

.(

Finding Optimal Strategy for Static Games by Using Genetic Algorithm

Abstract

In this paper, one of the artificial intelligence algorithms was used, which is the genetic algorithm that is based on the application of innovative concepts including selection, crossover and mutation. A genetic algorithm was suggested for the static games to find the equilibrium and to estimate the asymptotic least squares was suggested, and we obtain good results in comparison with the ordinary algorithm. The application of the genetic algorithm on static games led to finding several solutions according to the times of simulations that represent the optimum solution (the optimum value of equilibrium).

Key word: game theory, genetic algorithm, optimal equilibrium strategy.

ر /جامعة الموصل ** / /جامعة الموصل

:Introduction .1

.(Emile Borel) 1921

.[3] (Dantizig)

. 1928 (Von Neumann)

.[2]

.[1]
:(Genetic Algorithm GA) .2

1970 (John Holland)
(Combination 1975 [4]
Goldberg [5] Optimization Problems)
1989

.[4]

.3

Finding an Equilibrium and Estimate Parameters for Static Games:

عدد خاص بوقائع المؤتمر العلمي الرابع لكلية علوم الحاسوب والرياضيات

```
N = \{1, 2, ..., n\}
                                                                                                                                    .1
                         (i \in N) i
                                                                                                                                    .2
                                                          A_{i}
                                                                                   .(a_i \in A_i) a_i
                                                                                                                                    .3
          u_i(a_i, a_j)
                                                          .[7] \Big( \forall \, a_i \in A_i \, and \, a_j \in A_j \Big) \, \left( i, j \in N \right)
                                     b_1 = 1 S \in \{b_1, b_2, b_3\} S
                                                                          b_2 = 2
                                                                                                  b_3 = 3
                                                                                                             (i = 1,2) i
                                                                                             a_i \in \{active, not \ active\}
i
                                                                                                                (active
\theta = \left[\theta_1^1, \theta_1^2, \theta_2^1, \theta_2^2\right]
                                                                                                                          (1)
                                                                                                                           : 	heta_{\scriptscriptstyle i}^{\scriptscriptstyle 1}
                                                   active
                                                                                                  . not active
                                                 active
                                                                                                                           :\theta_{i}^{2}
                                                        \theta_i^1 > \theta_i^2
                                                                                                           active
                                    (i = 1,2) i
```

$$u_{i}(a_{i},a_{j},S) = \begin{cases} \theta_{i}^{1} * S & \text{if} & a_{i} = \text{active} & a_{j} = \text{not active} \\ \theta_{i}^{2} * S & \text{if} & a_{i} = \text{active} & a_{j} = \text{active} \end{cases}$$

$$0 & O.W.$$

$$\vdots \\ 0 & O.W.$$

 $S = \{1,2,3\} \quad (i = 1,2)$

 $q = (q_i(S)_{i=1}^2)_{s=1}^3$ (6) $P = \Psi(q, \theta)$ (7) $P = (P_i(S)_{i=1}^2)_{s=1}^3$ (7a) $\theta = \left[\theta_1^1, \theta_1^2, \theta_2^1, \theta_2^2\right]$ (7b).active :(7a):(7b):Ψ (i = 1,2) $P_i(S) = q_i(S)$ ($S = \{1,2,3\}$ $P_i(S)$ $P = \Psi(P, \theta)$ (8) (8) $P_{i}(S)$. θ . (8) (P, θ) (Asymptotic . (t = 0) $P_i(S)$ Least Square Estimator) Ŷ P $P_i(S)$ (8) $\hat{P} - \Psi(\hat{P}, \theta) = 0$ (9) (9) θ

[558]

 $: \mathcal{E}_{i} \quad \bullet$

```
u_{i}
                                                                               : q_i(S)
                                        . (5)
                 ( active
                                                  )
                                                                       . P_i(S)
                              :(Initial Generation)
                                                                               (2)
                             \theta
                                                                                 )
                                                                         .(
                                     :(Objective Function)
                                                                               (3)
                 (10)
      )
                    (Roulette)
                                                            ,(Tournament)
                         (Heuristic)
                                                      )
                                                                             ((Uniform)
                       ((Two Point)
                                                                 (Single Point)
                           ((Gaussian)
                                                            (Uniform)
                                                                                         )
                                                                                       .5
                          Simulation
                                                                 \theta
                                                                                      5.1
             (i=1,2) \qquad \theta_i^1 > \theta_i^2
                                                                 \theta
\theta_2^2 = 0.07 \theta_2^1 = 0.15 \theta_1^2 = 0.19 \theta_1^1 = 0.61
```

(2) i u_{i} S 2 active not active 0.61,0 active 0.19, 0.07 0,0 not active 0 , 0.15 S=12 active not active 1.22 , 0 active 0.38 , 0.14 0,0 not active 0 , 0.30 S=22 active not active 1.83 , 0 active 0.57 , 0.21 0,0 not active 0 , 0.45 S=3 $\boldsymbol{\mathcal{E}}_{i}$ -2.2588 0.3188

 $\varepsilon_1 = 0.6251$, $\varepsilon_2 = 0.0119$ (4) (3) ε_i

	2						
	active	not					
active							
active	0.8151 , 0.0819	1.2351 , 0					
not active	0 , 0.1619	0,0					
	S=1						
	2						
	active	not					
active	i.0051, 0.1519	1.8451,0					
no active	0,0.3119	0 , 0					
	S=2	,					
	2						
	active	not active					
active	1.1951, 0.2219	2.4551,0					
not active	0,0.4619	0,0					
	S=3						
	$q_{i}\left(S\right)$						
:							
$q_1(1) = 0.50$; $1 - q_1(1) = 0.50$; $1 - q_1(2) = 0.50$; $1 - q_1(2) = 0.50$; $1 - q_1(3) = 0.50$; $1 - q_1(3) = 0.60$; $1 - q_2(1) = 0.60$; $1 - q_2(2) = 0.60$	= 0.50 = 0.50 = 0.40						

 $P_2(2) = 1 - \Phi(0.40 * 0.15 * 2 + 0.60 * 0.07 * 2) = 1 - \Phi(0.204) = 0.4192$

عدد خاص بوقائع المؤتمر العلمي الرابع لكلية علوم الحاسوب والرياضيات

$$S=2 \\ P_{2}(3) = 1 - \Phi(0.40*0.15*3 + 0.60*0.07*3) = 1 - \Phi(0.306) = 0.3798 \\ S=3 \\ : \Phi \\ : \\ \textit{normcdf}\left(X,0,1\right) \\ : X = \begin{bmatrix} 0.4 & 0.8 & 1.2 & 0.102 & 0.204 & 0.306 \end{bmatrix} \\ : X \\ (6) \\ : (7) \\ P = \Psi(q,\theta) \\ : P = \begin{pmatrix} P_{i}(s)^{2}_{i-1} \end{pmatrix}_{i=1}^{3} \\ (s = 1,2,3) ; (i = 1,2) \\ P = \begin{pmatrix} P_{i}(s) \\ P = \Psi(P,\theta) \\ \vdots \\ P = \Psi(P,\theta) \\ \vdots \\ P = \begin{pmatrix} P_{i}(P,\theta) \\ P = \Psi(P,\theta) \\ \vdots \\ P = \begin{pmatrix} P_{i}(P,\theta) \\ P = \Psi(P,\theta) \\ \vdots \\ P = \begin{pmatrix} P_{i}(P,\theta) \\ P = \Psi(P,\theta) \\ \vdots \\ P = \begin{pmatrix} P_{i}(P,\theta) \\ P =$$

$$W = \begin{bmatrix} W_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & W_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & W_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & W_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & W_5 & 0 \\ 0 & 0 & 0 & 0 & 0 & W_6 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

$$\vdots \qquad (10)$$

 $\hat{P} - \Psi(\hat{P}, \theta) = 0$

$$\hat{P}_{i}(S) - \left[1 - \Phi\left((1 - \hat{P}_{i}(S)) * \theta_{i}^{1} * S + \hat{P}_{i}(S) * \theta_{i}^{2} * S\right)\right] = 0$$

$$\vdots \qquad S = \{1, 2, 3\} \quad (i = 1, 2) \qquad (11)$$

$$\Phi(0.50*\theta_1^1 + 0.50*\theta_1^2) = 0.6554 \qquad \cdots (12)$$

$$S=1$$
 (11)

$$\Phi(\theta_1^1 + \theta_1^2) = 0.7881 \qquad \cdots (13)$$

$$S=2$$
 (11)

$$\Phi(1.50*\theta_1^1 + 1.50*\theta_1^2) = 0.8849 \qquad \cdots (14)$$

$$S=3$$
 (11)

$$\Phi(0.40*\theta_2^1 + 0.60*\theta_2^2) = 0.5406 \qquad \cdots (15)$$

$$S=1$$
 (11)

$$\Phi(0.80*\theta_2^1 + 1.2*\theta_2^2) = 0.5808 \qquad \cdots (16)$$

$$S=2$$
 (11)

$$\Phi(1.2 * \theta_2^1 + 1.8 * \theta_2^2) = 0.6202 \qquad \cdots (17)$$

عدد خاص بوقائع المؤتمر العلمي الرابع لكلية علوم الحاسوب والرياضيات

S=3 (11) (17)
$$(11) \qquad \theta \qquad \vdots \qquad (10)$$

$$[\hat{P} - \Psi(\hat{P}, \theta)] W [\hat{P} - \Psi(\hat{P}, \theta)] = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ & & & & & \end{bmatrix}$$

0.2477458 + 0.310550805 + 0.391524005 + 0.14612418 + 0.16866432 + 0.19232402= 1.4241

: (10) θ min

 $\min_{\theta} \left[\hat{P} - \Psi(\hat{P}, \theta) \right] W \left[\hat{P} - \Psi(\hat{P}, \theta) \right] = 1.4241$

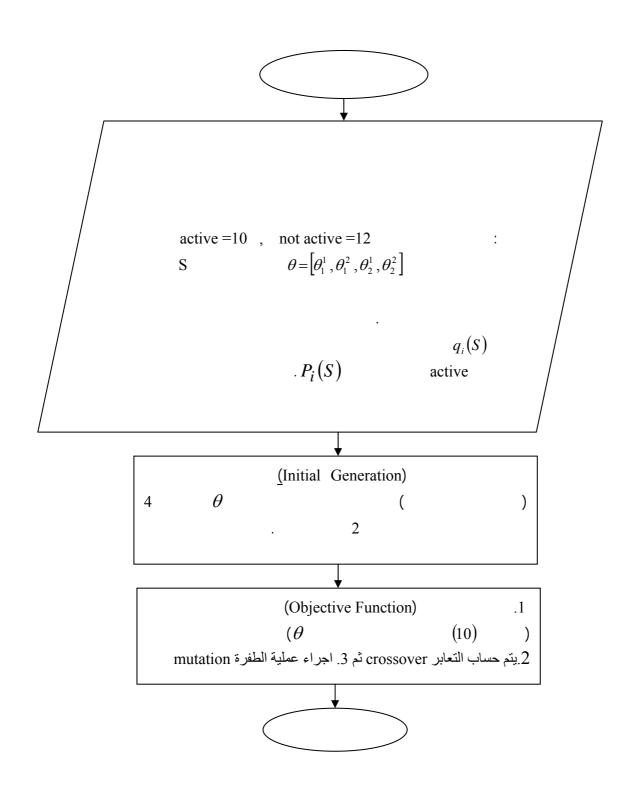
: 5.2

Using Genetic Algorithm to find equilibrium:

 θ

•

active = 1010 , not active = 1100


:

•

active =10, not active =12

 $q_i(S)$

```
. P_i(S)
\theta
                                                                              active
                         : (5.1)
                                                                                 (10)
                                                       :(Initial Data)
                                                                                           .1
active = 10 , not active = 12
                                                   \theta = \left[\theta_1^1, \theta_1^2, \theta_2^1, \theta_2^2\right]
                                    q_i(S)
                               P_i(S)
                                                        active
                                       :(Initial Generation)
                                                                                           .2
                                        (
  \theta
                                                2
                                                                                    4
                                                :(Objective Function)
                                                                                           .3
                      (\theta
                                                                    )
                                                       (10)
                                                            (Matlab 7.0)
                                        \theta
                                                                              Interface
                                                          (
                                                                                 (1)
```


(1)

(1)

						$\theta_{\mathrm{l}}^{\mathrm{l}}$	$\theta_{\rm l}^2$	θ_2^1	θ_2^2
Uniform	Single point	Gaussian	25	25	0.01935957891258552	-1.54738	-0.62312	8-0.13681	-1.72597
Roulette	Single point	Gaussian	75	1	1.062107952664177	-0.25053	-1.17738	0.27453	0.65425
Tournament	Single point	Gaussian	90	8	0.001391029305279852	-1.53138	-2.73611	-0.29094	-2.54556
Uniform	Single point	Uniform	100	1	1.348552819660772	0.03534	0.47838	0.17079	0.19112
Roulette	Single point	Uniform	150	55	1.0367810580013397	0.0746	0.28413	0.02936	0.04173
Tournament	Single point	Uniform	200	7	1.073277128992256	0.14442	0.08878	0.26317	0.04098
Uniform	Two point	Gaussian	250	6	0.16724822461275612	-1.72051	0.81344	1.54911	-1.67087
Roulette	Two point	Gaussian	300	6	0.20304599983498772	-0.02843	-0.99219	-1.13261	0.30534
Tournament	Two point	Gaussian	350	1	1.1922382358210823	1.42783	-0.23046	-1.28499	0.10395
Uniform	Two point	Uniform	400	3	1.3846012226482225	0.1192	0.57157	0.0745	0.16138
Roulette	Two point	Uniform	450	7	1.2279650476521449	0.22453	0.11604	0.16025	0.20179
Tournament	Two point	Uniform	500	9	1.0773441993624406	0.09016	0.22595	0.00766	0.14585
Uniform	Heuristic	Gaussian	600	1	1.3432766182335067	-0.02614	-1.24416	0.82302	0.98994
Roulette	Heuristic	Gaussian	700	1	0.5848570837713382	-0.58708	-0.26409	0.304	0.14608
Tournament	Heuristic	Gaussian	800	1	1.0897801232803452	0.02555	0.43452	0.02555	0.01828

(1)

Uniform	Heuristic	Uniform	900	1	1.3479276010541847	0.14745	0.22144	0.3333	0.2027
Roulette	Heuristic	Uniform	1000	1	1.1779979064006525	-0.02288	-0.02218	0.49308	0.22341
Tournament	Heuristic	Uniform	1500	1	1.0690809822238339	0.03714	0.13967	0.00747	0.25223

6. تفسير النتائج: تم تفسير النتائج المتوصل إليها في الجدول (1) لكلا الشركتين وكالاتي:

$$[\hat{\mathbf{P}} - \Psi(\hat{\mathbf{P}}, \theta)]' W [\hat{\mathbf{P}} - \Psi(\hat{\mathbf{P}}, \theta)]$$

$$\theta$$

$$(1.073277128992256)$$

$$\forall (i = 1,2); \theta_i^1 > \theta_i^2$$

$$\theta = [0.14442 \ 0.08878 \ 0.26317 \ 0.04098]$$

$$\forall (i=1,2) ; \theta_i^1 > \theta_i^2$$

.(Tournament)

.(Uniform) .(Single Point) 200: 7: :Conclusions .7 :References .8 ",(1988). .1 ",(1986). .2 ",(1987). .3 4. Goldberg, D.E. ,(1989), "Genetic Algorithms in Search,

- 4. Goldberg, D.E. ,(1989), "Genetic Algorithms in Search, Optimization and Machine Learning", Addison-Wesley.
- 5. Mitchell, M., (1998), "An Introduction to Genetic Algorithms", MIT Press, London.
- 6. Pesendorfer, M. and Dengler, P. S., (2008), "Asymptotic Least Squares Estimators for Dynamic Games", J. Review of Economic Studies, vol. 75, Issue3, pp.901-928, July.
- 7. Webb, J. N., (2007), "Game Theory Decisions, Interaction and Evolution", Springer Science and Business Media, Springer.com