المجلة العراقية للعلوم الإحصائية (20) 2011 عدد خاص بوقائع المؤتمر العلمي الرابع لكلية علوم الحاسوب والرياضيات							
مر [314–297]	مر						
		t					
**				*		•	

. (2005)

Estimation and Structure of Bayesian Tests for the Scale and Loction Parameters in Multivaiate- t distribution

Hayfa Abdul Jawad Saieed Moatazbeallah Salah Kanem AL-Luibi

Abstract

This paper deals with two problems Bayesian estimation and hypothesis tests to the parameters of Multivaiate- t distribution when the degrees of freedom of distribution is known with the (informative and non-informative) prior information. The results were applied on the neonatal birth scales data in Nineva Governorate for the year (2005).

(1)

Student-t	
	(Robust techniques)
	_
	*استاذ مساعد/كلية علوم الحاسوب و الرياضيات/جامعة الموصل ** ماجستير/كلية علوم الحاسوب والرياضيات/جامعة الموصل

(Heavy-tailed)

. [2](2010)

t

Student-t

Student-t

(Mixed Distribution) t

 σ^z

 $\sigma^2 \sim IG(\frac{v}{2}, \frac{v}{2})$ [2](2010)

 $\frac{\sigma^{2}}{X} | \sigma^{2} \sim N_{p} (\underline{\mu}, \sigma^{2} \Sigma)$

 \underline{X}

 $f(\underline{X}) = \int_{\sigma^{2}} f(\underline{X} | \sigma^{2}) \quad f(\sigma^{2}) \quad d\sigma^{2}$ $= \frac{\left|\Sigma\right|^{\frac{1}{2}}}{c(\nu, p)(\pi)^{\frac{p}{2}}} \quad \left[1 + \frac{1}{\nu}(\underline{X} - \underline{\mu})'\Sigma^{-1}(\underline{X} - \underline{\mu})\right]^{-\frac{\nu+p}{2}}$

 $\underline{X} \sim t_p(\underline{\mu}, \Sigma, v)$

 $-\infty <_X < \infty$ (p_*1) : \underline{X}

$$-\infty < \mu < \infty \quad (p_*1) \qquad : \frac{\mu}{2}$$

$$(p_*p) \qquad (Positive Definite) \qquad : \Sigma$$

$$: v \qquad : p$$

$$(Normalizing constant) \qquad c(v,p) = \frac{v^{\frac{p}{2}} - \sum_{j=1}^{v}}{j^{\frac{v}{2}}}$$

$$t \qquad (2)$$

$$(Sample information)$$

$$(prior information)$$

$$.(non-informative prior information)$$

$$t \qquad \qquad \tau^2$$

t -:

. $\underline{\mu}$ Σ -:

 $\underline{\mu}$

$$f_{(x)}(\mu) = -E(\frac{\partial^2 \ln f(x; \mu)}{\partial \mu \partial \mu'}) = \Sigma^{-1}$$

$$f(\underline{\mu}, \Sigma \mid data) = \frac{(n)^{\frac{p}{2}} |S|^{\frac{n'}{2}} (\frac{v}{2})^{-(\frac{n'+p}{2})} |\Sigma|^{\frac{n'+p}{2}}}{(2\pi)^{\frac{p}{2}} (2)^{\frac{n'p}{2}} |D_p(\frac{n'}{2})|^{\frac{v}{2}}} |\Sigma|^{-\frac{n'+p+2}{2}}$$

$$* \left[1 + \frac{tr \Sigma^{-1}A + n(\overline{x} - \underline{\mu})'\Sigma^{-1}(\overline{x} - \underline{\mu})}{v}\right]^{-\frac{v+n'+p}{2}}$$

$$\sigma^2 \qquad \underline{\mu} \quad \underline{\Sigma}$$

$$f(\Sigma \mid data) = \frac{\left|A\right|^{\frac{n'}{2}} \left(\frac{v}{2}\right)^{-(\frac{n'+p}{2})} \frac{v + n'}{2}}{\left(2\right)^{\frac{n'p}{2}} \frac{v + n'}{2}} \left|\Sigma\right|^{-(\frac{n'+p}{2})} \left[1 + \frac{tr \Sigma^{-1} A}{v}\right]^{-\frac{v+n'}{2}} \dots (5)$$

$$f(\underline{\mu}| data) = \frac{(2n)^{\frac{p}{2}} \int_{p} (\frac{n-1}{2})}{(\pi)^{\frac{p}{2}} \int_{p} (\frac{n}{2})} \frac{\underline{\mu}}{2} \underbrace{\frac{\underline{\mu}}{2}}_{m-np-1} \underbrace{\frac{\underline{\mu}}{2}}_{m-np-1}}_{m-np-1} \dots (6)$$

$$(\pi)^{\frac{p}{2}} \int_{p} (\frac{n}{2}) \underbrace{\frac{\nu}{2}}_{p} \underbrace{\frac{\nu}{2}}_{m-np-1}}_{m-np-1} \underbrace{\frac{\mu}{2}}_{m-np-1}$$

$$\underline{\hat{\mu}}_{B} = \underline{\overline{x}} \qquad \underline{\mu}$$

$$\hat{\Sigma}_{B} = \frac{A}{n+p-1}$$

$$E(\hat{\Sigma}_{B}) = E\frac{A}{n+p-1} \neq \frac{A}{n-1}$$

$$\mathbf{t} \qquad -:$$

$$f(\underline{\mu}|data) = \frac{\sqrt{\frac{v+p}{2}} |(n\Sigma^{-1} + k\Sigma_{0}^{-1})|^{\frac{1}{2}}}{(v\pi)^{\frac{p}{2}} \sqrt{\frac{v}{2}}} \left[1 + \frac{(\underline{\mu} - \underline{\mu}^{*})'(n\Sigma^{-1} + k\Sigma_{0}^{-1})(\underline{\mu} - \underline{\mu}^{*})}{v}\right]^{-(\frac{v+p}{2})} \dots (7)$$

$$\underline{\mu}^{*} = \frac{(n\Sigma^{-1}\underline{x} + \Sigma_{0}^{-1}\underline{\mu}_{0})}{(n\Sigma^{-1} + \Sigma_{0}^{-1})}$$

$$t \qquad (7)$$

$$\underline{\mu}^{*} \qquad (3-3)$$

$$\underline{\hat{\mu}}_{B} = \underline{\mu}^{*}$$

Posterior Precision

.Prior Precision

$$\Sigma \qquad \underline{\mu} \qquad -:$$

$$\Sigma \qquad \underline{\mu} \qquad -:$$

$$p\left(\Sigma \mid \mu, data \quad \right) = \frac{\int \frac{\nu + (n' + m + 1) p}{2} \left(\frac{\nu}{2}\right)^{-\frac{(n' + m + 1) p}{2}}}{\left[\sum_{j=1}^{\infty} \left(\frac{n' + m + p + 2}{2}\right) \left[1 + \frac{tr \Sigma^{-1} \left[A + \psi + n\left(\overline{\chi} - \underline{\mu}\right)\left(\overline{\chi} - \underline{\mu}\right)'\right]\right]^{-\frac{(\nu' + (n' + m + 1) p}{2})}}{\sum_{j=1}^{\infty} \left[\sum_{j=1}^{\infty} \left(\frac{n' + m + p + 2}{2}\right) \left[1 + \frac{tr \Sigma^{-1} \left[A + \psi + n\left(\overline{\chi} - \underline{\mu}\right)\left(\overline{\chi} - \underline{\mu}\right)'\right]\right]^{-\frac{(\nu' + (n' + m + 1) p}{2})}}{\sum_{j=1}^{\infty} \left[\sum_{j=1}^{\infty} \left(\frac{n' + m + p + 1}{2}\right) \left(\frac{n' + m + 1}{2}\right) \left(\frac{n' + m + 1}{2}\right)\right]}$$

$$S = \frac{A}{n - 1}$$

$$(p*p) \qquad \qquad \Psi$$

$$\Sigma \qquad \underline{\mu} \qquad -:$$

$$\underline{\sigma}^{2} \qquad \underline{\mu}$$

$$\underline{\mu} \mid \sigma^{-2} \sim N_{p}\left(\underline{\mu}_{0}, \frac{\sigma^{-2}}{k}\Sigma\right)$$

$$\sigma^{2} \qquad \Sigma \qquad k>0$$
[5](Anderson ,1984)

 $\Sigma | \sigma^{-2} \sim W^{-1}(\frac{\psi}{\sigma^{-2}}, m)$

$$\Sigma \underline{\mu}$$

$$\sigma^{2} \underline{\mu}$$

$$\Sigma$$

$$p(\mu, \Sigma \mid \sigma^{2}) = p(\mu \mid \sigma^{2}) p(\Sigma \mid \sigma^{2})$$

$$= |\Sigma|^{-(\frac{m+p+2}{2})} \exp \left[-\frac{1}{2\sigma^{2}} \left[k(\underline{\mu} - \underline{\mu}_{0})'\Sigma^{-1}(\underline{\mu} - \underline{\mu}_{0}) + tr\Sigma^{-1}\psi\right].....(8)$$

[2](2010)

$$f(\underline{\mu}, \Sigma) \ data \) = \frac{(n+k)^{\frac{p}{2}} \sqrt{\frac{\nu+n'+m+p+1}{2}}}{(\pi)^{\frac{p}{2}} (2)^{\frac{p}{2}} (2)^{\frac{(n'+m+2)p}{2}}} \sqrt{\frac{|\Sigma|^{-\frac{n'+m+p+3}{2}}}{\sqrt{p}(\frac{n'+m+1}{2})(\frac{\nu}{2})^{\frac{(n'+m+p+3)}{2}}}} \sqrt{\frac{\nu+A+\frac{nk}{n+k}(\underline{\mu}_0-\overline{x})(\underline{\mu}_0-\overline{x})'}{\sqrt{p}(\frac{n'+m+1}{2})(\frac{\nu}{2})^{\frac{(n'+m+p+3)}{2}}}} \sqrt{\frac{\nu+A+\frac{nk}{n+k}(\underline{\mu}_0-\overline{x})(\underline{\mu}_0-\overline{x})'}{\sqrt{p}(\frac{n'+m+1}{2})(\frac{\nu}{2})^{\frac{(n'+m+p+3)}{2}}}}} \sqrt{\frac{1-\frac{n'+m+p+3}{2}}{\sqrt{p}(\frac{n'+m+1}{2})(\frac{\mu}{2}-\underline{\mu}^*)'}{\sqrt{p}(\frac{n'+m+p+3}{2})}}} \sqrt{\frac{n'+m+p+3}{2}} \sqrt{\frac{n'+m+p+3}{2}}} \sqrt{\frac{n'+m+p+3}{2}}} \sqrt{\frac{n'+m+p+3}{2}} \sqrt{\frac{n'+m+p+3}{2}}} \sqrt{\frac$$

$$f\left(\Sigma\right| \ data \) = \frac{\left(\frac{v}{2}\right)^{-(\frac{n'+m+1}{2})} \int_{p} \frac{\overline{v+n'+m+1}}{2}}{\left(2\right)^{\frac{(n'+m+1)p}{2}} \int_{p} \left(\frac{n'+m+1}{2}\right) \int_{\overline{2}} v} \left|\Sigma\right|^{-(\frac{n'+m+p+2}{2})} \left|\psi+A+\frac{nk}{n+k} \left(\underline{\mu}_{0}-\overline{\underline{x}}\right) \left(\underline{\mu}_{0}-\overline{\underline{x}}\right)'\right|^{-\frac{n'+m+1}{2}}} \left[1+\frac{tr\Sigma^{-1} \left(\psi+A+\frac{nk}{n+k} \left(\underline{\mu}_{0}-\overline{\underline{x}}\right) \left(\underline{\mu}_{0}-\overline{\underline{x}}\right)'\right)}{v}\right]$$

$$f(\underline{\mu}| data) = \frac{(n+k)^{\frac{p}{2}} \int_{p} (\underline{n'+m+2})}{(\pi)^{\frac{p}{2}} \int_{p} (\underline{n'+m+1})} \frac{\int_{p} (\underline{n'+m+p+1-(n'+m+2)p}) \frac{1}{2}}{(\underline{v})^{\frac{n'+m+p+1-(n'+m+2)p}{2}}} \left[\psi + A + \frac{nk}{n+k} (\underline{\mu}_{0} - \underline{x})(\underline{\mu}_{0} - \underline{x})' \right] \left[\psi + A + \frac{nk}{n+k} (\underline{\mu}_{0} - \underline{x})(\underline{\mu}_{0} - \underline{x})' \right] \left[\psi + A + \frac{nk}{n+k} (\underline{\mu}_{0} - \underline{x})(\underline{\mu}_{0} - \underline{x})' \right] \left[\underline{\mu} - \underline{\mu}^{*} \right]^{-(\frac{n'+m+2}{2})}$$

$$\underline{\mu}_{B} = \underline{\mu}^{*} = \frac{n \, \underline{x} + k \, \underline{\mu}_{0}}{(n+k)} \qquad \Sigma \qquad \underline{\mu}$$

$$\hat{\Sigma}_{B} = \frac{A + \psi + \frac{nk}{n+k} (\underline{\mu}_{0} - \underline{x}) (\underline{\mu}_{0} - \underline{x})'}{n+m+p+1}$$

(3)

Bayesian Hypothesis Testing

(Bayes factor)

 H_0 H_1 H_1 H_0 H_1 H_0 H_1 H_0 $P(H_1) P(H_0)$

$$H_1 H_0$$

$$P(H_0|D) = \frac{P(D|H_0)P(H_0)}{P(D|H_0)P(H_0) + P(D|H_0')P(H_0')}$$
(9)

$$P(H_1|D) = \frac{P(D|H_1)P(H_1)}{P(D|H_1)P(H_1) + P(D|H_1')P(H_1')}$$
.....(10)

$$BF = \frac{P(H_0|D) / P(H_0)}{P(H_1|D) / P(H_1)} \qquad(11)$$
(11) (10) (9)

H_0 BF	(I)
H_0	BF>1
H_0	10 ⁻² < BF<1
H_0	10 ⁻¹ < BF < 10 ^{-1/2}
H_0	10 ⁻² < BF<10 ⁻¹
H_0	BF<10 ⁻²

 H_0 BF (Bayes factor)

 t

$$H_0$$
 (I)

$$\sum_{H_0: \mu = \mu_0} v.s \quad H_1: \mu \neq \mu_0$$
 .1

$$H_{0}: \mu = \mu_{0} \qquad v.s \quad H_{1}: \mu \neq \mu_{0}$$

$$BF = \frac{\int_{\Sigma} P(D|\mu = \mu_{0}) P(\Sigma)}{\int_{R_{1}} P(D|\mu) P(\mu) P(\Sigma) d\Sigma d\mu}$$

$$= \left[\frac{(n+k)}{k}\right]^{\frac{p}{2}} \left[\frac{A+\psi+\frac{nk}{n+k}(\overline{x}-\underline{\mu}_{01})(\overline{x}-\underline{\mu}_{01})'}{|A+\psi+n(\overline{x}-\underline{\mu}_{0})(\overline{x}-\underline{\mu}_{01})'}\right]^{\frac{n+m}{2}} \qquad(12)$$

$$[2](2010)$$

$$\sum \qquad(2)$$

$$BF = \frac{P(D|\underline{\mu} = \underline{\mu}_{o})}{\int_{p(D|\underline{\mu})P(\underline{\mu})d\underline{\mu}}} = \frac{|\Sigma_{o}|^{\frac{1}{2}}}{|\Sigma_{o}|^{2} + n\Sigma^{-1}|^{\frac{1}{2}}} \left[\frac{1 + \frac{m\Sigma^{-1}(A + n\Sigma_{o}^{-1}(\Sigma_{o}^{-1} + n\Sigma^{-1})^{-1}(\underline{\mu}_{o} - \underline{x})(\underline{\mu}_{o} - \underline{x})^{*})}{1 + \frac{m\Sigma^{-1}(A + n(\underline{x} - \underline{\mu}_{o})(\underline{x} - \underline{\mu}_{o})^{*})}{|\Sigma_{o}|^{2}}} \right]^{\frac{x + y}{2}} - \dots$$

$$= \frac{|\Sigma_{o}|^{\frac{1}{2}}}{|\Sigma_{o}|^{2} + n\Sigma^{-1}|^{\frac{1}{2}}} \left[1 + \frac{m\Sigma^{-1}(A + n(\underline{x} - \underline{\mu}_{o})(\underline{x} - \underline{\mu}_{o})^{*})}{|\Sigma_{o}|^{2} + n\Sigma_{o}|^{2}} \right] - \dots$$

$$= \frac{\mu}{|\Sigma_{o}|^{2}} \frac{|\Sigma_{o}|^{2}}{|\Sigma_{o}|^{2} + n\Sigma_{o}|^{2}} \sum_{|\Sigma_{o}|^{2}} \frac{|\Sigma_{o}|^{2}}{|\Sigma_{o}|^{2} + n\Sigma_{o}|^{2}} \frac{|\Sigma_{o}|^{2}}{|\Sigma_{o}|^{2} + n\Sigma_{o}|^{2}} \frac{|\Sigma_{o}|^{2}}{|\Sigma_{o}|^{2} + n\Sigma_{o}|^{2}} \frac{|\Sigma_{o}|^{2}}{|\Sigma_{o}|^{2} + n\Sigma_{o}|^{2}} \frac{|\Sigma_{o}|^{2}}{|\Sigma_{o}|^{2}} \frac{|\Sigma_{o}|^{2$$

$$: X_4 : X_3 : X_2 : X_1$$

: X₅

-: -:

$$[2](2010)$$

$$H_{0}: \underline{\mu}_{1} = \begin{bmatrix} 3\\50.5\\35\\33\\12 \end{bmatrix} \qquad H_{1}: \underline{\mu}_{1} \neq \begin{bmatrix} 3\\50.5\\35\\33\\12 \end{bmatrix}$$

 $\underline{\mu}_0$

 Σ . 1

$$\underline{\mu}_{1}$$

$$\underline{\mu}_{01} \qquad \underline{\mu}_{1} \middle| \sigma^{2} \sim N_{p}(\underline{\mu}_{01}, \frac{\sigma^{2}}{k} \Sigma)$$

$$\Sigma$$

$$\underline{\mu}_{01} = \begin{bmatrix} 2.77 & 46.86 & 31.45 & 29.48 & 9.16 \end{bmatrix}'$$
 (2)

$$\Sigma \left| \sigma^2 \sim W^{-1} \left(\frac{\psi}{\sigma^2}, m \right) \right|$$

$$BF = \left(\frac{80.116}{7548.8}\right)^{\frac{1}{2}} \left[\frac{\left(1 + \frac{57.905}{5}\right)}{\left(1 + \frac{5.858}{5}\right)}\right]^{\frac{5+30(5)}{2}} = 1.93 * 10^{-60}$$

$$(1) \qquad \qquad -:$$

$$H_{1} \quad H_{0} \quad H_{0}$$

$$\frac{\mu_{01}}{\sqrt{10}} \quad \sum_{01} -\frac{1}{2}$$

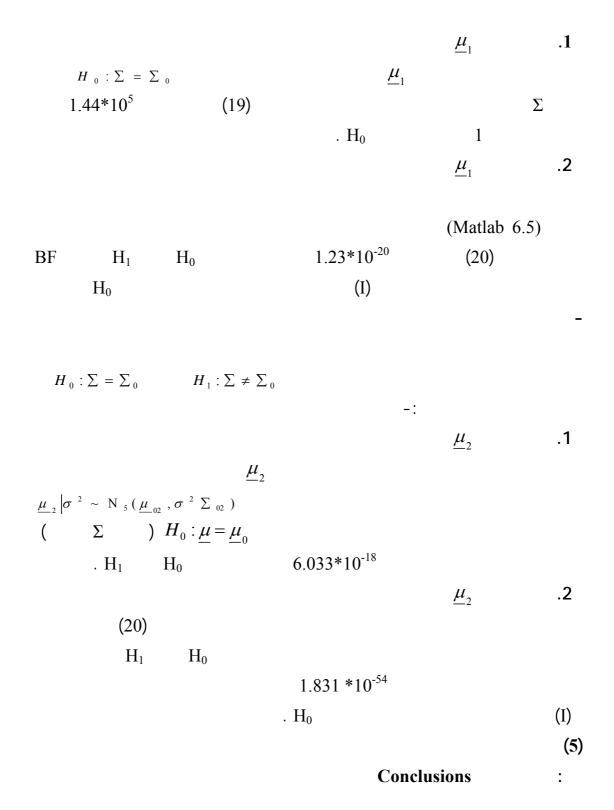
$$\frac{1}{2} \left[\frac{3.25}{49}\right]^{\frac{3}{4}.5} \quad H_{1}: \underline{\mu} \neq \frac{3.4.5}{31} \cdot \frac{1}{11}$$

$$\Sigma \qquad \qquad \Sigma \qquad 1$$

$$\Sigma \qquad \qquad \underline{\mu_{2}} = \left[2.44 \quad 45.64 \quad 30.98 \quad 28.35 \quad 8.47 \quad 1\right] \quad k=2$$

$$\Sigma |_{0.5} = 2.44 \quad 45.64 \quad 30.98 \quad 28.35 \quad 8.47 \quad 1$$

$$\psi = \begin{bmatrix} 0.5 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ 4.5 \quad 0 \quad 0 \quad 0 \quad 0 \\ 8.5 \quad 0 \quad 2.67 \end{bmatrix} \qquad \psi \quad m=4$$


$$\psi = \begin{bmatrix} 0.5 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ 4.5 \quad 0 \quad 0 \quad 0 \quad 0 \\ 8.5 \quad 0 \quad 2.67 \end{bmatrix} \qquad \sigma^{2} \sim IG\left(\frac{\nu}{2}, \frac{\nu}{2}\right) \quad \nu=5$$

$$(15)$$

$$BF = \left(\frac{32}{2}\right)^{\frac{5}{2}} \left[\frac{1.1853 \quad *10^{\frac{5}{2}}}{4.4247 \quad *10^{\frac{5}{2}}}\right]^{\frac{34}{2}} = 1.494 * 10^{-22}$$

$$(1) \quad H_{1} \quad H_{0} \quad H_{0}$$

 $\cdot \underline{\mu}_{02}$.2 \sum $\underline{\mu}_2$ $\underline{\mu}_2 \Big| \sigma^2 \sim (\underline{\mu}_{02}, \sigma^2 \sum_{02})$ Σ_{02} 0.491 0.711 1.393 1.955 1.069 $\Sigma_{02} = \begin{bmatrix} 0.491 & 0.711 & 1.353 & 1.353 & 1.353 \\ & 1.858 & 3.451 & 1.299 \\ & 6.410 & 6.985 & 2.921 \\ & & 9.575 & 4.650 \\ & & & 2.971 \end{bmatrix}$ [2](2010) Σ $\Sigma = \begin{bmatrix} 0.3 & 0.61 & 0 & 0 & 0 \\ & 9.5 & 1.5 & 0 & 0 \\ & & 5.4 & 0 & 0 \\ & & & & 2.5 \end{bmatrix}$ $(2.20*10^{-81})$ (16) H_0 BF H_1 H_0 . (I) [2](2010) $H_0: \Sigma = \Sigma_0$ $H_1: \Sigma \neq \Sigma_0$ Σ_0 $\Sigma_{0} = \begin{bmatrix} 1.381 & 5.702 & 5.439 & 7.144 \\ & 53.7 & 32.84 & 51.87 \\ & & 32.296 & 41.311 \\ & & & 70.052 \end{bmatrix}$ 3.072 17 .387 14 .596 23 .054 9.371

Σ	σ	2		.1
t	$\underline{\mu}$		Σ	.2
•				.3
t t		Recommend .	ations (v)	: .1 .2
•				(6)
	II	":(2005)		: .1
п	_	" :(2010)	T	.2
" (2005)	٠			.3
II	.(43-29	" (2005)		.4
				:

- 5. Anderson, T.W.(1984), "An Introduction to Multivariate Statistical Analysis", John Wiley and Sons, U.S.A.
- 6. Bernarda, Jose.M, and Rueda .Raul .(2002), "Bayesian Hypothesis testing: A Reference Approach", the International Statistical Review, Vol .70, No.3, P.P.351-372.
- 7. Box, G.E, and Tiao, G.C. (1973), "Bayesian Inference In Statistical Analysis", Addison Wesley Publishing Company, London, U.K.
- 8. James Press,S. (2003), "Subjective and Objective Bayesian statistical" John Wiley and Sons, New Jersey, U.S.A.
- 9. Jeffery, H. (1961), "**Theory of Probability**", Clarenden Press, Oxford, London .U.K .
- 10. Joarder, A.H., and Kibria, B.M. (2006b), "A Modest Introduction to Uncorrelated t- Model", King Fahd University of Petroleum and Minerals, Saudi Arabia.
- 11. Marchev, D., and Hobert, J.P.(2008), "Exact Sampling from the Student- t Model", University of New York, U.S.A.
- 12.Zellner.(1976), "Bayesian and Non Bayesian Analysis of the Regression Model with Multivariate Student- t Error", Journal of the American Statistical Association, Vol 71, No 354, P.P.400-405.