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Superiority of the MCRR Estimator Over
 Some Estimators In A Linear Model

Dr.Feras Sh. M. Batah*

ABSTRACT
      Modified (r, k) class ridge regression (MCRR) which includes unbiased ridge
regression (URR), (r, k) class, principal components regression (PCR) and the
ordinary least squares (OLS) estimators is proposed in regression analysis, to
overcome the problem of multicollinearity. In this paper, we derive the necessary and
sufficient  conditions  for  the  superiority  of  the  MCRR  estimator  over  each  of  these
estimators under the Mahalanobis loss function by the average loss criterion. Then,
we compare these estimators with each other using the same criterion. Finally, a
numerical example is done to illustrate the theoretical results.
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1. INTRODUCTION
     According to the Gauss Markov theorem, this is based on the general linear
regression model,

Y=XB+ε ,
where Y is an n × 1 vector of responses, X is an n × p observed matrix of the
regressor variables, assumed to have full rank, i.e., rank(X) =p, B is a p × 1 vector of
unknown parameters (to be estimated) and ε is an n × 1 vector of error terms assumed
to be multivariate normally distributed with mean 0 and variance covariance σ2Ip. It is
well known that the ordinary least squares (OLS) estimator of B, ( )-1

LSB̂ = X X X Y,¢ ¢  is
distributed normal ( )( )-12N B,σ X X¢ . The standard regression model assumes that the
column vectors in X are not linearly dependent. In many practical applications,
however, engineering in particular, we often find that these column vectors are nearly
linearly dependent. We then say that the multicollinearity problem is present. This
problem causes the diagonal elements of ( )-1X X¢  to  inflate  implying  that  the
estimated variance of LSB̂ will be large. Multicollinearity could be present if small
changes in the design matrix, X, causes the estimated coefficients to vary in sign. (see,
e.g., Hoerl and Kennard (1970); Marquardt (1970); Mayer and Willke (1973);
Swindel (1976); Batah and Gore (2008, 2009);  Batah et  al.  (2008, 2009)). The OLS
estimation is not stable in the existence of multicollinearity. Hence, alternative
estimation techniques were designed to eliminate the instability in the estimates which
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results in biased estimators and reduce the variance of the regression coefficients.
Consequently, there is considerable interest in various biased estimators of B. The
well  known  of  these  is  the  ordinary  ridge  regression  (ORR)  estimator  of  Hoerl  and
Kennard (1970). The ORR estimator proposed by Hoerl and Kennard (1970), is
intended to overcome the problem of multicollinearity by adding a positive value k,
usually 0 < k < 1, to the diagonal elements of the matrix X X¢ . The ORR estimator of
B

( ) ( )-1

pB̂ k = X X+kI X Y,   k 0¢ ¢ ³

contains the OLS estimator when k=0. For increasing k, the ORR estimator
approaches 0 which is stable but biased estimator of B. Swindel (1976) illustrated a
technique for combining prior information with ridge regression, namely, modified
ridge regression (MRR) estimator, extending Hoerl and Kennard’s (1970) model as

( ) ( ) ( )-1

pB̂ k,b = X X+kI X Y+kb ,   k 0¢ ¢ ³
where b being a fixed vector of prior estimate of B.  Crouse et al. (1995) illustrated to
incorporate prior information in the ORR, namely, the unbiased ridge regression
(URR) estimator as follows:

( ) ( ) ( )-1

pB̂ k,J = X X+kI XY+kJ ,   k 0¢ ¢ ³

Where J is a random vector with
2σJ~N B, I

k
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for k > 0. Another possibility for the

removal of information which is responsible for increase of impreciseness in
estimation is offered by the principal components regression (PCR) estimator (see
Massy (1965), Marquardt (1970) and Gunst and Mason (1977)). For this, let us
consider the spectral decomposition of the matrix X X¢ given as

( ) r r
r p-r

p-r p-r

Λ 0 T
X X= T ,T .

0 Λ T
¢æ ö æ ö

¢ ç ÷ ç ÷¢è ø è ø
Here rΛ and p-rΛ are  diagonal  matrices  such  that  the  main  diagonal  elements  of  the
r×r matrix rΛ  are the r largest eigenvalues of X X¢ , while the main diagonal elements
of  the  (p  − r)  ×  (p  − r)  matrix p-rΛ are  the  remaining  p  − r  eigenvalues.  The  p  ×  p

matrix ( )r p-rT= T ,T  is orthogonal with ( )r 1 2 rT t , t , . . . , t= consisting of its first r

columns and ( )p r r 1 r 2 pT  t , t , . . . , t- + += consisting of the remaining p – r columns of
the matrix T. The PCR estimator for B can be written as

( )-1 -1
PC r r r r r r rB̂ =T T X XT T X Y=T Λ T X Y¢ ¢ ¢ ¢ ¢ ¢ .

Baye and Parker (1984) proposed the application of ridge methods to improve the
PCR estimator, namely (r, k) class estimator as

( ) ( ) ( )-1 -1
r r r r r r r r r rB̂ k =T T X XT +kI T X Y=T Λ +kI T X Y,  k 0¢ ¢ ¢ ¢ ¢ ¢ ³ .

Batah et al.(2009) suggested a new class of estimators for the regression parameter by
modifying the URR estimator in the line of the PCR estimator is called the modified
(r, k) class ridge regression (MCRR) estimator denoted by :
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( ) ( ) ( )-1
r r r r r rB̂ k,J =T T X XT +kI T X Y+kJ ,  k 0¢ ¢ ¢ ¢ ³

Where J is a random vector with
2σJ~N B, I

k
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for k > 0. It may be noted the proposed

estimator  is  obtained  as  the  case  of  the  (r,  k)  class  estimator  but  with  the  URR
estimator instead of the ORR estimator. The MCRR estimator ( )rB̂ k,J  has the
following properties:
1. ( )p LS

ˆ ˆB 0,J =B  is the OLS estimator.

2. ( ) ( )p
ˆ ˆB k,J =B k,J is the URR estimator.

3. ( )r PC
ˆ ˆB 0,J =B  is the PCR estimator.

4. ( )r PCk 0
ˆ ˆlim B k,J =B

®
.

5. ( )rk
ˆlim B k,J =J

®¥
.

6. ( ) ( )r r
ˆ ˆB k,0 =B k is the (r, k) class estimator.

Thus, for suitable choices of the incorporated principal components, r, the ridge
parameter, k , and the prior information, J, the MCRR estimator is a general estimator
which includes the URR, the PCR, the (r, k) class and the OLS estimators as special
cases. It is interesting to the note that the studies on the biased estimators use the
mean square error (MSE) criterion, or equivalently the quadratic loss function as a
measure of estimators performance. This article extends these studies by choice of the
loss function used to decide on a preferred estimator of B . We considered the loss
function is Mahalanobis loss function in order to comparing the MCRR estimator the
OLS estimator, the PCR estimator and the ORR estimator. Mahalanobis loss function
is previously used by Peddada et al. (1989) for comparing generalized ridge
regression (GRR) estimator and the OLS estimator. In this article we compare the
MCRR estimator to the OLS estimator, the PCR estimator and the ORR estimator by
the average loss criterion. The average loss criterion may be defined as follows: Let
ˆB1 and ˆB2 be two estimators for a parameter B . The estimator 1B̂ is superior to 2B̂ iff

1 2
ˆ ˆE(L(B ,B))<E(L(B ,B))

where L denotes the loss function. Clearly, when using mean squares as loss function,
this reduces to the MSE criterion. For an estimator 1B̂ of B ,Mahalanobis loss function
is defined as

( ) ( ) ( )-1

1 1 1 1
ˆ ˆ ˆ ˆL(B )= B -B Cov B B -B¢ é ù

ë û
Where ( )1

ˆCov B is the covariance matrix of the 1B̂ .

In this paper we compare the MCRR estimator to the OLS estimator, the PCR
estimator and the ORR estimator. In special case, we get the comparison of the ORR
estimator to the OLS estimator by the average loss criterion. We can also get the
comparison  of  the  PCR estimator  to  the  OLS estimator  and  comparison  of  the  PCR
estimator to the ORR estimator under the Mahalanobis loss function by the average
loss  criterion.  Finally,  we  consider  a  numerical  example  to  justify  the  superiority  of
the mentioned estimator.
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2. THE PERFORMANCE OF THE MCRR ESTIMATOR UNDER THE
AVEARGE LOSS CRITERION
MCRR estimator is biased (Batah et al.(2009)) and the appropriate criterion for
gauging the performance of this estimator is the quadratic loss function criterion. We
considered the loss function is Mahalanobis loss function in order to comparing the
MCRR estimator the OLS, PCR, ORR estimators. Let us denote covariance matrix of
the MCRR estimator is ( )( )r

ˆCov B k,J . It is known that the covariance matrix of the

MCRR estimator is same to r- k class estimator when J = 0 as follows:
( )( ) ( )( ) ( ) ( )-1 -12

r r r r r r r r r r r
ˆ ˆCov B k,0 =Cov B k =σ T T X XT +kI Λ T X XT +kI T¢ ¢ ¢ ¢ ¢

Now, we can write the Mahalanobis loss function of the MCRR estimator as follows:

( ) ( )( ) ( )( ) ( )( )
( )

( ) ( ) ( )

-1

r r r r

-2 -1 -2 -1
r r r r r r r r r

-2 -1 -2 -1
r r r r r r r r r r r r r r r

ˆ ˆ ˆ ˆL(B k,0 )= B k,0 -B Cov B k,0 B k,0 -B

=σ YXTΛ TXY-σ YXTΛ TXXT +kI TB

-σ BT TXXT +kI Λ TXY+σ BT TXXT +kI Λ TXXT +kI TB

¢ é ù
ë û

¢ ¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
.

Theorem 1: For k> 0, the difference ( ) ( )( )LS r
ˆ ˆΔ=L B -L B k,0  is n.d. if and only if the

inequality 2 -2p - r < k σ B TCT B,¢ ¢  is satisfied.

Proof: We have The difference ( ) ( )( )LS r
ˆ ˆΔ=L B -L B k,0 is given as

( )( )
( )( )
( )( ) ( )( )

-2 -1 -2 -1
p-r p-r p-r r r r r r r p

-2 -1
r r r r r r p

-2 -1 -1 -1 -2
r r r r r r r r r r r p-r p-r p-r

Δ=σ YXT Λ T XY+σ YX TΛ TXXT +kI T -I B

+σ B TΛ TXXT +kI T -I XY

+σ BT Λ - TXXT +kI Λ Λ - TXXT +kI TB+σ BT Λ T B

¢ ¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

The expectation mean of D  is  equal  to ( ) 2 -2E Δ =p - r - k σ B TCT B,¢ ¢  where
-1
rΛ 0

0 0
C

æ ö
= ç ÷
è ø

.It can be seen that p – r is positive. Also, Since  C is  nonnegative

definite matrix. We obtain that the necessary and sufficient condition for the
superiority of the OLS estimator to the MCRR estimator under the Mahalanobis loss
function as follow:

( ) 2 -2E Δ 0 p - r  k σ B TCT B,¢ ¢£ Û £
Then the proof is completed.
Also, we give an estimate for k in order that the OLS estimator cab be superior to the
MCRR estimator.
Theorem 2: For k > 0, the OLS estimator is better than the MCRR estimator under
Mahalanobis loss function iff

( )2σ p-r
k , with B TCT B>0

B TCT B
¢ ¢³

¢ ¢
Similarly, by using same proof of Theorem 1, we can compare between MCRR and
other  estimators  as  special  cases  from  MCRR  which  is  maintained  above  under  the
same criterion.
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Theorem 3: For k > 0, the MCRR estimator is better than the ORR estimator under
Mahalanobis loss function.
Theorem 4: For k > 0, the PCR estimator is better than the MCRR estimator under
Mahalanobis loss function.
3. NUMERICAL EXAMPLE
Recently, Batah and Gore (2009) used the data generated by Hoerl and Kennard
(1981) to illustrate the comparisons among OLS, URR, ORR, (r, k) class and MCRR
estimators by using mean squares error criterion. We now use this data to illustrate the
performance of the MCRR estimator when J = 0 to other estimators under the
Mahalanobis loss criterion. Table 1 shows the ( )( )( )r

ˆE L B k,J , ( )( )( )ˆE L B k  for

various k values. It is obvious that the mean of the Mahalanobis loss function of the
ORR  and  MCRR  when  J  =  0  estimators  for  k  =  0  are  equal  to  the  mean  of  the
Mahalanobis loss function of the OLS estimator and PCR estimator

( )( )LS
ˆE L B =5 ,and ( )( )PC

ˆE L B =1 ,respectively. The result given in Theorem 1 is

obtained, for k values bigger than 0.2736 as k ≥ 0.2736. Therefore, MCRR estimator
is better than the OLS estimator under the Mahalanobis loss criterion as seen from
Table 1.
Table 1 Values of ( )( )( )r

ˆE L B k,J , ( )( )( )ˆE L B k  for various k values.

k ( )( )( )r
ˆE L B k,J ( )( )( )ˆE L B k

0 1.0000 5.0000
0.01 1.0053 5.1122
0.02 1.0214 5.4487
0.03 1.0481 6.0096
0.04 1.0856 6.7949
0.05 1.1337 7.8045
0.06 1.1925 9.0385
0.07 1.2620 10.4968
0.08 1.3423 12.1795
0.09 1.4331 14.0866
0.10 1.5348 16.2180
0.15 2.2032 30.2405
0.20 3.1390 49.8719
0.25 4.3422 75.1124

0.2736 5.0030 88.9744
0.30 5.8128 105.9618
0.40 9.5560 184.4877
0.50 14.3688 285.4495
0.60 20.2510 408.8473
0.70 27.2028 554.6811
0.80 35.2240 722.9508
0.90 44.3148 913.6565
1.00 54.4750 1126.798
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4. CONCLUSIONS
In this paper, we have obtained necessary and sufficient conditions for the superiority
of the MCRR estimator over the OLS, PCR and ORR estimators under the
Mahalanobis loss function, which is a different loss function from quadratic loss
function, using the average loss criterion. We have seen that the conditions obtained
on the comparisons of the MCRR estimator to the OLS, PCR, ORR estimators depend
on the unknown parameters. Also, we have mentioned that if the comparisons depend
on the unknown parameters, using unbiased estimates or a priori information about
these parameters will lead to the practicable results which is illustrated with a
numerical example.
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