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Abstract
In this paper, we have discussed and investigated an extended PR-CG method
which uses function and gradient values. The new method involves the extended CG-
methods and have the sufficient descent and globally convergence properties under
certain conditions. We have got some important numerical results by improving a

standard computer program compared with Wu and Chen (2010) method in this field.
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1. Introduction.

Our problem is to minimize a function of n variables:
Min f(x), where f:R" SR .., (D)
is a smooth nonlinear function and its gradient Vf(x) is available. At the current

iterative point X; , the Conjugate Gradient (CG) method has the following form:

Xp =X, F O, (2a)
-g,, k=0

d, = { s ettt ettt st et et e era e (2b)
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where o, is a step-length; d, is a search direction; g, =Vf(x, ) and B, is a
parameter. The CG-method has played a special role in solving large-scale nonlinear
optimization due to the simplicity of their iterations and their very low memory
requirements, for example. Some well-known formulas for [, are the Fletcher-

Reeves (FR), Polak-Ribiére (PR), Hestenes-Stiefel (HS) methods which are given,
respectively, by:

T
PR B Bh ) (3a)
8i-1 8ka
g,y
s eSS USSP SRR (3b)
gk—l gk—l
T
8 Vi
= s (3¢)
di Vi,
where
Vg T h — g o v v e et e (3d)

Another important issue related to the performance of CG-methods is the line
search, which requires sufficient accuracy to ensure that the search directions yield
descent. Common criteria for line search accuracy are the Wolfe-Powell conditions:

Flo +aud, )= f ) SO0, Q1 d, s e, (4a)
Gl 20 @)l e (4b)
Flo +o,d, )= flx, )80, gl id, s (5a)
|@Hdi | <=0 @l d i (5b)

0 <0 <050 < ettt (5¢)

Equations [(4a)-(4b)] and [(5a)-(5b)] are called the “Standard Wolfe” and “Strong
Wolfe” conditions, respectively. It has been shown by Dai and Yuan [32] that for the
FR scheme, the strong Wolfe-Powell conditions may not yield a direction of descent
unless o <1/2. In typical implementations of the Wolfe-Powell conditions, it is often
most efficient to choose o close to one. Hence, the constraint o <1/2, needed to
ensure descent, represents a significant restriction in the choice of the line search
parameters. For the PR scheme, the strong Wolfe-Powell conditions may not yield a
direction of descent for any choice of o €(0,1). Although all these methods are
equivalent in the linear case, their behaviors for general objective functions may be
far different. In the PR method, if a bad direction and a tiny step from x, , to x, are

generated, the next direction d, and the next step a, are also likely to be poor unless

a restart along the gradient direction is performed. For general functions, [19] proved
the global convergence of PR method with exact line search. On the other hand, the
PR and HS methods perform similarly in terms of theoretical property. Both methods
are preferred to the FR method in its numerical performance, because the methods
essentially perform a restart after it encounters a bad direction. Nevertheless, [25]
showed that the PR and the HS methods can cycle infinitely without approaching a
solution, which implies that they do not have globally convergence.

Therefore, over the past few years, much effort has been put to find out new
formulae for CG-methods such that they have not only global convergence property
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for general functions but also good numerical performance [21] and [26]. New kinds
of nonlinear CG-methods are developed by using new conjugacy condition, such as
[31]; [20]; [18] and [35]. Recently, [2] proposed a new three term preconditioned
gradient memory method. Their method subsumes some other families of nonlinear
preconditioned gradient memory methods as its subfamilies with Powell's restart
criterion and inexact Armijo line searches. Their search direction was defined by:

dB&L_{_Hkgk if k=1
k - .

— gt B Hdi o Hd, i k>
where «, is a step-size defined by inexact Armijo line search procedure and S, is the

conjugacy parameter. [11] introduced two versions CG-algorithm. Their search
directions are defined by:

- g, ifk=0 T (o

ai={"% TE=0 indpy - =Sy @ear) (7)
g B d, if k>0 VeV o Sk
-g,, if k=0 T T T

ar={"% v and g = (1 5y (8l | 8w (g
— &+ B di, if k>0 Vi Ay di Vi

More recently, [5] introduced a new three-term CG-method. An attractive property of
their proposed method is that the generated directions are always descending. Besides,
this property is independent of line search used and the convexity of objective
function. A remarkable property of the method is that it produces a descent direction
at each iteration. Motivated by the nice descent property. In order to ensure the global
convergence for general functions, Dai and Liao restrict 3, to be positive, that is:

T T
o m{&o}tg_ £30. oo o
-1V k1 k11
The search direction of their method was given by:
— 80> lf k= 0,
d et = v ) (10)
o _gk+ﬁkDL+dk—l_:uk Yy —(2 ”Tk 1” )i b 1f k=21,
-1V k-1
where " is defined in (9), and u, = gi'd, ,/d] vy, and ¢ is defined by:
2
v
t= 2T— ................................................................................... (1 1)
Sk-1Vk-1

Also, [7] proposed several extended CG-methods which combine both quadratic and
non-quadratic models. Their extended search directions are defined as:

-g,, if k=0,
e O (12)
-0, g, + B dy, if k>0,
Ty Td, "d,
o Sifi gy p g 8K, S oy e s n(13)
818k Hgku 818k
- if k=0
dm :{ & N . _f .............................................. (14)
— g +Bd -0y, if k>0
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Finally, [3]is considered as a modified three term CG-method defined as :

A = =i T Bi, = Vi koo (18)
PR ngHyk d mod ified ngJrldk (19)
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where u € (0,1] is a constant. Obviously, y™'"* =y*' for u approaches 0, and
yrodfied =y 52 for u=1. The search direction generated by this method at each

iteration satisfies the descent condition. The optimal value of the parameter u is given
in (20).

€

In this paper, we have proposed a new formula B;" for B, applying the

rational non-quadratic model and Perry’s conjugacy condition [1].

A = —(H 8, ) Vi = — S eeeeee oo, 1)
where H, is an approximation to the inverse Hessian and s, , =x, —x, ,. They

respectively can be seen as the modifications of the method HS and PR. In
comparison with classic CG methods, the decrease of the objective function value is

" keeps the property of PR

€

contained in the two new formulae. Moreover, f3,"

method, namely, if a very small step is generated the next search direction tends to the
Steepest Descent (SD) direction, preventing a sequence of tiny steps from happening.
Furthermore, finite quadratic termination is retained for the new methods. Since the
sufficient descent condition is a property of great importance for the global
convergence analysis of any CG-method, we have modified the conjugacy parameter
of [14] to implement the non-quadratic rational model which satisfies the sufficient
descent property and the standard Wolfe-Powell conditions. In addition, the global
convergence property of the new proposed CG-method is discussed and a set of
numerical results presented show that the new proposed method is efficient.
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2. Materials and Methods.
2.1 Extended CG-Methods for Non-Quadratic Models.

Many attempts have been made to investigate more general function than the
quadratic one as a basis for the CG-methods. Over years, various authors have
published works in this area, and a large variety of methods have been derived to
solved this problem for many sorts of objective functions. The CG-methods discussed
so far assume a local quadratic representation of the objective function. However,
quadratic models may not always be adequate to incorporate all the information which
might be needed to represent the objective function successfully. and in problems
where the quadratic representation is not good. When we are remote from such a
region, a non-quadratic model may better represent the objective function and that
leads to speculation on a better way to choose a type of a non-quadratic model.

2.2 Extended Rational CG-Method. [8]

The CG-method so far discussed is a local quadratic representation of the
objective function. In problems when the quadratic representation is not good, or
when we are remote from such a region, quadratic function f(q(x)), where f is
monotonic increasing, may be better to represent the objective and thus it gives an
advantage to a method based on this model. In order to obtain better global rate of
convergence for minimization methods when applied to more general functions than
the quadratic. In this paper, Al-Bayati's 1993 extended CG-method which is invariant
to nonlinear scaling of quadratic rational functions is proposed and combined with the
standard conjugacy condition of [14] to increase the efficiency of this type of CG-
methods. There is some precedent for this approach, if g(x) is quadratic function then

a function f is defined as nonlinear scaling of ¢(x) if the invariancy property to
nonlinear scaling by [17] holds:

MIN F(X) = f(GX)) i (22)
where£= F >0 and >0 .. (23)
dq

has been considered by [15]. Al-Bayati introduced several non-quadratic rational
models; see for example Boland theorem [30]; [8]; [4]; [10] and [9]. Al-Bayati's, 1993
non-quadratic model to be investigated here, is defined as the quotient of two
quadratic functions and so belongs also to the class of rational functions Al-Bayati's
rational function model was considered by:

AT ==29C) o 0 S0 o (24)
1-£,q(x)
Where
q(x) = %(x X ) O X =X ) et e, (25)

is the quadratic function then it determines the solutions x_. in a finite number of

min

iterations not exceeding (n), and f[g(x)] satisfy the property (23).

2.3 Outline of Al-Bayati's Extended Rational CG-Model.
T
Step 1: Compute a, b and c using a =%; b=w-aand c=wa—-(w—a)f.

Step 2: If |b|£5 0r|c|£5;set p=1and go to Step 4.
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2
(5,181 /2)
(fk _fk—l)z
g (P8 —8i) d
2
||
Where § is a suitable tolerance value; say & =1x10"" .This direction d, is

then used instead of the direction used in the standard CG-formula and since the
model satisfies conditions (23), the resulting algorithm has finite convergence on
model (24). Recently, [6] introduced a new extended CG-method for which its search
directions are defined by:

Step 3: Compute p, =

Step 4: Compute d, =—g, +

Baa _ ) 8k if k=0,
dret = {_ B ke (28)
1+ p, 7 Beir iy g B, = 2 (P 8 &) (29)
& g
B =max (0, min|B”, B ) oo (30)

p, 1s ascalar defined in (26).

3. Wu and Chen (2010) CG-Method.

In this section, we are going to present the recent work of the two well-known
scientists Wu and Chen in (2010). They introduced several well-known CG-formulas.

The conjugacy parameters of these CG-methods are given by; S,, B., B; and B,

respectively by making use of the Powell’s restarting criterion and the Armijo-type
line search defined by:

,3,1 :ﬁHS + 2(fis _f}c)—i_glf—lsk—l

............................................................. (31)
d[—lyk—l
g2 = g 2k _f’f)ig’fflsk* e (32)
g
B = max{0, g™} + 21 = SO &iiSin (33)
||gk 1”
and for 6 <u<1-96 and t>0: wherethe two constants are defined by :
A= g = (80T 8 + 20 i = F)+ (540)T Zat sevvvvvvvmsssessssssesens (34)
2
B, =tg] —(g0) @i + 20 i = L) HE(S,0) T Gitserveeeveminerieieeieneeeens 35)
such that:
P T D L LGS LT T | NS (36)

hold when A, 20 and B, =20
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B, , >0
.y ‘(gk)Tdk—l‘ +||gk—1||2
B, = ” ”2 .................................................... (37)
H|8% 4, <0
‘(gk)Tdk—l‘ +||gk—1||

They proved that all the above CG-methods satisfy the sufficient descent condition
and have the global convergence property.

4. A New Extended CG-Method.

Consider the following quadratic model we proceed as in [14]:

f(x)z%xTAx+bTx+c ..................................................................... (38)

where 4AeR™ is a symmetric positive definite matrix, b€ R"and ce R. Then
Vi =& — &, =4s, . Substituting x, =x,, +s,, into (38), we obtain:

1
i =5x,fok +b'x, +c¢

1
Je= E(xk—l +5,,) A(x, 5, )b (x5, )+
1

1
_ T T T T
—E)c,HAxkf1 +5Sk71ASk71 +b'x, ,+b's,  +c

From Taylor series b=g we get:

1
So=Fiat Esz—lASk—l + (gk—l)TSk—l

1
- glf—lsk—l =fia— S t ESIT—IASI{—I

Since 4s, , =g, —&g,.,,we have

1
_ng—ISk—l =fia— L +§Slf—l(gk - &)

1 1
__glf—lsk—l = fia—Ji +_S1f—1gk

Mﬁltiplying both sides by22

Sk T 2 e = L) S g e (40)
It follows from Perry's conjugacy conditions (21) and (40) that

i = 2o = L) m Vi e (41)
Additionally, d, =-g, + B,d,_, and (41) imply that:

- glf—lsk—l =2(fia— SO+ ngJ’kA - ﬁkdlzllykfl

Which yields:
g, = 2™ fk)dig;TlS“ PV e (42a)
k-1 k-1
_prs 4 2 :i{k;* T (42b)
k-1 k-1
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If exact line search., ie. g/d, , =0 and d, , =—g, , is used in (42a) yields:

B, = 2(f— 1) +ng7151{71 + glfyk—l
=

........................................................ (43a)
||g k—l”2
gy 2 =) tgg,lsk,l ......................................................... (43b)
=

For more details see [14].
From Section (2) we can get p, using (26) to use in the new extended CG

method whose conjugacy parameter is defined by B,*" such that:
New _ PR 2(fi = )+ Pie&iaSi (44)

2
.
Note that the scalar p, may be rewritten as:

_ (Slzllgkfl)z

LA - )
By using (45), equation (44) becomes:
T 2
s
2(f1a _.f}c)_i_m(glflskl)

Y= B + T B SOV T PP OO PP PP PPN (46)
gl

vor _pre S =S s (47)

4(fia _ﬁc)zngk—l”z
4.1 Outline of The New Extended CG-Method.
Step 1: Given x, € R"; (¢>0); (k) is an index of the algorithm
Step 2: Setk=1; d, =—-g,
Step 3: Set x,,, =x, +a,d, ;, is obtained by WP-procedure.

2 , satisfied then set:

Step 4: If Powell restarting, g, g, , > 0.2 ||gk

diy == elseset dy =—g, + B d, (B is defined in (47)),
go to Step 2.
Step 5: If || gk+1|| <eg, stop else set k=k+1 go to Step 3.
4.2 Theoretical Properties for the New Extended CG-Method.
In this section, we focus on the convergence behavior on the B,*" method with

exact line searches. Hence, we make the following basic assumptions on the objective
function.

4. 3 Assumption.
f is bounded below in the level set L, ={xeR"

S(x)< f(x)}; In some
neighborhood U of the level set L, , f is continuously differentiable and its
gradient Vf is Lipschitz continuous in the level set L, , namely, there exists a

constant L> 0 such that:
IVf )=V <Llx—y| forallx,y € L ...ccooooiiiiiiiiiiiiiiii, (48)
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4.4 Lemma
Consider a general CG-method, and suppose that 0 <y < || gk|| S; holds. We

call a method has Lemma 4.4 if there exists two constants b>1 and p>0 such that for
|Sb and

1
5| P =B (49)

4.5 Lemma (Zoutendijk Condition).
Suppose that Assumption 4.3 holds. Consider any CG-type method in the form
of x, ,=x,+a,d, where d, is a descent direction and ¢, satisfies the Wolfe-

Powell line search conditions (4 and 5 ). Then we have that:
Z (g.d )
= |d

4.6 Theorem
Suppose that Assumption 4.3 holds. Consider the new extended CG-method
defined in (47) with B, if «, is obtained by an exact line search and then:

lim inf g, 0
Proof:

We now prove the theorem by contradiction and assume that there exists
some constants ¥ > 0 such that || gk|| >y for all £>0. The compactness of the level

set L, implies that there exists a constant ;>0 such that || g || < }_/ Since HS,{H -0,
we know that there is a &, forall k >k such that k < ||sk|| < p, where p is the same

as in Lemma 4.4. Then, for all £ > ?, we have:

ld.|< g |+\ New ||dk e (50)
<7 +—(y 2b T d))
= (1+—>y +— bz {2 )]
_ 1
<.< <1_1> 74 D
2b
< (m)y e = (51)
Furthermore, we know
(gid,) _&led
Z £ Z Z .......................................................... (52)
L = A = ||
we know using Lemma 4.5 together with (52) ,yields
© 4
Y 00 e (53)

<
=

Which contradictions (51). Therefore, we conclude the truth of the theorem.
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4.7 Theorem
Suppose that Assumption 4.3 holds. If there exists a constant ) > 0 such that

|| gk|| >y, forall £k>0.If «, is obtained by Wolfe-Powell conditions (4) and (5) and

d, satisfies the new B, CG-method, then the new extended method has sufficient

descent directions 1i.e.,

dl g, S—c”gk 2; C > 0 (54)
Proof:
For initial direction we have:
d=-g =d, g ——||g1|| S0 e, (35)
which satisfies (54). Now let the theorem be true for all k-1, i.e

2
d_ =-g,,=>d g = —||gk71|| S0 e, (56)

Multiplying the search direction of (47) by & yields:
Vi 8(fin— 1) +(gi15,)’
ngykl)(SkTAgk)*‘( Sia k k-19%-1

2
818k 4(fia _fk)2||gk—1 ”
Using Wolfe-Powell conditions (4) and (5) we have:

)(SkT—lgk )

dl g, =|a.| +(

-85°
d,?gk < _”gk”2 Sk 1V 1)(” ”2) +( (gk 15k 1) +(gk 15k 1) )( sT.g.)
” 8k 1” 46° (gk 1Sk1) ”gk 1”
1-85°
g, < g +( i lyﬂ ey ( oTs ﬁ T CI N Y (57)
k 1 k 1
If exact line searches are used then (57) becomes using (56):
alg, < el - By g, )
|| gl
= el + el
=—(1-a,.)|g ”2
= (58)

Hence, for ELS, the search directions are sufficiently descent since ¢ = (1 -, _,) >0.

For inexact line searches we have:

Since our function f is uniformly convex function either in the quadratic or in the
non-quadratic regions, then there exists a Lipschitz constant L >0 and a constant,
n >0 such that:

(V@) =V ) (x=y)2n |x=y[" forallx,y € L, oo, (59)
Or equivalently:
VIS, > 17”5,{71 ||2 and 17”5,{71 ||2 <yl < L||S,H||2 ........................... (60)
(1-85%). ;
Te, < el + L) e -a 0y (s S8 e (61)

From Powell restarting criterion we have:

2
grgi vl s we 0D (62)
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LS SO Gl =0 G G (63)
Using (62) and (63) in (61):
o <o | ) 2 >, (1-86%) 2
L& < gl + La) gl + vl Y Nl oo (64)
T 2 2 2 1- 3
d{g) g ) <1+ Lia,.)* +w(a,.) ((Tgf)) ................................. (65)
T 2 2 1- ’ 2
d{g)Ng]H<- A-w(a) ((Tﬁf)) — L0 ) e, (66)
el r<-c e>0 for (67)

0<6<05 0<aw,L<l1

Thus our new proposed extended CG-method has also sufficient descent directions
using inexact line searches under the condition that Powell restarting condition must
be used. Therefore, the method has a global convergent property by satisfying the
conditions of Zoutendijk theorem [19].

S. Numerical Results

The main work of this section is to report the performance of the new method on
a set of test problems. The codes are written in Fortran and in double precision
arithmetic. All the tests are performed on a PC. Our experiments are performed on a
set of 35 nonlinear unconstrained problems that have second derivatives available.
These test problems are contributed in CUTE and their details are given in the
Appendix. Our numerical results are divided into three branches according to the
numerical experiments with their number of variables:

I- 10 numerical experiments with n= 100, 200, ... .... , 1000.
2- 5 numerical experiments with n= 100, 300, 500, 700, 900.
3- 4 numerical experiments with n= 100, 400, 700,1000.

In order to assess the reliability of our new proposed method, we have tested it
against the standard Wu & Chen's modified PRCG-method [14] using the same set of
test problems. All these methods terminate when the following stopping criterion is
met:

Tables 5.1, 5.2 and 5.3 compare some numerical results for the modified PRCG
method due to Wu & Chen and the new extended PRCG method for 35 test functions.
In all these tables (n) indicates the dimension of the problem; (NOI) indicates the
number of iterations; (NOFG) indicates the number of function and gradient
evaluations; (TIME) indicates the total time required to complete the evaluation
process for each test problem.

Tables 5.4, 5.5 and 5.6 compare the percentage performance of the new extended
PRCG-methods against the standard Wu & Chen PRCG-method taking over all the
tools as 100%. In order to summarize our numerical results, we are concerned only
with the total of (n) different dimensions for all tools used in these comparisons.
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It is clear from Table (5.4) that taking, over all, the tools as a 100% for the Wu &
Chen PRCG method, the New Extended PRCG method has an improvement, in about
(12.3%) NOI; (11.5%) NOFG and (2.5%) TIME, also from Table (5.5) that taking,
over all, the tools for PRCG method has an improvement, in about (6.1%) NOI;
(5.3%) NOFG and (3.4%) TIME. It is clear from Table (5.6) that taking, over all, the
tools for PRCG method has an improvement, in about (12.3%) NOI; (11.3%) NOFG
and (2.2%) TIME. These results indicate that new extended PRCG method, in
general, is the best.
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Table (5.1)
COMPARISON BETWEEN THE NEW AND (WU & CHEN) METHODS FOR
THE TOTAL OF (35) PROBLEMS WITH n= 100, 200, ... ,1000

‘Wu & Chen/2010 New Extended PRCG
Prob.
NOI/NOFG/TIME NOI/NOFG/TIME
1 1709/2017/1.30 1700/2008/1.36
2 219/412/0.03 219/412/0.03
3 75/96/0.03 75/96/0.02
4 1592/1724/0.99 1592/1724/1.05
5 1044/1137/0.16 1044/1137/0.15
6 331/358/0.28 349/377/0.29
7 10506/10624/1.10 6831/6938/0.70
8 143/182/0.20 161/196/0.21
9 319/453/0.04 319/453/0.03
10 205/282/0.11 205/282/0.09
11 561/677/0.14 558/674/0.17
12 205/317/0.03 205/317/0.04
13 32/64/0.01 32/64/0.02
14 1314/1400/0.18 1314/1400/0.19
15 4179/4259/0.76 4179/4259/0.74
16 126/147/0.03 126/147/0.04
17 90/118/0.03 90/118/0.03
18 109/133/0.03 109/133/0.04
19 1279/1368/0.21 1279/1368/0.21
20 75/96/0.04 75/96/0.01
21 947/1109/0.10 947/1080/0.10
22 645/678/0.26 645/678/0.25
23 1190/1326/0.49 1182/1318/0.50
24 137/211/0.01 137/211/0.00
25 251/330/0.04 251/330/0.03
26 860/934/0.27 875/949/0.30
27 144/194/0.00 149/191/0.03
28 80/160/0.05 80/160/0.06
29 85/105/0.07 85/105/0.07
30 44/76/0.01 44/76/0.04
31 206/258/0.10 206/258/0.10
32 1144/1248/0.14 1089/1199/0.19
33 27/77/0.00 27/77/0.00
34 80/110/0.03 80/110/0.02
35 211/307/0.02 200/280/0.00
Total 30164/32987/7.29 26459/29221/7.11
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Table (5.2)
COMPARISON BETWEEN THE NEW AND (WU & CHEN) METHODS FOR
THE TOTAL OF (35) PROBLEMS WITH n = 100, 300,500,700, 900

Prob. Wu & Chen/2010 New Extended PRCG
NOI /NOFG/TIME NOI/NOFG/TIME
1 939/1102/0.68 930/1093/0.69
2 113/208/0.02 113/208/0.01
3 37/47/0.02 37/47/0.00
4 775/848/0.45 775/848/0.46
5 513/559/0.06 513/559/0.08
6 170/184/0.13 170/184/0.14
7 4591/4644/0.38 3622/3735/0.23
8 81/98/0.09 81/98/0.09
9 168/228/0.02 168/228/0.03
10 93/134/0.04 93/134/0.05
11 223/293/0.05 223/293/0.06
12 89/140/0.00 89/140/0.01
13 18/35/0.00 18/35/0.00
14 663/701/0.11 663/701/0.09
15 3307/3345/0.53 3319/3357/0.53
16 65/75/0.03 65/75/0.06
17 45/60/0.00 45/60/0.00
18 54/65/0.02 54/65/0.02
19 639/683/0.10 639/683/0.09
20 37/47/0.01 37/47/0.02
21 455/494/0.06 455/494/0.05
22 373/403/0.14 374/404/0.14
23 432/495/0.19 424/487/0.19
24 68/87/0.00 68/87/0.00
25 119/174/0.02 119/174/0.03
26 456/487/0.13 510/549/0.14
27 69/100/0.00 74/99/0.00
28 40/81/0.03 40/80/0.01
29 43/53/0.03 43/53/0.03
30 22/38/0.02 22/38/0.02
31 95/122/0.05 95/122/0.05
32 623/682/0.08 595/657/0.06
33 12/35/0.00 14/42/0.00
34 39/55/0.02 39/55/0.02
35 104/152/0.02 100/140/0.01
Total 15570/16954/3.53 14626/16067/3.41
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Table (5.3)
COMPARISON BETWEEN THE NEW AND (WU & CHEN) METHODS FOR
THE TOTAL OF (35) PROBLEMS WITH n= 100, 400,700, 1000

Wu & Chen/2010 New Extended PRCG
Prob.
NOI/NOFG/TIME NOI/NOFG/TIME
1 895/1011/0.67 886,/1002/0.65
2 87/164/0.02 87/164/0.02
3 29/38/0.01 29/38/0.01
4 631/685/0.44 631/685/0.43
5 406/443/0.06 406/443/0.06
6 135/146/0.13 135/146/0.11
7 4778/4809/0.55 3057/3110/0.36
8 53/68/0.07 66/79/0.06
9 133/191/0.01 141/183/0.02
10 84/119/0.03 84/119/0.05
11 186/230/0.04 227/279/0.08
12 98/138/0.02 98/138/0.01
13 14/28/0.00 14/28/0.00
14 513/541/0.09 513/541/0.07
15 2156/2188/0.40 2156,/2188/0.46
16 53/61/0.03 53/61/0.03
17 36/48/0.02 36/48/0.01
18 43/52/0.01 43/52/0.03
19 510/545/0.07 510/545/0.08
20 29/38/0.01 29/38/0.01
21 379/412/0.04 379/412/0.07
22 334/355/0.12 334/355/0.12
23 386/428/0.18 382/424/0.15
24 56/84/0.02 56/84/0.00
25 98/124/0.01 98/124/0.02
26 265/281/0.08 327/351/0.12
27 61/84/0.01 61/84/0.02
28 32/64/0.01 32/64/0.03
29 35/43/0.03 35/43/0.03
30 18/30/0.00 18/30/0.01
31 76/95/0.03 76/95/0.03
32 393/437/0.05 397/441/0.06
33 9/27/0.00 9/27/0.00
34 32/44/0.01 32/44/0.00
35 82/120/0.02 80/112/0.01
Total | 13125/14171/3.29 11517/12577/3.22
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Table (5.4)
PERCENTAGE PERFORMANCE OF TABLE (5.1)
TOOLS WU & CHEN NEW
(2010)
NOI 100% 87.7%
NOFG 100% 88.5%
TIME 100% 97.5%
Table (5.5)
PERCENTAGE PERFORMANCE OF TABLE (5.2)
TOOLS WU & CHEN NEW
(2010)
NoI 100% 93.9%
NOFG 100% 94.7%
TIME 100% 96.6%
Table (56)
PERCENTAGE PERFORMANCE OF TABLE (5.3)
TOOLS WU & CHEN NEW
(2010)
NOI 100% 87.7%
NOFG 100% 88.7%
TIME 100% 97.8%

Appendix.

I)Trigonometric 2)Penalty 3)Raydan 4)Hager S5)Generalized Tridiagonal
6)Extended Three Exp-Terms 7)Diagonal4 §)Diagonal 9)Extended Himmelblau
10)Extended PSC1 11)Extended BD1 12)Extended Quadratic Penalty QP1
13)Extended EP1 14)Extended Tridiagonal-2 15)ARWHEAD (CUTE)
16)DIXMAANA (CUTE) 17)DIXMAANB (CUTE) 18)DIXMAANC (CUTE)
19) EDENSCH (CUTE) 20)DIAGONAL-6 21)ENGVAL1 (CUTE)
22)DENSCHNA (CUTE) 23)DENSCHNC (CUTE) 24)DENSCHNB (CUTE)
25)DENSCHNF (CUTE) 26)Extended Block-Diagonal BD2 27)Generalized
quarticGQ1 28)DIAGONAL 7 29)DIAGONAL-8 30)Full Hessian 31)SINCOS
32)Generalized quartic GQ2 33)ARGLINB (CUTE) 34)HIMMELBG (CUTE)
35)HIMMELBH (CUTE)
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