مراقية للعلوم الاحصائية (20) 2011 ع كلية علوم الحاسوب والرياضيات ص ص [222–237]		3.2.C	
**		*	·
			الملخص
())	:	

Prediction by Regression and kriging for Spatial Data with Application

Abstract

This study deals with the prediction of the non-stationary spatial stochastic process. The prediction is done by two techniques which are regression technique (generalized least square estimation) and universal kriging technique. As it is familiar, that the non-stationary stochastic process has a trend (mean) as a linear or non-linear model. By this process we can find covariance function from knowing the variogram function and the latter is attributed to a spherical variogram model, also in order to estimate parameters of spherical model by minimum norm quadratic unbiased estimator which requires that the covariance function

47

2011/12/21

must be linear in the parameters, then changing the spherical model into an approximated linear model by Taylor series in the linear approximation

The prediction in these two techniques is applied to real data which represent height levels of ground water of 47 wells with their regional coordinates in Sinjar district in Ninevah Governorate in Iraq. The results were so encouraging where we show the approximation between the predictive values and the real values as well as computing the variance of prediction in these two techniques. It is shown that the prediction variance of universal kringing is less than that of regression.

1- المقدمـة:

(Covariance Function)

(Variogram Function)

(Regionalized Variable)

.D

D

(Regression Technique)

(Generalized Least Square Estimator)

(Kriging Technique)

.Diggle and Ribeirro (2007)

.Cressie (1993), Stein (1999)

: - هدف البحث

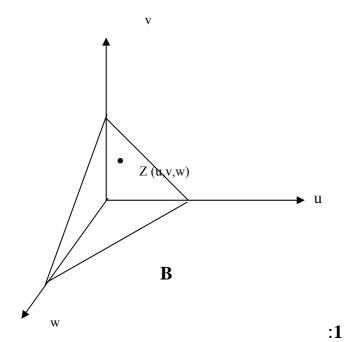
. (Nonstationarity)

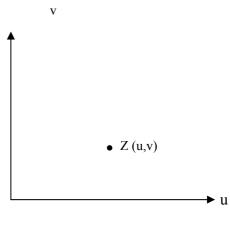
(Stationarity)

.

: $X \in D \subseteq R^p$

$$\begin{array}{ccc} & & & \\ & & & \\ \text{.h} & & & Z(x+h) \ , \, Z(x) \end{array}$$


(A-1)


$$X = (u,v)$$
 P=2

$$A-(u,v)$$

$$X=(u,v,w)$$
 P=3

A

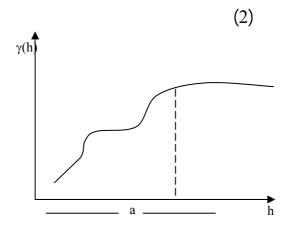
:

$$\rho(Z(x), Z(x+h)) = \frac{\operatorname{cov}(Z(x), Z(x+h))}{\sigma_{Z}(x).\sigma_{Z}(x+h)} \dots (1)$$

(Semi-variogram) Krige(1951)

:

$$\gamma(h) = \frac{1}{2} \cdot \frac{1}{n(h)} \sum_{i=1}^{n(h)} \left[Z(x_i) - Z(x_i + h) \right]^2$$
 (2)


Z(xi) Z(xi+h) n(h) h

.Cressie (1993) h

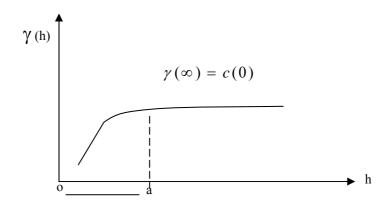
2 (2)

.

$$2\gamma(h) = \frac{1}{n(h)} \sum_{i=1}^{n(h)} [Z(x_i) - Z(x_i + h)]^2 \qquad(3)$$

$$\begin{array}{ccc} & & & h \\ a & & & h = a \end{array}$$

.


h

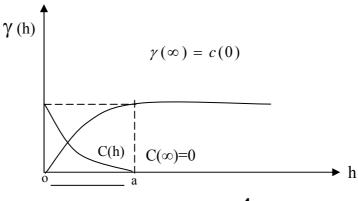
:

1.
$$\gamma(0) = 0$$

2.
$$\gamma(h) = \gamma(-h)$$

$$Z(x+h)$$
 $Z(x)$ h

:3


Dubrule "Sill " $\gamma(\infty)$

Apriori variance C(0) .(2003)

Cressie(1993) $\lim_{h\to\infty} \gamma(h) = \gamma(\infty) = C(0)$:

Range Sill

.(4) .

:4

4- صياغة النموذج الخطى العام في الإحصاء المكاني

$${Z(x), X \in D}$$
 $x=(u,v)T$ $X \in R$ 2

Z(x)

$$Z(x) = \sum_{i=1}^{r} f_i(x)\beta_i + e(x) = f^{T}(x)\beta + e(x)$$
 $\forall x \in D$ (4)

 $f_i(x) \hspace{1cm} \beta_i$

:

$$E[Z(x)] = f^{T}(x)\beta \qquad \forall x \in D \qquad . (5)$$

:

$$E[Z(x+h)-Z(x)]^2 = 2\gamma(h) \qquad \forall x, x+h \in D \qquad(6)$$
(Isotropic)
$$2\gamma(h)$$

.Journel(1986) h

:

$$Cov[Z(x),Z(x+h)] = C(h) \qquad \forall x,x+h \in D \qquad(7)$$

.Goovaerts(1997)

n

$$Z(x1)$$
, $Z(x2)$, $Z(x3)$, ..., $Z(xn)$

$$X_1, X_2, X_3, \ldots, X_n$$

 $Z = F\beta + e$

5- التقريب الخطى للدالة غير الخطية

.Rao and Kleffe (1988)

$$\mathbf{s}_{i} \qquad \qquad \mathbf{\varphi}(s)$$

$$\mathbf{s} = (\mathbf{s}_{1}, \mathbf{s}_{2}, \dots, \mathbf{s}_{r})^{T}$$

$$s_0 = (s_{10}, s_{20}, \dots s_{r0})^T$$

 $\varphi(s)$

 $\varphi(s)$ (Taylor Series Expansion)

$$\varphi(s) = \varphi(s_o) + \sum_{k=1}^{\infty} \frac{1}{k_1} [(s - s_o)^T \operatorname{grad}_s \varphi \big|_{s = s_o}]^k + \operatorname{Rm}(s, s_o)$$

: ()
$$c(h) = \Psi_o + \Psi \left[(1 - \frac{3h}{2a} + \frac{1}{2} (\frac{h}{a})^3) \right] \dots (8)$$
.(2011) :

$$c^{*}(h;\theta) = k_{o}(h) + \sum_{i=1}^{r} (\theta_{i} - \theta_{io}) k_{i}(h)$$

Z

$$\hat{Z}(x_{i}) = \hat{\beta}_{o} + \hat{\beta}_{1} u_{i} + \hat{\beta}_{2} v_{i} \qquad(12)$$

$$Z(x_{i}) \qquad v_{i}, u_{i}$$

$$\hat{\beta}_{o}, \hat{\beta}_{1}, \hat{\beta}_{2}$$

$$\vdots$$

$$\hat{\beta} = \left(F^T \hat{C}^{-1} F\right)^{-1} F^T \hat{C}^{-1} Z \qquad (13)$$

 $\stackrel{\wedge}{\mathrm{C}}$

 $: \hat{\beta}$

$$Var(\hat{\beta}) = \left(F^{T} \hat{C}^{-1} F\right)^{-1}$$

 $\overset{\wedge}{\mathbf{Z}}(x_i)$

$$Var\left(\stackrel{\wedge}{Z}(x_i) \right) = FVar(\stackrel{\wedge}{\beta})F^T$$

 $b4 = diag[Var(\hat{Z}(xi))]....(14)$

9- نظریة کریکنك:

(Local prediction)

(Trend)

. Boogaart (1999)

10- النموذج الرياضي لمتنبأ كريكنك:

$$\begin{aligned} \{Z(x), \, X \in D\} & \mu \\ \cdot (x_0) & Z(x_0) & E[Z(x)] = \mu \\ & \hat{Z}(x_0) \end{aligned}$$

$$\hat{Z}(x_o) = \sum_{i=1}^n \lambda_i Z(x_i)$$
 (15)

$$Z = (Z(x_{1}), Z(x_{2}), \dots Z(x_{n}))^{T}$$

$$\lambda = \gamma^{-1} \gamma_{o} - \gamma^{-1} F((F^{T} \gamma^{-1} F)^{-1} (F^{T} \gamma^{-1} \gamma_{o} - f(x_{o}))) \dots (16)$$

$$\vdots \qquad \qquad \hat{Z}(x_{o})$$

1.
$$E\left(\hat{Z}(x_o)\right) = Z(x_o)$$

2.
$$\sigma_k^2 = \text{var}\left(\hat{Z}(x_o) - Z(x_o)\right)$$
 is minimum
: (2011)

$$\sigma_{k}^{2} = \gamma_{o}^{T} \gamma^{-1} \gamma_{o} - \left[\left(\gamma_{o}^{T} \gamma^{-1} F - f^{T}(x_{o}) \right) \left(F^{T} \gamma^{-1} F \right)^{-1} \left(F^{T} \gamma^{-1} \gamma_{o} - f(x_{o}) \right) \right]_{..(17)}$$

11- الجانب التطبيقي:

$$Z(x_i)$$

$$x_i = (u_i, v_i)$$

.

:1

	u	V	z(x)
25	1.5	3.1	6.1
26	1.3	5.1	5.8
27	1.1	5.4	6.1 5.8 5.6 5.4 5.3 7.1 6.2 6.1 6.2 6.1 5.8 5.6 5.2 5.2 6
28	1.2	4.4	5.4
29	1.4	4.2	5.3
30	3.2	3.9	7.1
31	1.6	3.5	6.2
32	1.8	3.1	6.1
33	1.8	3.3	6.2
34	1.8	2.9	6.1
35	1.1	5.1	5.8
36	1.5	4.9	5.6
37	1.4	5.4	5.2
38	1.4	4.7	5.2
39	1.7	2.8	6
40	1.5	3	6
41	2	3.3	6.1
42	0.8	4.5	5.9
43	1.5 1.3 1.1 1.2 1.4 3.2 1.6 1.8 1.8 1.1 1.5 1.4 1.7 1.5 2 0.8 1.3 1.2	4.9	5.6
44		5.2	5.6
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	1	3.1 5.1 5.4 4.4 4.2 3.9 3.5 3.1 3.3 2.9 5.1 4.9 5.4 4.7 2.8 3 3.3 4.5 4.9 5.2 4.4	6 6.1 5.9 5.6 5.6 5.2 5.1 3.9
		4.2	5.1
47	0.7	3.1	3.9

	_	_	_
	u	V	z(x)
1	1.9	3.7	6.2
3	3.8	4.3	7.4
	1.5	3.7	6.2
4	1.4	3.9	6.2
5	4.5	4.4	7.3
6	1.8	3.8	6.1
7	1.5	4	6.1
8	3	4	3.6
9	3	5.1	3.4
10	3.3	4.9	3.4
11	4	4.5	7.5
12	4.9	4.2	7.4
13	1.7	3.5	6.2
14	4.7	4	7.3
15	1.8	3.4	6.2
16	1.7	2.9	6.2
17	0.8	3.1	3.9
18	0.8	3.3	3.5
19	0.8	3	3.5 3.2
20	3.2	3.6	3.2
21	3	3.9	7.2
22	1.7	3.8	6.2
23	1.5	3.9	6.2
24	4.5	4.2	7.3

12- تحليل البيانات وملاءمة أنموذج الفاريوكرام: (47)

.h

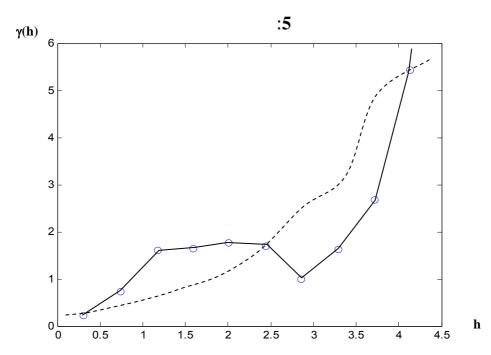
$$h_{ij} = \sqrt{(u_i - u_j)^2 + (v_i - v_j)^2}$$

$$u_i$$
, v_i $i = 1,2,....,47$ u_j , v_j $j = 1,2,....,47$ (47×47)

.

. h

h n(h)
(3) (2)


:2

			(h)	n(h)	[z(xi)-z(xi+h)]^2	γ(h)
(1)	0.1	0.5099	0.305	150	0.3224	0.2264
(2)	0.5385	0.9487	0.7436	150	0.7601	0.7298
(3)	0.9849	1.3601	1.1725	181	1.1515	1.6026
(4)	1.3892	1.7889	1.589	157	1.5761	1.6375
(5)	1.8	2.2204	2.0102	147	1.9893	1.7677
(6)	2.2361	2.6476	2.4419	117	2.4162	1.6901
(7)	2.6571	3.048	2.8525	62	2.8514	0.9945
(8)	3.0806	3.5	3.2903	68	3.2163	1.6201
(9)	3.5057	3.9217	3.7137	35	3.5871	2.6791
(10)	3.9319	4.3417	4.1368	14	3.7962	5.4261

13- تحديد نموذج الفاريوكرام:

h,γ(h)

. (5)

(5)

•

Cressie (1993)

:

$$\gamma(h) = \left\{ \begin{array}{c} & \text{ if } \quad h < a \\ \\ \psi_o + \psi \left[\frac{3}{2} (h/a) - \frac{1}{2} (h/a)^3 \right] \\ & \psi_o + \psi \end{array} \right.$$
 if $h < a$

ψο, ψ. ,a

:

$$ψo=0.2$$
 $γ(h)$ $h=4.14$ $γ(h)=5.5$

14- تنبؤ اسلوب الانحدار:

: (12)

$$\hat{Z}(x_i) = \hat{\beta}_o + \hat{\beta}_1 u_i + \hat{\beta}_2 v_i$$

(3) (14)

:

Mse=1.1843

:3

	u	v	z(xi)	z^(xi)	v(z^(xi))
24	4.5	4.2	7.3	6.8459	3.1986
25	1.5	3.1	6.1	5.3731	1.4535
26	1.3	5.1	5.8	5.5675	1.7653
27	1.1	5.4	5.6	5.522	2.2414
28	1.2	4.4	5.4	5.4248	1.3099
29	1.4	4.2	5.3	5.4844	1.1499
30	3.2	3.9	7.1	6.2326	1.5082
31	1.6	3.5	6.2	5.4735	1.1662
32	1.8	3.1	6.1	5.5048	1.3836
33	1.8	3.3	6.2	5.5331	1.2357
34	1.8	2.9	6.1	5.4766	1.5692
35	1.1	5.1	5.8	5.4797	1.8812
36	1.5	4.9	5.6	5.6271	1.4857
37	1.4	5.4	5.2	5.6538	2.0766
38	1.4	4.7	5.2	5.555	1.3713
39	1.7	2.8	6	5.4186	1.6919
40	1.5	3	6	5.359	1.5411
41	2	3.3	6.1	5.6209	1.2236
42	0.8	4.5	5.9	5.2632	1.6386
43	1.3	4.9	5.6	5.5393	1.5729
44	1.2	5.2	5.6	5.5377	1.9303
45	1	4.4	5.2	5.337	1.4376
46	1	4.2	5.1	5.3087	1.376
47	0.7	3.1	3.9	5.0217	1.948

	u	V	z(xi)	z^(xi)	v(z^(xi))
1	1.9	3.7	6.2	5.6335	1.0426
2	3.8	4.3	7.4	6.5526	2.1691
3	1.5	3.7	6.2	5.4578	1.1254
4	1.4	3.9	6.2	5.4421	1.1299
5	4.5	4.4	7.3	6.8742	3.2492
6	1.8	3.8	6.1	5.6036	1.0306
7	1.5	4	6.1	5.5001	1.0885
8	3	4	3.6	6.1589	1.3487
9	3	5.1	3.4	6.3142	1.9118
10	3.3	4.9	3.4	6.4177	1.9618
11	4	4.5	7.5	6.6687	2.5051
12	4.9	4.2	7.4	7.0216	3.9534
13	1.7	3.5	6.2	5.5174	1.1423
14	4.7	4	7.3	6.9056	3.5496
15	1.8	3.4	6.2	5.5472	1.1759
16	1.7	2.9	6.2	5.4327	1.5852
17	0.8	3.1	3.9	5.0656	1.8617
18	0.8	3.3	3.5	5.0939	1.7169
19	0.8	3	3.5	5.0515	1.9482
20	3.2	3.6	3.2	6.1903	1.5814
21	3	3.9	7.2	6.1448	1.354
22	1.7	3.8	6.2	5.5597	1.048
23	1.5	3.9	6.2	5.486	1.0914

15- تنبؤ اسلوب كريكنك:

(15) $(16) \lambda$ (17) (4) mse=0.9297

:4

	u	v	z(x)	z^(x)	$\sigma_{ m k}^2$
24	4.5	4.2	7.3	7.1156	0.2277
25	1.5	3.1	6.1	5.6906	0.2542
26	1.3	5.1	5.8	5.4405	0.2533
27	1.1	5.4	5.6	5.2535	0.2075
28	1.2	4.4	5.4	5.4714	0.2509
29	1.4	4.2	5.3	5.6914	0.2505
30	3.2	3.9	7.1	5.384	0.234
31	1.6	3.5	6.2	5.9491	0.2607
32	1.8	3.1	6.1	6.0227	0.2565
33	1.8	3.3	6.2	6.0556	0.2614
34	1.8	2.9	6.1	5.9458	0.2474
35	1.1	5.1	5.8	5.4022	0.2446
36	1.5	4.9	5.6	5.4478	0.2432
37	1.4	5.4	5.2	5.3801	0.2135
38	1.4	4.7	5.2	5.5553	0.2471
39	1.7	2.8	6	5.8109	0.2373
40	1.5	3	6	5.6614	0.2516
41	2	3.3	6.1	6.0768	0.2456
42	0.8	4.5	5.9	5.0632	0.2197
43	1.3	4.9	5.6	5.4888	0.2534
44	1.2	5.2	5.6	5.4432	0.2492
45	1	4.4	5.2	5.3876	0.2468
46	1	4.2	5.1	5.3489	0.2411
47	0.7	3.1	3.9	4.2345	0.2275
. ,	0.7	J.1	3.7	1.2373	0.2213

	u	V	z(x)	z^(x)	σ_k^2
1	1.9	3.7	6.2	6.0141	0.2518
2	3.8	4.3	7.4	6.15	0.2204
3	1.5	3.7	6.2	5.8653	0.2587
4	1.4	3.9	6.2	5.7299	0.2584
5	4.5	4.4	7.3	7.036	0.2175
6	1.8	3.8	6.1	6.0081	0.2567
7	1.5	4	6.1	5.7972	0.2588
8	3	4	3.6	6.0741	0.236
9	3	5.1	3.4	5.3358	0.1641
10	3.3	4.9	3.4	5.6046	0.1909
11	4	4.5	7.5	6.3146	0.216
12	4.9	4.2	7.4	7.3989	0.1659
13	1.7	3.5	6.2	6.0362	0.2633
14	4.7	4	7.3	7.3026	0.195
15	1.8	3.4	6.2	6.0701	0.2623
16	1.7	2.9	6.2	5.8534	0.2532
17	0.8	3.1	3.9	4.3614	0.2407
18	0.8	3.3	3.5	4.6539	0.2312
19	0.8	3	3.5	4.5051	0.2283
20	3.2	3.6	3.2	6.6016	0.204
21	3	3.9	7.2	5.1883	0.238
22	1.7	3.8	6.2	5.9889	0.2607
23	1.5	3.9	6.2	5.8516	0.2622

mse)

> 16- الاستنتاجات: .1

.2

17- التوصيات:

- 3. Boogaart, K.G. (1999): " New Possibility for Modeling Variorums In Complex Geology", to Appear In Proc. of Stat GIS 1999.
- 4. Cressie, N., (1993). Statistic, for Spatial Data. J. Wiley, New York Second Edition.
- 5. Diggle, P.J. and Ribeirro, P.J., (2007). Model-based Geostatistics. Springer. Berlin. London.
- 6. Dubrule, O., (2003). Geostatistics for Seismic Data Integration in Earth Models, America.
- 7. Goovaerts, P., (1997). Geostatistics for Natural Resource Evaluation, Oxford University Press, Oxford.
- 8. Journel, A.G., (1986). "Geostatistics Models and tools for the Earth Sciences", Mathematical Geology, No. 18, PP. (119-140).
- 9. Krige, D.G., (1951). A Statistical Approach to Some Mine Valuation and Allied Problems at the Witwatersrand? Unpublished M. Sc. Thesis University of the Witwatersrand, Johonnesburg (C.T) Histroical Thesis.
- 10.Rao, C.R., and Kleffe, J., (1988). Estimation of Variance Components and Application.S. North-Holland, New York.
- 11. Stein, M.L., (1999). Interpolation of Spatial Data: Some Theory for Kriging, Springer, New York.