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Exact Solutions for Some Partial Differential Equations
by Using First Integral Method

Faazah L. Hassan Al—Qattrani**

ABSTRACT

In this paper, some exact solutions for the convection—diffusion—reaction equation in
two dimensions and a nonlinear system of partial differential equations are formally derived
by using the first integral method, which are based on the theory of commutative algebra.

Keywords: First integral method; two-dimensional convection—diffusion—reaction equation,
nonlinear system of partial differential equation.
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1. Introduction

In the recent years, the problem of obtaining exact solutions of Nonlinear Partial
differential equations (NLPDEs) has attracted attention of many experts, due to the
appearance of these equations in many fields such as complex physics phenomena,
mechanics, chemistry, engineering and biology etc., and also as a result of the development
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in the field of computer software like Maple or Mathematica, which enables us to perform
the complicated and tedious algebraic calculations easily and high efficiency, moreover, the
exact solutions of nonlinear equations facilitates the verification of the numerical solutions
and aids in the stability analysis of solutions. So, a variety of powerful methods for finding
the exact solutions of nonlinear evolution equations had proposed such as, tanh-sech
method [9,12,18], extended tanh method [6], sine-cosine method [17], F-expansion method
[14], the extended mapping method [19], etc.

Feng [7], proposed a new powerful method, the first integral method for solving
Burgers-KdV equation. This method depends on the concept of the theory of commutative
algebra[5] and it has many advantages, which is mainly embodied that it could avoid a great
deal of complicated and tedious calculations and provide more exact and explicit traveling
solitary solutions. So it is considered easier and quicker method than other traditional
techniques. Recently this useful method was used widely by many researchers [3,11,13,
15,16].

In the present work, we would like to extend the application of the first integral method
to solve the convection—diffusion—reaction equation in two dimensions and the coupled
dispersionless system of partial differential equations. The remainder Structure of this paper
can be organized as follows: Section 2, is a brief introduction to the first integral method. In
section 3, implementing the first integral method, and some new exact solutions for (CDR)
and nonlinear system of Partial Differential Equation (PDE) are reported. Finally, in section
4, conclusion for this research is summarized.

2. Basic idea of the first integral method

Consider a general nonlinear PDE in the form

P(w,uy iy, Uy U s Uy Uppy Ungp s U » Uiy Uy 500 ) = 0, (1)
where u(x, y,t) is the solution of the equation (1). We use the transformations

ulx,y,t) =f(&), E=x+pfy + at (2)
where ff and a are constant. This enables us to use the following changes:

d d d d d d . . d?
E{') = ﬂd—f('): Ef*} = d—ff'); af_*] = ﬁ%ffj: a2 () = Tz

(). 3
we use (3) to change the partial differential equation(PDE) (1) to Ordinary Differential
Equation(ODE):

G(f.f.f".f"..)=0. (4)
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Now, we introduce new independent variables X (&) = f(&), V(&) = fz (£) which
change to a system of ODEs

X =Y,
| (5)
Y =F(x(@),v(®).

According to the qualitative theory of differential equations [5], if one can find two first
integrals to system (5) under the same conditions, then the analytic solutions to (5) can be
solved directly. Since, it is difficult to realize this even for a single first integral, because for
a given plane autonomous system, there is no general theory telling us how to find its first
integrals in a systematic way. A key idea of our approach here to find first integral is to
utilize the division theorem. For convenience, first let us recall the division theorem for two
variables in the complex domain C.

2.1 Division Theorem [5] Suppose that P(X,Y)and Q(X,Y) are polynomials of two variables X
and Y in C[X,Y] and P(X,Y) is irreducible in € [X,Y]. If Q (X,Y) vanishes at all zero points
of P(X,Y) , then there exists a polynomial G(X,Y)in C [X,Y]such that Q(X,Y) = P(X,Y) G(X.Y).

3. Application

Example 1

The CDR is practically important because the working equations of many cases fall into
this category. Typical examples are the Helmholtz equation for modeling exterior acoustics
[2], constitutive equations for modeling the turbulent quantities & and ¢ [8].

P + Uy + voy, — k(Pyy + @) +cp =0, (6)

where u and v represent the velocity components along the x and y directions, respectively.

Other coefficients involve k and ¢, which denote the diffusion coefficient and the reaction
coefficient, respectively. For illustrative purposes, all these values are assumed to be
constant throughout. For finding exact solutions using (2) and (3), Eq.(6) becomes

af +uf +vBf —k(f +B*f )+cf=0, (7)
then

. a+u+vf c

F=%avm ! raem ©

Let X(&) = f(&), Y(&) = f:(£), then equation (8) is equivalent to
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X@=v(@®,

a+u-+vp c (9)

Y (&) = WY +m}f.

Now, according to the first integral method, we suppose the X = X( §) and Y = Y( §) are

the nontrivial solutions to (9), and gq(X,¥) = X%, a,(X) ¥ is an irreducible polynomial in
C [X, Y], such that

q(X(®).Y(®) = Z a;(X)Y' =0, (10)
i=0

where a,(X)(i = 0,1,2, ..., m) are polynomial of X and a,,(X) # 0. Eq. (10) is called first
integral to equation (9). Due to the Division Theorem, there exists a polynomial
H(X,Y) = g(X) + h(X)Y in C [X,Y], such that

dq 0qdX dqadY

df-ad{+a},E=(Q(X)+hf}f)?)(;ﬂzf¥}}':) (11)

in our study will take three cases are clarified as follows:

Case 1
By assuming m =1 in (10). Note that Z—; is a polynomial in X and ¥, and g(X,¥) = 0

. dq
Implies that i 0,
1 1

. o a4l . pon i (@ T UT VB c
;a:(XJY +;mfix)} (k(1+ﬁz) ¥+k(1+ﬁ:)x)

1
= (g(x) + h(X)Y) (Z a,(x) Y‘) ., (12)

i=0

where prime denotes differentiating with respect to the variable X. On equating the
coefficients of ¥* (i = 2,1,0) on both sides of (12), we have

a; (X) =a(X)n(X) . (13a)
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ah(X) + a; (%) (H) — a,(0)g(X) + ag(ORX), (13b)
a;(X) (m v X) = 6, (Mg (x), (13¢)

since a;(X) is a polynomial of )X, from (13a), we deduce that a;(X) is a constant and 4(X) = 0.
For simplicity, we take a;(X) = 1, and balancing the degrees of g(X), a;(X) and ay(X), we
conclude that deg g(X) = 1 only, suppose that g(X) = AX + B, then we find a((X) from (13b)

a+u+vp

L:(1—-|-,83))X+ D, (14)

_ A
ag(X) = S X% + (5 -

where D is an arbitrary integration constant. Substituting a,(X), ao(X) and g(X) in (13c) and
setting all the coefficients of powers X to be zero. Then we obtain a system of nonlinear
algebraic equations

BD =0, B?+AD Bu Ba Buf c 4
o k(1+65) k(1+p2) k(1+pD) k(1+pD)
AR Au Aa Avp _ A2 o .
27 TR +p) k(1 +PD) KA +PH T 2 (15)
solving equation (15), we can obtain that
o uta+vp—y(Cu—a—vp) + dc(k + kFP)
A=0,D=0,B= 2(k + kp2) , (16a)
u+a+vf+J(—u—a—vp)? + ac(k + kB?)
A=0D=0,B= , _ 16b
2(k + kB?) (16b)
using (16a) and (16b) in (10), we obtain
u+a+vf +(u+a+vf)*+ 4ck(1+ p*
r=_( B+ BY + 4k ﬁ))XJ )
2k(1+ B-)
and
u+t+a+v _-':u+ﬂ'+1’ 2+4k1+ 2
r=-(- BRI ) o)
2k(1+ B2)

respectively. Combining equation (17)with (9), we obtain the exact solutions of Eq. (8) as
follows:
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( u+a+vﬁ+ﬁ;[ u+a +v B )2+4 ck(1+52) ] £

f(&)=e 2k(1+67) C,, (18a)

(u+a+vﬂ - J{ u+a+vg 2+4ck (1-5-,62}) Fd

f@)=e 2k (1+F%) T oC, (18b)

where C, is an arbitrary integration constant. Then the exact solution to (6) can be written as

(u +a+vp +j{u+a+vﬁ]2+4 Ck{1+52:}) (x+By+at)
plx,y,t) = e 2k (1+4%) C, (19a)

(u +a+vp —ﬂ||{u+-:r+vﬁ]2+4 ck{1+ﬂ2)) (x+By+at)

o(x,y,t) = e 2k(1+B%) C,. (19b)
Case 2
We assume that m =2 in (10), and g(X,¥) = 0this implies that j—: =0,
5 - : _ 4 a+u+u,8 c
;amy +;1ai{X}Y (m Y i +ﬁ2)x)

]

= (g(x) + h(XJY)(Z a;(X) Y‘)J (20)

i=0

on equating the coefficients of ¥* (i = 3,2,1,0) on both sides of (20), we have

a3 (%) = a;(OR(X) , (212)
a5 (%) + 20, () (ﬁﬁ) = a,(0g(xX) + ay (OR(X), (21b)

) a+u+vf
0600 + 20,00 (%) + a0 (G5 53y)
=a,(X)g(Xx) + au(X}h{X), (21¢)

1(3)( = a,(X)g(x), (21d)

k(1 +p%) )
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since a,(X) is a polynomial of )X, from (21a), we deduce that a,(X) is a constant and 4(X) = 0.
For simplicity, we take a,(X) = 1, and balancing the degrees of g(X), «;(X) and ay(X), we
conclude that deg g(X) = 1 only, suppose that g(X) =4x+B, then we find a;(X), and ay(X)
From (25b,c)

a,(X) = D+(B—2(H))X+ ZAx?, (22)

where D is an arbitrary integration constant. Substituting a,(X),a;(X)and g(X) in (21c)

a(X) =E+ (Ba‘ _D (w))x

k(1 + BD)
12

+2(3 tAD - (k(l ,8}) k(1 + B2)
cr+u+vﬁ‘)

2 SA(
at+u+v , 1| 34B k(1 + %)
+2(—ﬁ))x-+— - £

k(1+ g2) 3\ 2 2

(cr +u+ rﬁ)

1
X3 +-4°x%,
8

(23)

where E is an arbitrary integration constant. Substituting ay(X), a;(X)and g(X) in (21d) and
setting all the coefficients of powers X to be zero. Then we obtain a system of nonlinear
algebraic equations and by solving it, we get

E=0A=0D=0, B= (H) (24a)
E=0A=0D=08= (%) - ‘/4 (k(1 iﬁ:)) N (czf;—lu:ﬁ:)ﬁ):’ 24b)
E=0,4=0D=0,B= (%] + \|||I4 (k“ i 32)) (ﬂ;;t;;:)ﬁ) (24¢)
using (24a) in (10), we obtain
|
y = 1(% Jaz (m) + (H) X, (25b)
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respectively. Combining equations (25) with (9), we obtain the exact solutions of Eq.(8) as
follows:

y | £ +u+vg\’
%(i{u}zg _J4 (kq’f1+£2}]+(:{1+_ﬁ'2?) )(‘:
f(&) =e * Cy, (26a)

1| a+u+vf |r c a+u+vf z
:(—rk[nﬁ ) +NI4 (k{1+£2}}+ (k[1+,ﬁ‘2}) )f

f=e G- (26b)

where C; is an arbitrary integration constant. Then the exact solution to (6) can be written as

r

a+u+vf _ | ¢ a+utvg\® )
k(1+B%) _\I'i(k{,_.bﬁ})"'(k{i_,_ﬁz],) ){1+3}’+at}

o(x,y,t) = ez(

1(a+u+v£ + !I4( £ )+(ﬂ+u+v£)2){x+ﬁy+m]

Cy. (27a)

2| k(1+8%) " | \k(2+8%)) \k(1+87)
olx,y,t)=e N Cy. (27b)

Similarly, as for the cases of (24b) and (24c¢) the exact solutions are respectively

i atutvg o 'I4( : )+(‘:”““‘"3)2 (x+By+at)
2\ k(1+8%) J k(1+8%)) " \k(1+8%) yra

olx,yv,t)=e Cy, (28)

1| a+u+vf |I e \.[a+u+vg)’
2\ k(1+87) _\!4(k(1+32})+(k(1+32:;) (x+By+at)

plx,y.t)=e Cy. (29)

Case 3

Finally, we assume m = 3 in (10). By the same procedure in the last cases
- - a+u+vf c

a; xy“l-t-Zia V"‘l( — Y+ — - X)
; o i=0 () k(1+ %) k(1+B2)

3
= (gx) +h(X)YV) (Z a;(X) r‘) . (30)

=0

On equating the coefficients of ¥* (i =4,3,2,1,0) on both sides of (30), we have

a3 (X) = a; (X)) , (31a)
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a,(X) + 3a,(X) (Hmﬁ-i;’) = a;(X) g (%) + a, CORX) , (31b)

(0 + 30500 (s T x) + 2a,(0) (%)
=a,(X)g(X) + a,(X)n(X), (31c)

a+u+ vﬁ)
k(1+ B2)
= a,(X)g(X) + a,(X)h(X), (31d)

3500 + 2000 (g %) + 4100 (

000 (G X) = 8 e ). (310)

since a;3(X) is a polynomial of )X, from (31a), we deduce that a;(X) is a constant and 4(X) = 0.
For simplicity, we take a;(X) = 1, and balancing the degrees of g(X), ax(X), a;(X) and ay(X),
we conclude that deg g(X) = 1 only, suppose that g(X) =4X+B, then we find a,(X), a;(X)
and ay(X) from (30 b, ¢, d)

+u+v 1
3, X) =D+ (B -3 (ﬁ))x +AX, (32)
3,(X)=E+ (3 D — 2D (%%E))
1 a+u+vp
+E(32+AD—3(M1 ) -2 Garm)
a+u+vf , , 1{34B a+u+vp 2, 1,
+ 6(—k(1+ﬁ:)))2’ +3( > —4A(—k(1 ﬁ)))x +-A'XY,
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a+u+vp
(X)) =F+ (BE —E (m))x

c

+%(32D - 2D (m) +AE — 3BD (%)

a+u+ vp\’ 2
+ 2D (—k[l+ﬁz)) )X
c

T3l 27T 2 k(1 + B2)

SAD (%%) X 15 (m T ,82)) (“k?ffg?f)

2 2
(cr+u+uﬁ)2
+113 k(1 + B2) 3(a+u+uﬁ)3 e
2 k(1 + g2)
c a+u+vp
- A52+A2D_5A(H1+ﬁzj)_13'w(kf1+ﬁ35)
4 2 2 3

XE

12 (a+u+vﬁ)2 ) 35A3(“ +u+1:ﬁ)
N k(1+ B%) ol 54°B k(1+B2)
3 5 8 24

1
+ EAEXe ’ (34)

where D, E and F are an arbitrary integration constants. substituting a(X), a;(X)and g(X) in
(31e) and setting all the coefficients of powers X to be zero. Then we obtain a system of
nonlinear algebraic equations

F=0E=0A=0D=0,

o | o
p=2( (o) i)+ ) ) o
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F=0E=0A4A=0D=0,

L vB\?
o3 (6E5)- [k G5 o

F=0,E=0A=0,D=0,

(35¢)

2\ Vk(1 + 82 k(1 + B2) k(1 + p2)

_z (a+u+vﬁ) \f( c ) (-:r+u+1:ﬁ‘)2 ,

F=0E=0A=0D=0,

i o2
o3 (55) e i) ) o

using (35a) in (10), we obtain

=3 (Gas)« [slepm) + (s ®Y )| o

respectively. Combining equations (36) with (9), we obtain the exact solutions of Eq.(8) as
follows:

2
+{gshe [ 58 )
fi)=e Cy, (37)

where C; is an arbitrary integration constant and Then the exact solution to (6) can be written
as

| 2
1 | a+u+vp a+u+vp i
T(" i [ ) )(ﬂﬁ} o

¢('tr J'r t) = e Cl O (38)
Similarly, as for the cases of (35b), (35¢) and (35d) the exact solutions are respectively
a+utvg 14 1':x+u+v,ﬁ‘a +C
z.lﬁ's.ﬂﬂ'z}
* | ﬂ"'u"'l-ﬁ ki 22 | A+UAE, V2
Pl v,t) = e ka8 oS ) (kriwzﬂ KA 4G gy ey

(39)
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1 py “2
e S mam —— UT—,
TR [ e (a+u+vg) c a+usrg’
o y,0) = e :L|1+£ZJ Ekl1+ﬁ?|}+ e 2(+Bm)? :.t 7)) |:=m,+§2‘|’
(40)
<1 At
:ﬁf;;fa + : ZE — -+ fa+u+tﬁ‘ - - =+C,
- 2) c (tu+v (e GT2 | € a+u+vs
¢lx,y,t) =e Hat#) 3\ 1+.52|] ki1+ﬁ2'| ARGE \4[ +62)/ (R11+ﬁ2:|
(41)
| 2
1| a+u+vg c (a+u+u,&)
2(k‘ 1+52) q' (kr1+g2;) k1-p2)) |xtBy+at)
plx,v,t)=e - Cy . (42)

where C; is an arbitrary integration constant. These solutions are all new exact solutions

Example 2

The new coupled equation has been first presented by Konno and Oono where solved by
using the Inverse Scattering Transform (IST) method [10] and also extended mapping
method [19]. The integrability properties of the coupled dispersionless system was employed
by the Painlevé test [1].

U, —2ur =20,

(43)

v, +2uu, =0 ,

introducing the following transformations

ulx, t) = f(&),
(44)
ulx, t) = f(&),

where, & = x 4 at, the system (43) reduces to

af —2fg=0,
(45)
ag +(f?) =0,

integrating the second segment of equation (45) with respect to ¢ yields
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c—f*?
g=—01 (46)

substituting equation (46) into the first segment of equation (45) yields

L=—f——:f3, (47)
Let X(§) = f(§). Y(§) = fz(£), then equation (47) is equivalent to

X@=v@©®,

(48)

. 2 2

V()= —ZX(E) -—=Xx(@)3,
a A

according to the first integral suppose that X = X( &) and Y = ¥( §) are the nontrivial

solutions to (48), and q(X,V) = X%, a,(X) ¥* is an irreducible polynomial in the complex
domain in € [X, Y] such that

ax@®.Y®) = ) aXE)YE) =0, (49)
i=0

where a,(X)(i = 0,1,2,...,m) are polynomial of X and a,,(X) # 0. Eq.(48) is called first

integral to equation (48). By the Division Theorem, there exists a polynomial
H(X,Y) = g(X) + h(X)Y in C [X, Y] such that

dq dqdX 0dqadY

Case 1

Assuming that m =1 in (49). Note that j—: is a polynomial in X and ¥, and g(X,V) = 0
implies that j—g =0,
1 1

G OV 4 Y 10,0 ¥ (T5x - %xz) _ (g(x) +h(EOY) (z 0. (0) v )

- . a=
i=0 i=0 =0
(51)

N1
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by comparison with the coefficients of ¥* (i = 2,1,0) from both sides of (51), we have

&, (X) = a; (ORY) (52a)

ay(X) = a,(X)g(X) + ap(X)R(X), (52b)
2 2

a, (%) (ﬂ—‘x _ Fx?) = 0y () g(x) (520)

since a;(X) is a polynomial of )X, from (51a), we deduce that a;(X) is a constant and 4(X) = 0.
For simplicity, we take a;(X) = 1, and balancing the degrees of g(X), a;(X) and ay(X), we
conclude that deg g(X) = 1 only. Suppose that g(X) = AX + B, then we find ao(X) from (52b)

i A .
ag(X) ==X% + BX + D, (53)

where D is an arbitrary integration constant. Substituting ag(X)and g(X) in (52¢) and setting
all the coefficients of powers X to be zero. Then we obtain a system of nonlinear algebraic
equations

b

5 2c 3 A 2 :
BD =0, B°+AD=—, —AB=0, — = -, (54)
a- 2 2 a*
solving the last algebraic equations, we obtain
ic 21 _
D=-—, A=—, B=0, (55a)
@ a
ic 21
D=—, A=-—,B=0, (55b)
a a
using (55a) and (55b) in (49), we obtain
i(c —X%
y=t€ =) (56a)
a
and
i (—c + X°

respectively. Combining equation (56)with (48), we obtain the exact solutions of Eq. (47) as
follows:

f(&) =+c tanh (i ve d —;\k ke ) (57a)
f(&) =ve tanh(_ e E; A El), (57b)
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where €, is an arbitrary integration constant. Then the exact solution to system (43) can be

written as - -
— ive (x+at)++vc ady
u(x,t) =+/c tanh .
r
(58a)
c Sec (w.-'c ((x + frt) —ia Ci))
F{X, tj — ]
a
and . -
_ —ive (x+at)++c aC
ulx,t) =+c tanh ( ve ( )+ 1);
[
(58b)
(x-? (x+at) +ia cl))z
c Sec
o
vix, t) =
@
Case 2

Assuming that m =2, by comparison with the coefficients of ¥* (i = 3,2,1,0) from both
sides of (51), we have

a,(X) = a,(X)h(X) , (59a)
ay(X) = a,(X) g(xX) + a,(X)n(X), (59b)

2 (X) + 2a,(X) (z" X %xz) = a,(0g(X) + ag(OR(K) , (59¢)

a, (X) (%X - %XB) = a,(X)g(X), (59d)

since a,(X) is a polynomial of X, from (59a), we deduce that a,(X) is a constant and 4(X) = 0.
For simplicity, we take a,(X) = 1, and balancing the degrees of g(X), a;,(X), ax(X) and ay(X),
we conclude that deg g(X) = 1 only. Suppose that g(X) = AX + B, then from (59b) and

(59c)we find a;(X) and a,(X) as follows:
a,(X) = 2X2 + BX + D, (60)

B? 1 2c\ . 1 . (A 1), .
a,(X) =E+BDX+4+|—+4+—-AD—— |X*+—ABX* +|—+—| X (61)
2 2 a? 2 8 a?
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where D and E are an arbitrary integration constants. Substituting ao(X), a;(X) and g(X) in
(59d) and setting all the coefficients of powers X to be zero. Then we obtain a system of
nonlinear algebraic equations and by solving it, we obtain

E ¢ D 2Lc B=40 A s 62
= Y = =T = ¥ =_’ a
a’ a a (62a)
ct 2ic 4i
E=-—, D==—, B=0 A=-—, (62b)
o= s s

using (62a) and (62b) in (49), we obtain

ilc —X2)
Yy=—o, (63a)
a
and

i(c —X%)
ﬂ' »
Combining equation (63)with (48), we obtain the exact solutions of Eq. (47) as follows:

(63b)

f(&) = +c tanh (i Ve E+:E 2G ) (64a)
f(&) =+/c tanh (_ AL fzﬁc “G ) (64b)

where C, is an arbitrary integration constant. Then we get the exact solution of Eq.(43) as

_ ive (x+at)++vVc acC
ulx, t) = Ve tanh( ( )+ 1).

o
(65a)
T (x+at)—iac))

¢ Sec (vc (x = 1 )

v(x, t) = ,
a
and

_ —ive (x +at)++c aC

u(x, t) = +/c tanh ( ve ( r.'r} i - )
(65b)

(1,"? ((x+at) +iacy) :
c Sec = )

vix,t) =
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Case 3
Assuming that m = 3, by equating the coefficients of ¥* (i =4,3,2,1,0) from both sides
of (51), we have

as(X) = a;(X)h(X) , (66a)
as(X) = a,(X) g(x) + a,(X)h(X), (66b)
@i (%) + 30300) (25X~ — °) = a;(0)g () + a3 (ORCK) (660)
ap(X) + 2a,(X) ( X — ixz) = a,(X)g(X) + ap(X)h(X), (66d)
aﬂﬁ( X—EWﬂ-aﬂﬁﬂﬁ (66€)

by the same method in the last cases we obtain the following solutions

Ve 't aC
(. ) = Ve tanh (u.h: (x + at) +vJc «a 1),

a
(67)
c (x+at)—iaC,) ’
c Sec (\rc @ a 1 )
vix, t) =
@
_ —ive (x+at) +vVc ac,
u(x,t) = +/c tanh . ,
(68)
— I 2
(-»,,r'.-:: ((x+at) +ia Cl})
¢ Sec
a
v(x, t) =
o
. V2 AT I':I:.x+cr fi+iac :I
4iy2 e e a 1
TI(I;II) == 242 4T ((x+a)+iady) !
—4+e @
(69)
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22 T ((x+an) +iady) 47 T ((x+at) +1i aCy)
cll6+24 e @ +e @

vix,t) = — 3
242 e ((x+at)+i aly)
—4+e @ 14
AT T ((xtan+iady)
. 4142 +c e o
ulx, t) = - — : ,
2 V2 yc (x+ar) X — —
__.;]_, e o + g= Iy ¢ C:I.
(70)
242 NE {"_x+a o+ia Ci:l-
32ce a
c+ — - 7
2 v2 e (x+at) _
(_4 e o +EEI'\2 AE C:l)
vix,t) =
o

Where C, is an arbitrary integration constant. These solutions are all new exact solutions.

4. Conclusions

We applied the first integral method for finding some new exact solutions for two-
dimensional convection—diffusion—reaction equation and nonlinear system. This method was
proved the applicability and effectiveness for solving these equations.
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