المجلة العراقية للعلوم الاحصائية (20) 2011 عدد خاص بوقائع المؤتمر العلمي الرابع كلية علوم الحاسوب والرياضيات مر ص (38–46

Gamma (θ, γ) . $\qquad \qquad \qquad (\qquad \gamma \qquad \qquad)$

matlab

Reliability of Acceptance Sampling Plans for Gamma-Distribution Life Times Under Hybrid Censoring Scheme

Dr.Dhwyia S. Hussian Dr.Nashaat J. Mohammed Lameih M. Ali

ABSTRACT

This paper deals with Reliability of Acceptance Sampling Plan (RASP) which differs from ordinary sampling plan for a static quality characteristic, since it involves a non-normal fail time distribution and censored data. The plans consist of the optimal sample size and the critical number of failures which satisfy the consumer and producer risks are determined for a given censoring time. the distribution of life time is

*** مدرس/كلية الادارة والاقتصاد/جامعة بغداد

تاريخ الاستلام 2011/10/1 تاريخ القبول 2011/12/21

Gamma $G(\theta, \gamma)$ where the shape parameter (γ) is known ,plans are tabulated for selected combination of consumer and producer risks and parameter values are achieved by using matlab program written for this purpose.

:

•

$$(n) \qquad (n,c)$$

$$(X) \qquad N$$

$$(X > c) \qquad (X \le c)$$

(N-n)

Reliability of . . .

Acceptance Sampling Plan(RASP)

(RASP)

(RASP) (censoring)

()

(Hybrid censoring scheme)
[2] Epstein 1954

[2] Lpstelli 1754

(n)

(T) (r < n)

(T) (r)

	(r_h)			(n	(a_h)						(α, β)
$L(1) \ge 1$	-α								:		(10)
$L(\lambda_1)$:	$\leq \beta$								• • • • • •		(11)
										: <u> </u>	
(n_h) $(1)^{-1}$	1) (10)								(r_i)	(h)	
•								((1)		
					0.05		0.10				
		α			0.05		0.10 0.10				
		$\frac{\beta}{a}$			0.50		$\frac{0.10}{0.40}$	0	.2	0.1	
		$\frac{\lambda_1}{T}$			0.60		0.50		40	0.25	
		T_h			1		1.5		2	3	
		γ	(2)		(1)						 -R2010a
	. RASP							(2))		
)	v = 1						
					T	h					
		λ_{1}	0.		0.	1	0.4		0.2		
	or = 0.05		n_h	r_h	n_h	r_h	n_h	r_h	n_h	r_h	
	$\alpha = 0.05$ $\beta = 0.05$	0.5	44 25	26 16	48 25	25 15	56 30	25 16	78 43	24 15	
	β - 0.03	0.4	8	5	11	6	15	12	19	7	

0.1

$\alpha = 0.05$	0.5	36	22	37	20	39	22	40	24
	0.4	21	14	23	14	24	15	26	16
$\beta = 0.10$	0.2	4	3	5	3	5	4	6	5
	0.1	4	4	4	4	4	4	4	4
	0.5	36	21	3	3	3	3	3	3
	0.4	16	11	16	12	23	16	28	14
$\alpha = 0.10$	0.2	7	5	9	5	9	6	11	8
$\beta = 0.05$	0.1	3	3	4	3	4	3	4	3
,	0.4	15	10	19	12	23	14	28	10
	0.2	6	5	6	5	7	6	8	4
	0.1	3	3	3	3	4	3	4	3

 $\gamma = 1.5$

	2	λ_1 T_h											
	79	0.6		0.	0.5		0.4		0.25				
		n_h	r_h	n_h	r_h	n_h	r_h	n_h	r_h				
$\alpha = 0.05$	0.5	39	15	45	14	60	20	94	13				
$\beta = 0.05$	0.4	20	9	23	11	34	19	48	8				
	0.2	8	5	13	6	19	11	23	15				
	0.1	3	3	4	3	4	2	4	2				
0.05	0.5	30	12	36	12	44	11	75	11				
$\alpha = 0.05$	0.4	19	4	23	6	26	9	44	12				
$\beta = 0.10$	0.2	7	5	8	6	9	6	11	4				
	0.1	3	3	3	3	3	2	3	2				
$\alpha = 0.10$	0.5	30	11	40	10	67	10	76	10				
$\beta = 0.05$	0.4	21	6	27	8	31	12	48	26				
ρ σ.σε	0.2	9	6	10	5	12	8	15	9				
	0.1	2	2	3	2	4	2	4	2				
$\alpha = 0.10$	0.5	28	8	39	8	55	9	67	15				
$\beta = 0.10$	0.4	20	4	25	9	28	11	39	15				
0.10	0.2	8	5	9	5	10	6	14	7				
	0.1	2	2	3	2	4	2	4	2				

 $\gamma = 2$

		T_h								
	$\lambda_{_{1}}$	0.6		0.	5	0.4		0.2	5	
		$n_{\!\scriptscriptstyle h}$	r_h	n_h	r_h	n_h	r_h	n_h	r_h	
$\alpha = 0.05$	0.5	40	9	52	9	66	8	143	8	
$\beta = 0.05$	0.4	21	6	35	9	44	6	68	5	
$\rho = 0.03$	0.2	15	4	19	5	24	6	31	5	
	0.1	2	2	3	2	4	3	5	2	

عدد خاص بوقائع المؤتمر العلمي الرابع كلية علوم الحاسوب والرياضيات

$\alpha = 0.05$	0.5	33	8	49	9	54	8	115	7
$\beta = 0.10$	0.4	19	5	33	8	41	5	61	5
	0.2	13	3	17	5	21	6	30	5
	0.1	2	2	3	2	4	3	5	2
$\alpha = 0.10$	0.5	32	7	42	7	59	7	114	6
$\beta = 0.05$	0.4	29	6	39	5	55	5	97	6
	0.2	23	5	28	5	45	4	67	5
	0.1	2	2	3	2	3	1	3	1
$\alpha = 0.10$	0.5	42	6	45	7	54	6	123	6
$\beta = 0.10$	0.4	27	6	39	5	39	5	89	6
ρ 0.10	0.2	19	5	28	5	34	4	60	5
	0.1	2	2	3	2	3	1	3	1
				= 3	T_h				
	$\lambda_{_{1}}$								
		0.0	6	0.5		0.4		0.25	
		n_h	r_h	n_h	r_h	n_h	r_h	n_h	r_h
$\alpha = 0.05$	0.5	74	5	95	4	162	4	163	4
$\beta = 0.05$	0.4	31	3	46	3	77	3	154	3
,	0.2	7	2	8	2	15	1	22	1
	0.2								
	0.1	2	1	2	1	3	1	5	1
0.05		2 54	1	2 82	1	3 140	1	5 153	1
$\alpha = 0.05$	0.1		-						•
$\alpha = 0.05$ $\beta = 0.10$	0.1 0.5	54	4	82	4	140	4	153	4
	0.1 0.5 0.4	54 27	4	82 45	4	140 132	4	153 151	4
$\beta = 0.10$	0.1 0.5 0.4 0.2	54 27 6	4 3 2	82 45 9	4 3 2	140 132 13	4 2 1	153 151 17	4 2 1
	0.1 0.5 0.4 0.2 0.1	54 27 6 1	4 3 2 1	82 45 9 2	4 3 2 1	140 132 13 2	4 2 1	153 151 17 4	4 2 1
$\beta = 0.10$	0.1 0.5 0.4 0.2 0.1 0.5	54 27 6 1 62	4 3 2 1 4	82 45 9 2 77	4 3 2 1 3	140 132 13 2 131	4 2 1 1 3	153 151 17 4 140	4 2 1 1 3
$\beta = 0.10$ $\alpha = 0.10$	0.1 0.5 0.4 0.2 0.1 0.5 0.4	54 27 6 1 62 23	4 3 2 1 4 2	82 45 9 2 77 43	4 3 2 1 3 2	140 132 13 2 131 56	4 2 1 1 3 2	153 151 17 4 140 79	4 2 1 1 3 2
$\beta = 0.10$ $\alpha = 0.10$	0.1 0.5 0.4 0.2 0.1 0.5 0.4 0.2	54 27 6 1 62 23 4	4 3 2 1 4 2	82 45 9 2 77 43 11	4 3 2 1 3 2 1	140 132 13 2 131 56 17	4 2 1 1 3 2	153 151 17 4 140 79 22	4 2 1 1 3 2
$\beta = 0.10$ $\alpha = 0.10$ $\beta = 0.05$ $\alpha = 0.10$	0.1 0.5 0.4 0.2 0.1 0.5 0.4 0.2	54 27 6 1 62 23 4	4 3 2 1 4 2 1	82 45 9 2 77 43 11 2	4 3 2 1 3 2 1 1	140 132 13 2 131 56 17	4 2 1 1 3 2 1	153 151 17 4 140 79 22 5	4 2 1 1 3 2 1
$\beta = 0.10$ $\alpha = 0.10$ $\beta = 0.05$	0.1 0.5 0.4 0.2 0.1 0.5 0.4 0.2 0.1 0.5	54 27 6 1 62 23 4 2 43	4 3 2 1 4 2 1 1 3	82 45 9 2 77 43 11 2 65	4 3 2 1 3 2 1 1 1 3	140 132 13 2 131 56 17 3	4 2 1 1 3 2 1 1 3	153 151 17 4 140 79 22 5 155	4 2 1 1 3 2 1 1 3

: (2)

-1

[44]

•	(74)	_
		-3
	(γ)	-4
		-1
	•	-2
•		-3

(2.)

-2

- 1- Aslam,M,2007.Double acceptance sampling based on truncated life tests in Rayleigh distribution.Eur.J.Sci.Res.,vol.17,pp.605-611.
- 2- Epstein, B., 1954., Truncated life tests in the exponential case. Annals of Mathematical Statistics 25, 555 564.
- 3- Epstein, B. 1960, Estimation from life-test data, Technometrics, Vol. 2,447 454.
- 4- Gupta, S.S. and Groll, P.A. 1961, Gamma distribution in acceptance sampling based on life tests, JASA, vol. 56, pp. 942-970.
- 5- Jeong,H.S., Yum,B.J.and Kim,M.2003,Reliabiliy Acceptance Sampling plans for gamma-distributed lifetimes under hybrid censoring scheme,international workshop on reliability and its applications, seoul, korea, vol. 12, p.265-267
- 6- Srinivasa,R,G,2011,A hybrid group acceptance sampling plans for lifetimes based on generalized exponential distribution,J.Appl.Science,no.11,vol.(12)pp.2232- 2237.
 - 7- Palovko, A.M,1968. Fundamental of Reliability Theory . Academic Press, New-York.

(1)

```
%%%Reliability Acceptance Sampling Plan Program%%%%%
elpha=0.10;
beta=0.10;
zeta=3;
Th=0.25;
mu1=0.20;
nh=10000;
rh=10000;
mu=1;
pmu=gamcdf(Th,zeta,mu);
pmu1=gamcdf(Th,zeta,mu1);
for i1=1:nh
for i2=1:rh
if i1>=i2
k=0:(i2-1);
L1(i1,i2)=sum((factorial(i1)./(factorial(k).*factorial(i1-
k))).*(pmu.^k).*((1-pmu).^(i1-k)));
Lmul(i1,i2)=sum((factorial(i1)./(factorial(k).*factorial(i1-
k))).*(pmu1.^k).*((1-pmu1).^(i1-k)));
else
    L1(i1,i2)=0;
    Lmu1(i1,i2)=0;
end
end
end
for i1=1:nh
for i2=1:rh
if (L1(i1,i2)>=(1-elpha))&&(Lmu1(i1,i2)<=(beta))</pre>
  nnn(i1)=i1;
  rrr(i1)=i2;
end
end
end
n_h=min(nnn(find(nnn>0)))
r_h=min(rrr(find(rrr>0)))
```