknown term «'(0,¢) and u (0,z,) can be calculated
by integrating equation (17) from 0 to 1 and is given by:

j.u"(x,t) = j.(t—ts)ci P (x) dx +j.u"(x,ts) dx

0

+ 1" 0,6 ) =0 (0,,)] dx

= u (Lt)—u (0,t )=(t=t,)c, D, (x)+[u (Lt,) —u (0,¢,)]
(0, ) —u"(0,2,)]

= [u (0,6 )—u (0,t)]=—(t=t,)¢c, D, (x) +[u (L) —u (Lt,)]

. . ...(23)
- [M (07 t) —u (Oats )]
Such that
S-a)’ for xela.B)
11 ,
D, =P () ={4m® 277D Jorxelhy) .4
1
e for x e[y,1)
0 elsewhere
By substitute equation (23) in equations (16)-(21), we get:
u (x,t)=(t—t)ecl h (x)+u (x,t,) ...(25)
u (x,0)=(~1,)c, B,(x)+u (x,1,) (26)

=) el DO+ 1 (L) =4 (1,2,)]~ [ O,0)—u (0,1, )]
W (6,0 = (t—1,) el P +u' (6t) +[1' (0,6 ) —u'(0,2,)] 27
txl-(t 1) el D, o)+ (L) —u (e )] = [u' (0,0) = u'(0,2,)]]
u (r,t)=(t—t)ch Po(x) +u () +[u(0,0)—u (0,1,)]

+x[u (0,t )—u (0,¢,)] (28)

+’“22[—(z—zs>c£ D, (x) +[u' (L) =1 (1L,e,)] = [u' (0,6) ' (0,2,)]]
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Now the differential of equation (28) with respect (t), we get:

X ! ' 1
-0 [t (0,8) —u (O,t,y)]+(t_tx) [u (0,6) —u (0,2,)] (29)

Ft-t)el D, (o + ' Lty (Lt [ (0.0)— ' (0,,)]]

u'(x,t)= cm P;(x)+

x2

+
2(t—t,)
Now , by substitute equations (25)-(29) in equation (13), we get:

Atc! D, (x)+ [ (1,)—u (1,2,)]—[u (0,6)—u (0,¢, )]]

ml3

+Zu(0t) u(Ot)]+—[u(0t) u(Ot)]—V—At T p (x)——u (%t

mll

7 "t D, )+ (L) —u' e )= [' 0.0) —u (0,1,)]]

HAL g
3

& !
=——u(x,t,)u (X1,
)= ulet)u (L)

Then

v At
m l3(x)_ c Dll(x)_7cT

i1

X ' ' \% "
— ) (O,ts)]—At[u(O,t)—u(O,tS)]+LZu (x,1.)

o 0= L 00— Qe ) G0)

The Haar coefficients vector ¢, is calculated from the

system of linear equations (30). The solution of the problem is
found according to (28).

6. Numerical results
In this section, we have solved Kdv-Burger's equation (13) with
the initial-boundary conditions (14) by using two formula:

a-)  we have solved equation (13) with the initial-boundary conditions
(14) by using the equation (22) such that [5]:

w(©,6)=1  u(l,t)=0

Ou_ _0u 12 SHENY)
o (0,7) = (L,t )=0} ¢t >0

[102]
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2v(xL+a)

2 eu
u(x ,0)=2Y |- ¢ 0<x <1 ...(32)

g vixL+a) g
e " +E

Now, by substitute the boundary condition (31) in equations (16)-
(22) we get:

VAt At
e P00 =y B0+

T h (%) :—iu(x,mu‘(x,a)

+Z2u"(x,ts)—]’[;um(x,ts)

Where

u (x,t,,)=At c,i P(x)+u (x,t,)
u'(x,tm) = At c; P,(x)+ u'(x,ts)
u'(xt,,)=c, B(x)

u (x,t,,,)=At c; P (x)+ u"(x,ts)
u (x,t,)=Atc h (x)+u (x,t,)

This process is started with:

2v (xL+a)
12v* s
u(x ,t)=u(x,0)= Y 1-—¢ 5 0<x <1
Fad v(xL+a)
{e o +EJ
2v(xL+a)
, , 12 2 en
u(x,z‘v)=u(x,0)=i Vii-—¢ > 0<x <1
‘ ox| €u v(xL+a)
e ‘" +E
2v (xL+a)
. . 82 12 2 e
u(x,t)=u(x,0)=— L P 5 0<x <1
’ ax s u v(xL+a)
e " +E

[103]



Numerical Solution for Non-linear Korteweg-de

0 | 122

um(x ,ts)=um(x ,0)= 1-

2v(xL+a)

e °**

ox’| eu

{e

v(xL+a) 2
4+ E

0<x <1

The exact solution of KdVB equation (13) in a closed form is given by

[5]:

1212

2—v(()cL-%—a)—wt)
et

u(x ,t )=
eu

12
Where w= Y
25

1-—

2

2
Y (xL+a)-wt)
et +F

, E is a positive constant.

The value of the constant E is large to be in the neighborhood of the
boundary conditions [5].

Results of the computer simulation are presented in table (1) where
m=16 and table (2) where m=32 , here
E=1000,&=0.1,v=0.01, u=1,L=100,a=0,b=100,At =0.01, and t =1.

Table (1) Comparison of the numerical solution and the exact solution

when m=16.

The value x Wavelet solution Exact solution Absolute error
3.1250 0.01199997764226 | 0.01199997764242 1.5879e-013
9.3750 0.01199992214847 | 0.01199992214903 5.5916e-013

15.6250 0.01199972946932 | 0.01199972947127 1.9449¢-012
21.8750 0.01199906349256 | 0.01199906349927 6.7108e-012
28.1250 0.01199678084055 | 0.01199678086345 2.2899¢-011
34.3750 0.01198907690822 | 0.01198907698484 7.6625¢-011
40.6250 0.01196379624936 | 0.01196379649701 2.4765e-010
46.8750 0.01188487863538 | 0.01188487938842 7.5303e-010
53.1250 0.01165870378318 | 0.01165870585304 2.0699¢-009
59.3750 0.01109362558626 | 0.01109363045222 4.8660e-009
65.6250 0.00993794636355 | 0.00993795557229 9.2087¢-009
71.8750 0.00810826334073 | 0.00810827671992 1.3379¢-008
78.1250 0.00591798008513 | 0.00591799482872 1.4744¢-008
84.3750 0.00389240546654 | 0.00389241818682 1.2720e-008
90.6250 0.00236381448149 | 0.00236382360458 9.1231e-009
96.8750 0.00136131972057 | 0.00136132550788 5.7873e-009
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Table (2) Comparison of the numerical solution and the exact solution

When m=32.

The value x Wavelet solution | Exact solution Absolute error
1.5625 0.01199998363630 | 0.01199998363639 8.9968e-014
4.6875 0.01199996945473 | 0.01199996945492 1.9388e-013
7.8125 0.01199994300063 | 0.01199994300102 3.8576¢e-013
10.9375 0.01199989368121 | 0.01199989368195 7.4184e-013
14.0625 0.01199980180339 | 0.01199980180479 1.4033e-012
17.1875 0.01199963082155 | 0.01199963082419 2.6310e-012

20.3125 0.01199931308204 | 0.01199931308694 4.9061e-012
23.4375 0.01199872376242 | 0.01199872377153 9.1102e-012
26.5625 0.01199763361276 | 0.01199763362961 1.6849¢-011
29.6875 0.01199562420577 | 0.01199562423679 3.1018e-011
32.8125 0.01199193828139 | 0.01199193833817 5.6773e-011
35.9375 0.01198522110370 | 0.01198522120684 1.0313e-010
39.0625 0.01197308679413 | 0.01197308697962 1.8550e-010
42.1875 0.01195142203021 | 0.01195142235950 3.2929¢-010
45.3125 0.01191333706306 | 0.01191333763773 5.7467¢-010
48.4375 0.01184773395123 | 0.01184773493173 9.8050e-010
51.5625 0.01173765865149 | 0.01173766027914 1.6277e-009
54.6875 0.01155901673874 | 0.01155901934560 2.6069e-009
57.8125 0.01128083786318 | 0.01128084186427 4.0011e-009
60.9375 0.01086873624819 | 0.01086874208585 5.8377e-009
64.0625 0.01029276188437 | 0.01029276992137 8.0370e-009
67.1875 0.00953870290380 | 0.00953871328023 1.0376¢-008
70.3125 0.00861857949441 | 0.00861859200431 1.2510e-008
73.4375 0.00757418134219 | 0.00757419540263 1.4060e-008
76.5625 0.00646994435853 | 0.00646995911073 1.4752e-008
79.6875 0.00537754295174 | 0.00537755746090 1.4509¢-008
82.8125 0.00435942216286 | 0.00435943562643 1.3464e-008
85.9375 0.00345811147375 | 0.00345812335374 1.1880e-008
89.0625 0.00269370124351 | 0.00269371129444 1.0051e-008
92.1875 0.00206752746643 | 0.00206753568466 8.2182e-009
95.3125 0.00156849314067 | 0.00156849968137 6.5407e-009
98.4375 0.00117917815373 | 0.00117918325061 5.0969¢e-009
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Fig. (2) Comparison of the numerical solutions when m=8 , m=16 and the
exact solution

I:II:I1"I'1' T T T T T T T T T

+  Haar solution m=3
+  Haar zolution m=16
0012 F +—— f—=—f } ] } —— Exact solution 5

0.m

0.00s

0.006

0.004

0.00z

b-)  we have solved equation (13) by using the equation (30) such that
[5]:

w0, )=1  u(l,t )=0

t 20
ﬁ(o’t ):ﬁ(l’t )=0 ...(33)
ox ox
2v(xL+a)
12v? e
u(x ,0)= e i 1- " > 0<x <1 ...(3%)
(e s +E]

Now, by substi_tute the boundary condition (33) in equations (25)-
(30) we get:

2
X v At VAt At
Ci ['13()6)—702 Di,l(x)_7ci F(x)+ I C; Di,l(x)+luL3 Ci h,, (x)
£ , Voo JT
=——u(x,t)u (x,t)+—u (x,t.)——=u (x1, ...(30
L(S)(‘)Lz(‘)ﬁ(‘) 30)

Where

[106]
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u (’x’ts+1) = At C:r: ])i,3 ('x) +u ('x9ts) -

Wt ) = At el Py (x) ' (x,
52
u'(x, A c; 3,3 (x)— 7 c; Dz',l

x*At

ts) - Atc; Di,l (x)

(%)

u"(’x’tsﬂ) = At C; Pi,l (x)+ u (x,t,)— Atc; Di,l(x)
um(x,tm) = At c,i h, (x)+ um(x,ts)

This process is started with:

C; Di,l(x)

2v(xL+a)
1212 eH
u(x ,t)=u(x,0)= L P > 0<x <1
: F v(xL+a)
(e i +EJ
2v (xL+a)
, , 1212 e
u(x,ts,)zu(x,O):i L P 5 0<x <1
; ax g# v(xL+a)
e ‘" +F
2v (xL+a)
] , 2 112y? e
u(x,ts,)zu(x,O):a2 Vii-—° 5 0<x <1
‘ ox"| eu v (xL+a)
e ‘* +F
2v (xL+a)
. . 83 12 2 e
u(x,t)=u (x,0)=— L P > 0<x <1
‘ ox’| eu v(xL+a)
e 4 +E

Results of the computer simulation are presented in table (3) where

m=32 , here

E=1000,&=0.1,v=001,u=1,L=100,a=0,b=100,Ar =0.01,and t =1.
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Table (3) Comparison of the numerical solution and the exact solution

When m=32.

The value x Wavelet solution | Exact solution Absolute error
1.5625 0.01199998363580 | 0.01199998363639 5.8346¢-013
4.6875 0.01199996945084 | 0.01199996945492 4.0790e-012
7.8125 0.01199994298994 | 0.01199994300102 1.1079e-011
10.9375 0.01199989366028 | 0.01199989368195 2.1668e-011
14.0625 0.01199980176882 | 0.01199980180479 3.5972e-011
17.1875 0.01199963076993 | 0.01199963082419 5.4256e-011

20.3125 0.01199931300994 | 0.01199931308694 7.7001e-011
23.4375 0.01199872366644 | 0.01199872377153 1.0509¢-010
26.5625 0.01199763348949 | 0.01199763362961 1.4012e-010
29.6875 0.01199562405180 | 0.01199562423679 1.8499¢-010
32.8125 0.01199193809330 | 0.01199193833817 2.4486e-010
35.9375 0.01198522087809 | 0.01198522120684 3.2875e-010
39.0625 0.01197308652757 | 0.01197308697962 4.5206e-010
42.1875 0.01195142171929 | 0.01195142235950 6.4020e-010
45.3125 0.01191333670441 | 0.01191333763773 9.3332¢-010
48.4375 0.01184773354122 | 0.01184773493173 1.3905¢-009
51.5625 0.01173765818723 | 0.01173766027914 2.0919e-009
54.6875 0.01155901621628 | 0.01155901934560 3.1293¢e-009
57.8125 0.01128083727934 | 0.01128084186427 4.5849¢e-009
60.9375 0.01086873559952 | 0.01086874208585 6.4863¢-009
64.0625 0.01029276116747 | 0.01029276992137 8.7539¢-009
67.1875 0.00953870211526 | 0.00953871328023 1.1165e-008
70.3125 0.00861857863082 | 0.00861859200431 1.3373e-008
73.4375 0.00757418040013 | 0.00757419540263 1.5002e-008
76.5625 0.00646994333460 | 0.00646995911073 1.5776¢-008
79.6875 0.00537754184253 | 0.00537755746090 1.5618e-008
82.8125 0.00435942096495 | 0.00435943562643 1.4661e-008
85.9375 0.00345811018373 | 0.00345812335374 1.3170e-008
89.0625 0.00269369985798 | 0.00269371129444 1.1436e-008
92.1875 0.00206752598194 | 0.00206753568466 9.7027e-009
95.3125 0.00156849155396 | 0.00156849968137 8.1274e-009
98.4375 0.00117917646057 | 0.00117918325061 6.7900e-009
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Fig. (3) Comparison of the numerical solutions and the exact solution
When m=16.
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7. Conclusions

In this paper, solving the nonlinear third-order KdV-Burger's
equation by using Haar wavelet method was discussed. The fundamental
idea of Haar wavelet method is to convert the differential equation into a
group of algebra equations which involves a finite number of variables.

We found that Haar wavelet had good approximation effect by
comparing with exact solution of KdV-Burger's equation at the same
time. The bigger resolution J is obtained more accurate approximation in
the solution, as note in table (1) when m=16 and the table (2) when m=32.
Also when m=64 , m=128 , ..., we can obtain the results closer to the
exact values. Figure (2) shows the Comparison between numerical
solution when m=8 and m=16 with exact solution.

We have also been reducing the boundary conditions used in the
solution by using the finite differences method with respect to time and
by using the notation (9) when x=L respect to space and the results were a
high resolution as note in table (3) and Figure (3). Matlab language is
using in find the results and figure draw, it's characteristic at high
accuracy and large speed.
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