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Speech compression based on wavelet and contourlet Transformation
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Abstract

Speech compression is very important in many applications. In this
research we applied compression on speech by using wavelet transform
and contourlet transform. By taking speech (which is often single
dimension) into a two-dimensional array (to be suitable for transferring it
to contourlet transformation), and then we applied wavelet transform
.Then we make contourlet transform on coefficients of high wavelet.
After transforming or storing speech and when using the decompression
is applied by using inverse way of those transformations. Applied
measuring (SNR, PSNR, NRMSE and Corr.) to test performance of the
results, the results are very good.
1_Introduction

Although the Wavelet Transform (WT) is known to be a powerful
in many signal and image processing applications such as compression,
noise removal, image edge enhancement, and extraction, wavelets are not
optimal in capturing the two-dimensional singularities. Found in images
and often required in many segmentation and compression applications
[1]. In particular, natural images consist of edges that are smooth curves
which cannot be captured efficiently by the wavelet transform. Therefore,
several new transforms are required for image signals.
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The Contourlet Transform (CT) is one of the new geometrical image
transforms, which can efficiently represent images containing contours
and textures. This transform uses a structure similar to that of curvelets,
that is, a stage of sub band decomposition followed by a directional
transform. In the contourlet transform, a Laplacian Pyramid (LP) is
employed for the first stage, while Directional Filter Banks (DFBs) (as in
Figure (1 - a) and figure (1 - b), are used in the angular decomposition
stage. A comparison between the wavelet scheme and the contourlet
shows the improved edge contours of the later. First applying a
multiscale transform, followed by a local directional transform to gather
the nearby basis functions at the same scale into linear structures.
Consider the wavelet transform of a 2-D piecewise functions with a
smooth discontinuity curve in addition to contourlet transform (as in
figure 2(a)) both wavelet and contourlet transformation However, they
are blind to the smoothness of this curve and it is easy to see that there
are O(2)) significant wavelet coefficients at the scale 2 . Comparing the
wavelet scheme with the contourlet (as in Figure 2(b)), we see that the
improvement of the new scheme can be attributed to the grouping of
nearby wavelet coefficients, since they are locally correlated due to the
smoothness of the contours. Therefore, we can obtain a sparse expansion
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Figure (1) the original contourlet transform. (a) Block diagram. (b) Resulting frequency division

In essence, a wavelet-like transform for edge detection, and then a
local directional transform for contour segment detection are applied. The
overall result is an image expansion using basic elements like contour
segments, and thus are named contourlets and the process is called the
contourlet transform (CT) [3].
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In this research wavelet transform 1s used, it has obtained the
traditional three high pass bands corresponding to the LH, HLand HH
bands. We apply Directional Filter Banks (DFB) with the same number
of directions to each band in a given level (j).Level of the wavelet
transform J, we decrease the number of directions at every other dyadic
scale when we proceed through the coarser levels (j < J). In this way we
could achieve it. Figure (3) illustrates a schematic plot of the wavelet
based contourlet transform using 3 wavelet levels and 3 d L = directional
levels.
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Figure (3) plot of the WBCT using 3 wavelet levels. The directional decomposition is overlaid the
wavelet sub bands.

2- Wavelet transform

The fundamental idea behind wavelets is to analyze according to
scale. The wavelet analysis procedure is to adopt a wavelet prototype
function called an analyzing wavelet or mother wavelet. Any signal can
then be represented by translated and scaled versions of the mother
wavelet [4]. The wavelets can be translated about time in addition to
being compressed and widened [5]. Speech compression is the
technology of converting human speech into an efficiently encoded
representation that can later be decoded to produce a close approximation
of the original signal. The compressed speech signals using Discrete
Wavelet Transform (DWT) techniques. Wavelet analysis is the breaking
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up of a signal into a set of scaled and translated versions of an original (or
mother) wavelet. Taking the wavelet transform of a signal decomposes
the original signal into wavelets coefficients at different scales and
positions. These coefficients represent the signal in the wavelet domain
and all data operations can be performed using just the corresponding
wavelet coefficients. Wavelet transforms are broadly divided into three
classes: continuous, discrete and multiresolution based [4].

2-1- Discrete wavelet transforms

It is computationally impossible to analyze a signal using all wavelet
coefficients, so one may wonder if it is sufficient to pick a discrete subset
of the upper half plane to be able to reconstruct a signal from the
corresponding wavelet coefficients. One such system is the affine system
for some real parameters a>1, b>(0. The corresponding discrete subset of
the half plane consists of all the points (@™, na™byith integers
m,n € Z_The corresponding baby wavelets are now given as [6, 8]

-m/2

Vun(t) = a v(a "t —nb).

A sufficient condition for the reconstruction of any signal x of finite
energy by the formula

z(t) = Z Z{I Umn) * Vmn (1)

mef nef

: 2
is that the functions {¥man 71 € LZ}form 5 tight frame of L~ (R] [6,
7.

2-2-Multiresolution discrete wavelet transforms

In any discredited wavelet transform, there are only a finite number of
wavelet coefficients for each bounded rectangular region in the upper half
plane. Still, each coefficient requires the evaluation of an integral. To
avoid this numerical complexity, one needs one auxiliary function, the

- 2
father wavelet® € L™ (R) Further, one has to restrict a to be an integer. A
typical choice is a=2 and b=I [6, 9]. From the mother and father
wavelets one constructs the subspaces

Vin = span(@mn 1 n € Z}, where @, (1) =2 _m/z(p(Z "t—n)

And
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W,, = span(i,,, 1 n € Z}, where Wi(f) = 2 —m/ 2\|,(2 "Mt — n).
[6, 7, 8, and 9].

From these one requires that the sequence

0} o M Vo © Vi € oonie IA(R)

forms a multiresolution analysis of LE(R}and that the subspaces
sy WL M W oy s are the orthogonal "differences" of the above
sequence, that is, W, is the orthogonal complement of V,, inside the
subspace V,, - 1. In analogy to the sampling theorem one may conclude
that the space V, with sampling distance 2" more or less covers the
frequency base band from 0 to 2 ="~ '. As orthogonal complement, W,
roughly covers the band [2 "', 2 "] [8, 9, 10, and 11].

From those inclusions and orthogonally relations follows the existence of
sequences 't = {hn tnezand 9 = {9n}nezthat satisfy the identities

o(t) = \/EZ hno(2t — n)

"Iin = {Oﬂ,ﬂ* Q—l,n}And ner
And
V() =V2)  gao(2t—n)
Gn = {Uﬂ,l'la Q—Ln)And nez .

The second identity of the first pair is a refinement equation for the father
wavelet ¢. Both pairs of identities form the basis for the algorithm of the
fast wavelet transform [6, 7, 8, 9, and 10].

3- Contourlet transform

The contourlet transform consists of two major stages: the subband
decomposition and the directional transform [3].

3-1- Pyramid frames

One way to obtain a multiscale decomposition is to use the
Laplacian pyramid (LP). The LP decomposition at each level generates a
down sampled low pass version of the original and the difference between
the original and the prediction, resulting in a band pass image. (As in
Figure (4)) depicts this decomposition process, where H and G are called
(low pass) analysis and synthesis filters, respectively, and M is the
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sampling matrix. The process can be iterated on the course (sampled
down) signal (Low frequencies). Note that in multidimensional filter
banks, sampling is represented by sampling matrices; for example, down
sampling x[n] by M yields xd[n] = x[Mn], where M is an integer matrix
[12].

- d o J) ~ A j&
Pl et el

AR/ ‘ ]

struction scheme for

b)

(ﬂ) ¢ Laplacian pyramid.

3-2- Iterated directional filter banks

Bamberger and Smith constructed a 2-D Directional Filter Bank
(DFB) that can be maximally decimated while achieving perfect
reconstruction. The DFB is efficiently implemented via an I-level binary
tree decomposition that leads to 2’ sub bands with wedge-shaped
frequency partitioning as in Figure (5). The original construction of the
DFB involves modulating the input image and using quincunx filter
banks with diamond-shaped filters [13].A proposed new construction for
the DFB that avoids modulating the input image and has a simpler rule
for expanding the decomposition tree [3, 12].

His simplified DFB is intuitively constructed from two building
blocks. The first building block is a two-channel quincunx filter bank
with fan filters (as in Figure (6)) that divides a 2-D spectrum into two
directions: horizontal and vertical. The second building block of the DFB
i1s a shearing operator. Figure (10) shows an application of a shearing
operator where a —45- direction edge becomes a vertical edge. By adding
a pair of shearing operator and its inverse (“‘unshearing”) before and after
respectively, a two channel filter bank in Figure (9), obtain a different
directional frequency partition while maintaining perfect reconstruction.
Thus, the key in the DFB is to use an appropriate combination of shearing
operators together with two-direction partition of quincunx filter banks at
each node in a binary tree-structured filter bank, to obtain the desired 2-D
spectrum division as shown in Figure (7).
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Figure (5) Directional filter bank. Frequency partitioning where 1 = 3 and there are 23 = 8§ real wedge-
shaped frequency bands. Sub-bands 0-3 correspond to the mostly horizontal directions, while sub
bands 4—7 correspond to the mostly vertical directions.
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Figure (6). Two-dimensional spectrum partition using quincunx filter banks with fan filters. The black
regions represent the ideal frequency supports of each filter. Q is a quincunx sampling matrix.

Figure (7) Example of shearing operation that is used like a rotation operation for DFB decomposition.
(a) The “cameraman” image. (b) The “cameraman” image after a shearing operation.

In the left part of Figure (8), we see the block diagram of the
contourlet transform with two levels of multiscale decomposition,
followed by angular decomposition. By using the multirate identities,
filter bank redraw into its equivalent parallel form, as shown above in the
right part of figure (4) [3].
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Figure (8). Block diagram of the contourlet transform with two levels of multiscale decomposition.
Gray regions represent the ideal pass band support of the component filters. Left: The iterated form.
Right: The equivalent parallel form.

4- Performance Measures

A number of quantitative parameters can be used to evaluate the
performance of the wavelet based speech coder, in both reconstructed
signal quality after decoding and compression .The following parameters
are compared [10]
1-Signal to Noise Ratio (SNR) the following formula:

e

Ox

SNR = 10log10 l

=
s
=

9% Is the mean square of the speech signal % is the mean square

difference between the original and reconstructed signal.
2-Peak Signal to Noise Ratio:
PSNR = 10l0g10 ——

N is the length of reconstructed signal, X is the maximum absolute square
value of the signal X and I* = " is the energy of the difference between
the original and reconstructed signal.

3-Normalized Root Mean Square Error:

' '[.ﬁrt) - .r-’:n:l] *

NRMSE = |
J {I{n) = Mrvj_

x(n) is the speech signal , r(n) is the reconstructed signal ,and': felnl the
mean of the speech signal .

4- Correlation between original signals to the compressed signal.
5-Compression ratio: It is the ratio of the original signal to the
compressed signal.

CR = bitpersample(original)

bitpersample(compressed)
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5- Proposed algorithm
The proposed algorithm as shown in fig. (9) we used wavelet
transform on speech signal after convert it from 1-D to 2-D. we applied

contourlet transform on high coefficients of wavelet, and then make
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zeroing the high coefficients of contourlet for getting compression. To
decompress this signal used inverse way and then listen. Measuring the
correlated factor between the original signal and the retrieved ones show
that they are closed to each other up to (-+0.90) as shown in table 1, in
addition to evaluating the SNR plus the compression ratio gave a good
result as seen in Table (1). The proposed algorithm can be used to build a
small model to apply it practically to give result.

LH,HL&
Read Preprocessing Take 1-D to DWT HH =
sound sample 2-D ™ Contour let —‘
o  Details Inverse IDWT Measurement Play
=0 Contour let sound

Figure (9) work scheme
6-Practical application

The proposed algorithm is applied with different speech
signals and the performance was measured depending on

evaluating some factors. The result of correlation factor, Normalized
Root Mean Square Error, Peak Signal to Noise Ratio and Signal to Noise
Ratio (SNR) between original signal and retriever signal after
compression are very good when making HL LH HH contourlet
transform and the coefficients of contourlet are set to zero, as we see in
Table (1) and figure (10) Compression ratio equals 1: 2.2857 between
original and reconstruct signal as we see in figure (11).
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Table 1: Perfomace of test signal

SNR PSNR NRMSE Corr.
speechl 7.4285 16.5202 0.4267 0.9043
speech 2 7.5035 22.4607 0.4227 0.9062
speech 3 11.1338 18.4260 0.2781 0.9605
speech 4 12.0826 15.4380 0.2492 0.9684
25
20
15 OSNR
B PSNR
NRM
10 O SE
O Corr.
5
0
speech1 speech 2 speech 3 speech 4
Figure (10): Performance of test signal
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Figure (11): for original and reconstruct signal
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