المجلة العراقية للعلوم الإحصائية (20) عدد خاص بوقائع المؤتمر العلمي الرابع لكلية علوم الحاسوب والرياضيات [674–658]

	DNA					
*	*		*			
:DNA						
Escherichia C	<i>Coli</i> k12 (<i>i</i>	E.Coli.)		DNA		
		,	DNA			
					DN	Α
			()		
		EBI			E.Coli.	
			.(Co	mplementary)		DNA
	C#	Matlab				
			DNA			
				.%0		%100

Comparison among information hiding methods in DNA Sequences Abstract

By research, three methods for hiding secret message were proposed. In the first one the secret message was hid in a known DNA sequence belongs to prokaryotic organism <u>Escherichia Coli</u> k12 (E.Coli) DNA sequence obtained from EBI location (European Bioinformatics Institute), Among the DNA molecule characters, one of the mutant ability types, that is the silent mutant, was chosen to hide a secret message within the sequence. The second method, a sequence of DNA has been synthesized chemically depending on the text secret message via using tables of symbols formed from English letter, numbers and special characters, each symbols represents

*طالب ماجستير /كلية العلوم/جامعة الموصل

تاريخ التسلم : 2011/10/1 2011 تاريخ القبول : 21 /12 / 2011

-

[&]quot;أستاذ مساعد/كلية علوم الحاسوب والرياضيات/جامعة الموصل

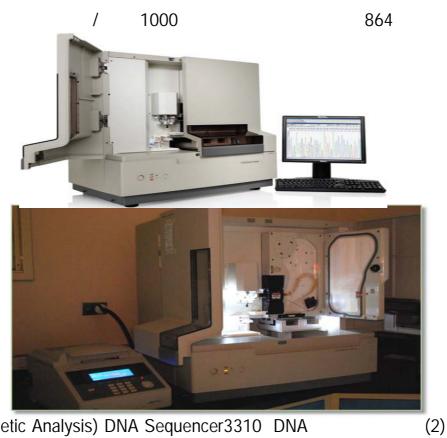
codon and the symbols were arranged in the table in descending order depending on English letter frequency codon frequency (Genes). While in the third method the secret message was hid in *E.Coli* bacteria with known nitrogen base sequence in EBI using complementary character.

The proposed methods applied in Matlab program and C#. Results of study revealed that DNA sequence has a high ratio for hiding secret message. The results reached 100% and the error rate to 0%.

						-1
	()			[2 1]	
		[3]				
			(Deoxyribo	nucleic Acid)	DNA	
					[4]	
)		DNA	
			.(
			DN	Α		-2
	Eukaryote			NA		
					Prokary	yote
Double			DNA		RNA	
					h	elix
G	Purines			2-deoxyri	bose	
	С Т		Pyrimidines	,	Α	
		[7 6 5] DN	-			
	Phosphodieste					
	i nospriodieste	i boria				
	Complementary			DNA		
	Complementary			DNA		
	Template					

DNA

(1) [8 5] Hydrophobic DNA .[6] interaction Codon . [9] (1) DNA DNA Hot spot


1982 2001 Nature .[14 10] 1-2

wild type

: .Mutants

deletion insertion -1 -2 -3 .[15] [11] (Genetic Analyzer 3310) DNA 2-2 DNA 1981

(2) Genetic Analyzer 3310) DNA DNA Genetic Analyzer 3310

(Genetic Analysis) DNA Sequencer3310 DNA

		NA .			DNA
-G	-C	-A)			
	.DNA			(-T
(PCR)Polymer		action DNA		`	3-2
DNA	0.00				PCR
DIVA					rck
		DI	NΑ		
.[14,5]					in vitro
					-3
			:		1-3
DN	A				
•	- 0			,	4.)
	20		64	(1)
)					
/1)					(/1)
(1)				(((1)
					.[16 15]
.[16، 15]()		(1)
.[10 10](,		()
G	A	С	T	_	
TGT Cys[C]	TAT Tyr[Y]	TCT Ser[S1]	TTT Phe[F]	Т	
TGC Cys[C]	TAC Tyr[Y]	TCC Ser[S2]	TTC Phe[F]		
TGA Stop[O] TGG Try[W]	TAA Stop[O] TAG Stop[O]	TCA Ser[S3] TCG Ser[S4]	TTA Leu[L4] TTG Leu[L5]		
CGT Arg[R1]	CAT His[H]	CCT Pro[P1]	CTT Leu[L1]	С	
CGC Arg[R2]	CAC His[H]	CCC Pro[P2]	CTC Leu[L2]		
CGA Arg[R3]	CAA Gln[Q]	CCA Pro[P3]	CTA Leu[L3]		
CGG Arg[R4]	CAG Gln[Q]	CCG Pro[P4]	CTG Leu[L4]	•	
AGT Ser[S5] AGC Ser[S6]	AAT Asn[N] AAC Asn[N]	AC T Thr[T1] AC C Thr[T2]	ATT lle[I] ATC lle[I]	A	
AGC SC[50] AGA Arg[R5]	AAA Lys[K]	AGA Thr[T3]	ATA lle[I]		
AGG Arg[R5]	AAG Lys[K]	ACG Thr[T4]	ATG Met[M]		
GGT Gly[G1]	GAT Asp[D]	GCT Ala[A1]	GTT Val[V1]	G	
GGC Gly[G2] GGA Gly[G3]	GAA Gluffi	GCC Ala[A2] GCA Ala[A3]	GTC Val[V2]		
GG A Gly[G3] GG G Gly[G4]	GAA Glu[E] GAG Glu[E]	GCA Ala[A3] GCG Ala[A4]	GT A Val[V3] GTG Val[V4]		
	[-]		[]		

	(E.Coli)		DNA	4	
						EBI
S _i =ATGAACG	GCTCGCCC	GGTC	ГGGTCT	ACAT(GAGTCO	GGTGGCC
		$.S_c$			S_{i}	
S _c =ATG AAC TCG GTG			GGT C	rg gi	CC TAC	ATG GAG
	!	((M_k) ()		
M _k = Silent Mu	tation Method	!				
		A TICLO	A 775			TD A TD
$M_k = CAG AGA$	ĀGT ACA.	AIC CA				.TAT.
$S_{\text{new}} = ATG AA$	AC CCC TO		_		ر صنمل الكودو	VI _k
S_{new} TTG TT			S_{new}	• • • • • • • • •	(1)	•••••
S _{Acid} =MNG2S3	3P4				(1)	
(PNG, BMP)) C _k		S_{Acid}	
			(LSB)		
			S _{stego} DN <i>A</i>	•		
$S_{\text{stego}} = ATG A$	AAC GGC T		·		••••	
	S=TAT					
S = CAG						
					(1)	
M= S					•••••	
					:	2-3
()		[12]	(2)			
DNA			()		

[12] (2)

Letter	Frequency	Letter	Frequency	Letter	Frequency
Е	12.702%	R	5.987%	P	1.929%
T	9.056%	D	4.253%	В	1.492%
A	8.167%	L	4.025%	V	0.978%
О	7.507%	С	2.782%	K	0.772%
I	6.966%	U	2.758%	J	0.153%
N	6.749%	M	2.406%	X	0.150%
Space	6.378%	W	2.360%	Q	0.095%
S	6.327%	F	2.228%	Y	1.974%
Н	6.094%	G	2.015%	Z	0.074%

:

DNA

·

(*E.coli*) G_i DNA

(European Bioinformatics Institute)EBI

T1 T1 (codon)

T2 ((2)) T2

(2)

.(3)

(3)

S	ATT	J	TTG	+	CAC	,	CTT
Н	ATC	X	CCG	>	GGG	•	TGA
R	TTC	Q	TAT	<	TAC	66	ATA
D	ACC	Z	AAC	Ш	CCC	•	AGG
L	GCA	0	GTT		CAT	۲	CTA
С	GGT	1	TGG	#	TCT	~	TGT
U	CAG	2	GAC	%	CGG]	AGA
M	GAT	3	GCT	(CCA	[TAA
W	ACG	4	CGT)	TCA	\$	TAG

	S _{new}	(3)	M_{i}	
M _i =Genetic	code is a DNA l	oase sequen	ce	
$S_{new} = GTCCT$	GGCGCTGGAAGC	GCGGTATG (GGTGCCACCCTGATG	
	TTATG GTGACCG TGTATCAGCTGG(TTTGTGATTCTGATG	
[13] BIONEE	ER		S_{new}	
]	BIONEER	DNA	
DNA	(/)	
		. (ge	enetic analyzer 3130)Sequenc	er
)(T2) (T1))				
:	S_{stego}		((3) (2)	
$S_{\text{stego}} = GTC$	C CTG GCG CT		GC GGT ATG GGT GCC	
	A	CC GCG G ATG ATT	ATG GGC ATT ATG GTG TG ATG TTT GTG AT CCTG TAT CAGCTG GG	T
$M_i = g$	♦ ♦ • • • • • • • • • • • • • • • • • • •	GGT CT	G	
111 8	11	DNA		
			.Pe	CR
.DNA				
.21,112			. 3	1-3
(Com	plementary)	DNA		, ,
EBI	DNA		:	
		(BAB¹)		
		· - /		

.(4)

DNA

: DNA (G C) (T A)

.(4)

(4)

A	Т	T	G	G	C	C	Α	1
A	G	G	T	T	C	C	Α	2
A	T	T	С	С	G	G	Α	3
A	С	С	T	T	G	G	Α	4
A	G	G	С	C	T	T	Α	_ 5
A	C	C	G	G	T	T	A	6
C	T	T	G	G	A	A	С	7
C	G	G	T	T	A	A	C	8
C	T	T	A	A	G	G	C	9
C	A	A	T	T	G	G	C	10
C	G	G	A	A	T	T	C	11
C	A	A	G	G	T	T	С	12
G	Т	T	C	С	A	A	G	13
G	C	C	T	T	A	A	G	14
G	T	T	A	A	C	C	G	15
G	A	A	T	T	C	C	G	16
G	C	C	A	A	T	T	G	17
G	A	A	C	C	T	T	G	18
T	G	G	C	C	A	A	T	19
Т	C	C	G	G	A	A	T	20
T	G	G	A	A	С	C	T	21
T	A	A	G	G	С	C	T	22
Т	С	C	A	A	G	G	T	23
Т	A	A	С	С	G	G	T	24

.

 $.S(j_{j+1},j+2)$ S DNA -1

: -2

j++ S_{new} S_j BAB^1

.1

: BAB¹ ►

S = GATGCAGGCTG

 $S_{stego} = GCAGCCGGGTG$

.1		j++	S_{new}	S_{j}	Ŋ	$M_{bin} = 0$		-
		S_{j+1}			M_t	oin =1		_
		.1		i++	S_{new}	S:	(S)	
		. 1		J''	Onew	J	(3)	
								-3
,	,	5.4.4						
()	DNA	١		:			
							•	
S=GATG(CAGG	SCTG						
M _i =11010	1							
1010								
:			((4)	(1)		
			$\mathbf{S_{i}}$		M_{i}		S_{new}	
	1	GATGCA			1	G		
	2	GCTGCA			0	GC		
	3	G C A G C A G C A G C A	GGCT	G G	0	GCA GCAG		
	5	GCAGCA			1	GCAG	C	
	6	GCAGC C	GGCT	<u></u> G	0	GCAG		
	7	GCAGCC	GGCT	G		GCAG		
	8	GCAGCC			1	GCAG		
	9	GCAGCC					CCGGGTG	
				Snew				
0 00100	7000			Onew				
$S_{new} = GCAGCC$	ZGG(ĴŪ						
		() C _k			S_{new}		
		•	.(LS	В)			(PNC	G, BMP

DNA

: (4)

	S	S _{stego}	R _i
1	GATGCAGGCTG	GCAGCCGGGTG	1
2	GCTGCAGGCTG	GCAGCCGGGTG	1
3	G C A G C A G G C T G	G C A G C C G G G T G	0
4	GCAGCAGGCTG	GCA <u>GCC</u> GGGTG	
5	G C A G C A G G C T G	GCAG <u>CCG</u> GGTG	1
6	G C A G C C G G C T G	GCAGC <u>CGG</u> GTG	0
7	G C A G C C G G C T G	GCAGCC <u>GGG</u> TG	
8	G C A G C C G G C T G	GCAGCCG GGT G	1
9	G C A G C C G G G T G	GCAGCCGG GTG	

R=110101

-4

.(5)

					DNA	-1
()Insilico	() Invitro	()Insilico	DNA	-2
						-3
					()	
						-4
						-5
						-6

				-7
			PSNR	-8
			(DNA)	
0	0	0	BER%	-9
				-10
				-11
				-12
			()	
				-13

					-5
				DNA	-1
			DNA		-2
163			EBI		
				DNA	
	DNA	4			-3
				DNA	-4
	•				-5
	DNA		DNA		-6
		.DNA			
				DNA	-7
				DNA	-8

() DNA -9

-6

- 1. Al-Husainy M. A. F., (2009), "Image Steganography by Mapping Pixels to Letters", J. Computer Sci., Vol. 5, No. 1, pp. 33-38.
- 2. Prasad M. S. and etal., (2009), "A Novel Information Hiding Technique For Security By Using Image Steganography", Journal of Theoretical and Applied Information Technology, Vol. 8, No. 1, pp.35-39.
- 3. Motameni H.and etal, (2007), "Labeling Method in Steganography", World Acad. Sci. Eng. Technol., Issue 30, pp. 349-354.
- 4. feng,B.S.J. ,potkonjak,M. , (2002) , "Data Hiding in DNA" ,international workshop on information Hiding , pp (373-386)
- 5. http://www.rit.edu/~vxr8205/crypto2/cryptopaper.html. Tamari , R.H. ,(1996), "principles of genetics" , S^{th} ed , Mc Graw –Hill companies , USA.
- 6. Dale , J. and Schants , M. V. (2002), "From genes to Genomes" JohnWiley & sons , Inc . New York .
- 7. Nelson, D. L. and cox, M. M. (2005), "Lehn: nger principles of Biochemistry" W. H. freeman and company, New York.
- 8. Watson, J.D. and Crick, F.H.,(1953), Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171: 737-738.
- 9. Paolella, P. ,(1998), "Introduction to Molecular Biology". McGraw-Hill Companies, Inc., New York.
- 10.http://www.ebi.ac.uk ,(2011),European Bioinformatics Institute.
- 11. http://www.appliedbiosystems.com,(2011),AppliedBiosystems 3130 and 3130xl Genetic Analyzers, USA,08/2006publication106BR 1002.Sophisticate,dautomation,superiorperformance,streamlined setup, and 24-hour unattended operation.
- 12. http://www.Wikipedia.com,(2011),Frequency of Letters of the alphabet in English.
- 13. http://www.bioneer.com,Bioneer's,(2008) novel Nano-Technology, (Korea patent no.10-0850430,pct pending wo/072865).

DNA			.14	
		П		Escherichia coli
			(1991)	.15
()	(4)	,(2008)	16
		(1)		

Pixel	Sequence	Pixel	Sequence	Pixel	Sequence	Pixel	Sequence	Pixel	Sequence
value		value		value		value		value	
0	AAAA	51	ATAT	102	CGCG	153	GCGC	204	TATA
1	AAAC	52	ATCA	103	CGCT	154	GCGG	205	TATC
2	AAAG	53	ATCC	104	CGGA	155	GCGT	206	TATG
3	AAAT	54	ATCG	105	CGGC	156	GCTA	207	TATT
4	AACA	55	ATCT	106	CGGG	157	GCTC	208	TCAA
5	AACC	56	ATGA	107	CGGT	158	GCTG	209	TCAC
6	AACG	57	ATGC	108	CGTA	159	GCTT	210	TCAG
7	AACT	58	ATGG	109	CGTC	160	GGAA	211	TCAT
8	AAGA	59	ATGT	110	CGTG	161	GGAC	212	TCCA
9	AAGC	60	ATTA	111	CGTT	162	GGAG	213	TCCC
10	AAGG	61	ATTC	112	CTAA	163	GGAT	214	TCCG
11	AAGT	62	ATTG	113	CTAC	164	GGCA	215	TCCT
12	AATA	63	ATTT	114	CTAG	165	GGCC	216	TCGA
13	AATC	64	CAAA	115	CTAT	166	GGCG	217	TCGC
14	AATG	65	CAAC	116	CTCA	167	GGCT	218	TCGG
15	AATT	66	CAAG	117	CTCC	168	GGGA	219	TCGT
16	ACAA	67	CAAT	118	CTCG	169	GGGC	220	TCTA
17	ACAC	68	CACA	119	CTCT	170	GGGG	221	TCTC
18	ACAG	69	CACC	120	CTGA	171	GGGT	222	TCTG
19	ACAT	70	CACG	121	CTGC	172	GGTA	223	TCTT
20	ACCA	71	CACT	122	CTGG	173	GGTC	224	TCAA
21	ACCC	72	CAGA	123	CTGT	174	GGTG	225	TGAC
22	ACCG	73	CAGC	124	CTTA	175	GGTT	226	TGAG
23	ACCT	74	CAGG	125	CTTC	176	GTAA	227	TGAT
24	ACGA	75 76	CAGT	126	CTTG	177	GTAC	228	TGCA
25	ACGC	76	CATA	127	CTTT	178	GTAG	229	TGCC
26 27	ACGG	77 78	CATC	128 129	GAAA	179	GTAT	230 231	TGCG TGCT
28	ACGT ACTA	78	CATG CATT	130	GAAC GAAG	180 181	GTCA GTCC	231	TGGA
29	ACTA	80	CCAA	131	GAAT	182	GTCG	233	TGGC
30	ACTG	81	CCAC	131	GACA	183	GTCT	234	TGGG
31	ACTT	82	CCAG	133	GACA	184	GTGA	235	TGGT
32	ACAA	83	CCAG	134	GACG	185	GTGC	236	TGTA
33	AGAC	84	CAAA	135	GACT	186	GTGG	237	TGTC
34	AGAG	85	CCCA	136	GAGA	187	GTGT	238	TGTG
35	AGAT	86	CCCC	137	GAGC	188	GTTA	239	TGTT
36	AGCA	87	CCCG	138	GAGG	189	GTTC	240	TTAA
37	AGCC	88	CCCT	139	GAGT	190	GTTG	241	TTAC
38	AGCG	89	CCGA	140	GATA	191	GTTT	242	TTAG
39	AGCT	90	CCGC	141	GATC	192	TAAA	243	TTAT
40	AGGA	91	CCGG	142	GATG	193	TAAC	244	TTCA
41	AGGC	92	CCGT	143	GATT	194	TAAG	245	TTCC
42	AGGG	93	CCTA	144	GCAA	195	TAAT	246	TTCG
43	AGGT	94	CCTC	145	GCAC	196	TACA	247	TTCT
44	AGTA	95	CCTT	146	GCAG	197	TACC	248	TTGA
45	AGTC	96	CGAA	147	GCAT	198	TACG	249	TTGC
46	AGTG	97	CGAC	148	GCCA	199	TACT	250	TTGG
47	AGTT	98	CGAG	149	GCCC	200	TAGA	251	TTGT
48	ATAA	99	CGAT	150	GCCG	201	TAGC	252	TTTA
49	ATAC	100	CGCA	151	GCCT	202	TAGG	253	TTTC
50	ATAG	101	CGCC	152	GCGA	203	TAGT	254	TTTG
255	TTTT								

Symbol	Codon	Symbol	Codon	Symbol	Codon	Symbol	
							Codon
A	AAA	Q	CAA	6	GAA	-	TAA
В	AAC	R	CAC	7	GAC	/	TAC
С	AAG	S	CAG	8	GAG	@	TAG
D	AAT	T	CAT	9	GAT	!	TAT
Е	ACA	U	CCA	*	GCA	#	TCA
F	ACC	V	CCC	&	GCC	^	TCC
G	ACG	W	CCG	+	GCG	,	TCG
Н	ACT	X	CCT	Space	GCT	;	TCT
I	AGA	Y	CGA	>=	GGA	"	TGA
J	AGC	Z	CGC	<=	GGC	:	TGC
K	AGG	0	CGG	=	GGG	4	TGG
L	AGT	1	CGT	•	GGT	~	TGT
M	ATA	2	CTA	#	GTA]	TTA
N	ATC	3	CTC	%	GTC	[TTC
О	ATG	4	CTG	(GTG	٠	TTG
P	ATT	5	CTT)	GTT	2	TTT

T1

Codon	Frequency	Codon	Frequency	Codon	Frequency	Codon	Frequency
AAA	52	CAA	36	GAA	150	TAA	4
AAC	45	CAC	29	GAC	43	TAC	28
AAG	47	CAG	60	GAG	51	TAG	3
AAT	37	CAT	27	GAT	60	TAT	45
ACA	22	CCA	24	GCA	65	TCA	24
ACC	65	CCC	27	GCC	90	TCC	30
ACG	59	CCG	45	GCG	98	TCG	37
ACT	23	CCT	18	GCT	43	TCT	27
AGA	7	CGA	17	GGA	20	TGA	14
AGC	49	CGC	59	GGC	98	TGC	30
AGG	12	CGG	25	GGG	28	TGG	44
AGT	17	CGT	41	GGT	64	TGT	10
ATA	12	CTA	10	GTA	23	TTA	41
ATC	76	CTC	32	GTC	54	TTC	68
ATG	85	CTG	160	GTG	103	TTG	46
ATT	79	CTT	14	GTT	44	TTT	49

T2

Codon	Frequency	Codon	Frequency	Codon	Frequency	Codon	Frequency
CTG	160	CGC	59	TTA	41	GTA	23
GAA	150	GTC	54	AAT	37	ACT	23
GTG	103	AAA	52	TCG	37	ACA	22
GCG	98	GAG	51	CAA	36	GGA	20
GGC	98	TTT	49	CTC	32	CCT	18
GCC	90	AGC	49	TCC	30	CGA	17
ATG	85	AAG	47	TGC	30	AGT	17
ATT	79	TTG	46	CAC	29	CTT	14
ATC	76	CCG	45	GGG	28	TGA	14
TTC	68	TAT	45	TAC	28	ATA	12
ACC	65	AAC	45	CCC	27	AGG	12
GCA	65	GTT	44	CAT	27	CTA	10
GGT	64	TGG	44	TCT	27	TGT	10
CAG	60	GAC	43	CGG	25	AGA	7
GAT	60	GCT	43	CCA	24	TAA	4
ACG	59	CGT	41	TCA	24	TAG	3