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The spectral form of the Dai-Yuan conjugate gradient algorithm
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Abstract

Conjugate Gradient (CG) methods comprise a class of unconstrained
optimization algorithms which are characterized by low memory requirements
and strong local and global convergence properties. Most of CG methods do not
always generate a descent search directions, so the descent or sufficient descent
condition is usually assumed in the analysis and implementations. By assuming a
descent and pure conjugacy conditions a new version of spectral Dai-Yuan (DY)
non-linear conjugate gradient method introduced in this article. Descent
property for the suggested method is proved and numerical tests and
comparisons with other methods for large-scale unconstrained problems are

given.
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1-Intrduction

The non-linear Conjugate Gradient (CG) method is a very useful
technique for solving large scale unconstrained minimization problems
and has wide applications in many fields [9]. This method is an iterative
process which requires at each iteration the current gradient and previous
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direction, which is characterized by low memory requirements and strong
local and global convergence properties [3 and 12].

In this paper, we focus on conjugate gradient methods applied to the
non-linear unconstrained minimization problem:

min f(x), xeR". )]
Where f:R"— R is continuously differentiable function and bounded
below. A conjugate gradient method generates a sequence x,, k=1
starting from an initial guess x, € R", using the recurrence
=x +ad. 2)
Where the positive step size ¢, 1s obtained by a line search, and the

xk+1

directions d, are generated by the rule:
d,=-g.,+pd. , d=-¢ . 3)
Where g, =Vf(x,), and let y, =g, —g, and s, =x_, —x, , here B,

is the CG update parameter. Different CG methods corresponding to
different choice for the parameter B, see [1, 4 and 10]. The first CG

algorithm for non-convex problems was proposed by Fletcher and Revees
(FR) in 1964 [11], which is defined as

profuga (4)
& 8i
We know that the other equivalents forms for B, are Polack-Ribeir (PR)
and Hestenes- Stiefel (HS) for example

k+1

B Sl g peSeXe (5)

L g Ly,
Although all the above formulas are equivalent for convex quadratic
functions, but they have different performance for non-quadratic
functions, the performance of a non-linear CG algorithm strongly
depends on coefficient f,. Dai and Yuan (DY) in [6] proposed a non-

linear CG method (2) and (3) with 8, defined as:

T
DY gk+1gk+l
=220 6
A, ©
Which generates a descent search directions
dg<0. (7)

At every iteration k and convergence globally to the solution if the
following Wolfe conditions are used to accept the step-size o, [2]:

flx,+a,d)< f(x)+ca,g.d. e (8)
glx, +a,d)d >cgd. 9)
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Where 0<c¢, <c, <1. Condition (8) stipulates a decrease of f along d,

if (7) satisfied. Condition (9) is called the curvature condition and it's
role is to force a, to be sufficiently far a way from zero [12]. Which

could happen if only condition (8) were to be used. Conditions (8) and (9)
are called Standard Wolfe Conditions (SDWC). Notice that if equation

(8) satisfied then always there exists a >0 such that for any «, €[0, ]

the conditions (8) and (9) will be satisfied according to the theorem (1)
given later. If we wish to find a point «,, which is closer to a solution of

the one dimensional problem

Min®@) = min/(x, +ad) .. (10)

>0 a>0

Than a pomt satisfying (8) and (9) we can impose on ¢, the Strong
Wolfe Conditions (STWC):
flx, +a,d)< f(x)+ca,g,d,. (11)
gx, +ad)d|<clgd| (12)
Where 0<¢, <c, <1. In contrast to (SDWC) g, d, cannot be arbitrarily
large [12]. The (STWC) with the sufficient descent property
lg.<—c|g|,ceqny L (13)

Widely used in the convergence analysis for the CG methods.
Theorem (1): Assume that f is continuously differentiable and that is

bounded below along the line x=x, +a d,, o <(0,0). Suppose also

that d, 1s a direction of descent (7) 1s satisfied if 0<c¢, <c, <1 then there
exists nonempty intervals of step lengths satisfying the (SDWC) and
(STWC) conditions. For proof see [12].

The Fletcher-Revees (FR) and Dai-Yuan (DY) methods have common
numerator g, g,., - One theoretical difference between these methods
and other choices for the update parameter [, 1s that the global

convergence theorems only require the Lipschitz assumption not the
bounded ness assumption [9].

The global convergence for the methods with g, g, in the numerator
of [, established with exact and inexact line searches for general
functions [2, 7, and 13]. Despite the strong convergence theory that has
been developed for methods with g, g, in the numerator of S, these

methods are all susceptible to jamming, that is they begin to take small
steps without making significant progress to the minimum [9]. On the
other hand the convergence of the methods with g/ v, in the numerator

(PR) and (HS) for general non-linear function are uncertain, in general
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the performance of these methods is better than the performance of the
methods with g, g, in the numerator of S, see [9], but they have

weaker convergence theorems.
This paper is organized as follows: in section 2 new spectral form for DY
non-linear conjugate gradient algorithm is suggested. In section 3 we will
show that our algorithm satisfies sufficient descent condition for every
iteration. Section 4 presents numerical experiments and comparisons.
2. New spectral form for Dai and Yuan CG method

An attractive feature of the CG method is that the following (pure
conjugacy condition )

yid.,=0 (14)

k+1
is always holds if the objective function f(x) is convex quadratic and

line search is exact [8]. In this section we use the relation (7) and (14) to
derive new spectral DY conjugate gradient method. Consider the search
direction of the form

T
g+g +
dk+l :_ykﬂgkﬂ + le = Sk s dl :_gl .......... (15)

kSk
where y, 1s parameter. Assume that the search direction in (15) satisfies
the relation (7) 1. e

T
gk+1gk+1 T

d/cT+1gk+1 == 7Yiua ngJrlglm + — 7 S8 <0 (16)
ST k~k
_yk+1 + k§k+1 <O
YiSi
or
ST
Vi = kTng +c, ¢>0
k Sk
Then
S g, tcyls
Yo == 17)
Vi Sk
To find the value of c, we use the pure conjugacy condition (14) i e
y.d,, =0 then
T
818
ydekJrl :_7/1{+1 ykTngrl +% ykTSk :O (18)
kS k
With simple algebra we get
C:ngugku ykTSk _SkTngrl ykTngrl (19)

T T
ykgk+1 ykSk
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Equations (17) and (19) give

T

g + g +
o :% (20)

yk gk+l

Therefore the new spectral DY search direction is
T
g + g +
dk+l = _yk+1 gk+1 +% Sk .......... (2 1)
kS k

With y, , defined in the equation (17)
Algorithm (spectral form of DY. SPDY say)
Step (1): Choose an initial starting point x, € R" and ¢ >0, consider

d=-g, a =L, and k=1
e,

Step(2): Test for convergence. If |g,[|<e stop x, is optimal

Else go to step(3)
Step(3): Compute «, satisfying the (SDWC) or (STWC) and update the

Variable x_, =x, +a,d_and compute f _,, g,..,, v, and s,
Step(4): Direction computation: compute y, , from (20) and set

T
d=—y,., g., +% s, . If Powell restart is satisfied then

k
yk Sk
dk+1 = _yk+1gk+l

=d , compute initial guess for «,,, = ak(d") and
k-1

Else d

k+1

Set k =k +1 go to step(2)
3. Descent property of the SPDY algorithm
An mmportant feature for any minimization algorithm is the descent

(7) or the sufficient descent (13) property. In this section we proof that
our suggested new algorithm (SPDY) generates a sufficient descent
directions for each iteration k.
Theorem (1):

Suppose that the step-size «, satisfies the standard Wolfe conditions

(SDWC), consider the search directions d, generated from (21) where
7., computed from (20) then the search directions d,, satisfies the

sufficient descent condition (13) for all k.
Proof
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The proof is by induction. If k=1 then d/ g, =—g/g, =—g,[ <0 then the
sufficient descent holds with c=1, know let s, g, <—c|g,| to proof for
k+1, multiply (21)by g/, to get
T
Ein8i:
ng+1dk+1 =7Viu ngJrlgku + le = ng+1Sk (22)

kS k
Note that from second standard Wolfe condition (9)we have

(1) ykTSkZ(Cz_l)SkTgk>0

T T T T <o T T
S 8i1 =51 8k S 8t 5,855,810 S 8 =5 Vs

. (23)
(ll) - Slf]gkﬂ Sl
Sk yk
From (20), (2.9) and (23) we get
T
818+
ngJrlkorl S _¥ ngJrlngrl +ng+1gk+l
k Sk+l
8ia8 8ing
k1S k+ +]
= _( Tl 1 _l)ngJrlngrl :_(%)gkilgkﬂ
k OSk+l k OSk+l

Applying the inequality u'v < %(Hu”z + HVHZ) then

2 2
8l T8
kT+1 = ( ““ykﬂz +”l kHz)ngJrlngrl :‘Cﬂgkﬂ 2
k k+1
e ot <l
2 2
Hyk +”gk+l

4. Numerical results and comparisons

In this section we present the computation performance of a
FORTRAN implementation of the SPDY, DY and FR algorithms on a set
of unconstrained optimization test problems. We selected ( 15 ) large-
scale unconstrained optimization test problems in extended or generalized
form from [5]. For each function we have considered n=100, 1000 (where
n is the number of variables ). All algorithms implement the standard
Wolfe line search conditions with ¢, =0.0001 and ¢, =0.9 and same

stopping criterion |g,| <10, where | .| is the maximum absolute

component of a vector.
The comparison of algorithms are given in the following context. We
say that, in the particular problem 1 the performance of Algorithm(Algl)
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was better than the performance of Alg2 if the number of iterations (iter)
or the number of function-gradient evolutions (fg) or the number of
restart (irs) of Algl was less than the number of (iter) or (fg) or the (irs)
corresponding to Alg2, respectively. Table(1) and table(2) shows the
details of numerical results for the Fletcher-Revees (FR), Dai-Yuan (DY)

and our algorithm (SPDY).
Table (1) Comparison of the algorithms for n=100
Test FR DY SPDY

Problems

Iter fg irs Iter fg irs | Iter fg irs
Trigonometric 18 34 10 18 34 91 18 33 10
Ex. Rosenbrock (CUTE) 41 84 22 | 40 81 24 | 34 72 18
Ex. White & Holst 36 76 20 | 34 68 18 | 31 67 17
Perturbed Quadratic 101 154 31| 82 123 29 | 95 145 29
Diagonal 2 67 107 23 | 59 100 17 | 55 93 18
Hager 28 46 11| 27 45 12 | 25 41 10
Generalized Tridiagonal 2 36 57 11 39 59 15 | 40 60 16
Extended Powell 59 113 20 | 72 136 25 | 66 125 16
Extended BD1 42 70 39 | 52 86 51| 44 75 41
Extended Maratos 70 160 36 | 68 151 34 | 64 151 29
Ex. Quad. Penalty QP2 28 60 15| 24 51 12 | 23 54 12
Partial Perturbed Quad. 74 114 26 | 84 132 23 | 75 113 21
Almost Perturbed Quad 84 133 21 | 98 153 31 | 101 152 32
Tridiago. Perturbed Quad. 105 168 35 | 105 164 33 | 95 151 24
ENGVALI (CUTE) 27 47 9 23 44 51 29 50 11
Total 816 1423 329 | 825 1427 | 335 | 795 1382 | 304

Table (2) Comparison of the algorithms for n=1000
Test FR DY SPDY

Problems

Iter fg irs | Iter fg irs Iter fg irs
Trigonometric 29 53 19 | 32 57 19| 29 52 18
Ex. Rosenbrock (CUTE) 40 92 20 | 38 83 21| 34 75 18
Ex. White & Holst 36 76 18 | 32 69 17] 26 53 13
Perturbed Quadratic 284 437 83 | 326 519 85| 338 527 98
Diagonal 2 219 360 71 | 189 313 56 | 190 315 60
Hager 278 496 248 | 285 510 255 | 188 218 159
Generalized Tridiagonal 2 64 98 25| 63 99 27 65 100 26
Extended Powell 67 128 22 | 77 141 24| 58 111 17
Extended BD1 53 87 53| 53 87 53| 53 87 53
Extended Maratos 70 155 36 | 70 160 34| 63 147 29
Ex. Quad. Penalty QP2 36 87 20 | 37 90 20 | 32 85 20
Partial Perturbed Quad. 225 373 56 | 240 391 63 | 203 335 47
Almost Perturbed Quad 323 503 88 | 316 502 95| 290 451 80
Tridiago. Perturbed Quad. 406 628 114 | 332 510 87 | 333 525 95
ENGVALI (CUTE) 104 180 90 | 113 202 101 50 98 25
total 2234 3753 | 963 | 2203 | 3733 | 957 | 1952 | 3179 | 758
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