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Abstract 
      In this paper, we present  extension forms of Dai, Yuan (DY) and 
Fletcher, Reveres (FR) CG algorithms. Our modifications and based on 
introducing a non-quadratic model  (sigmoid function model). These 
modified algorithms are implemented with Wolfe conditions, where initial 
step size kα  in each iteration is taken as kkkk dd /* 11 −−= αα  and the 
global convergence of the modified DY algorithm is investigated. These 
modified algorithms are tested on some standard test functions  and 
compared with the original  DY and FR algorithms showing considerable 
improvements over all these comparisons. 

   
  

  مدة على نموذج خوارزميات التدرج المترافق الموسع المعت

   المقيدةسكمود في الأمثلية غير
  

  الملخص

 Dai, Yuanفي هذا البحث تم تقديم صيغ معممة إلى خوارزميات التدرج المترافق من نـوع  

(DY) و Fletcher, Reveres (FR) . التطوير اعتمد على استخدام نموذج غير تربيعي وهو

 فـي التطبيـق مـع أخـذ         Wolfe شـروط     المستحدثة استخدمت الخوارزميات  .دودالة سكم 

kkkk dd /* 11 −−= αα التقارب المطلق لخوارزمية    التقصي عن   وتم  DY-CG .  اختبـرت

 مقارنة النتائج مع خوارزميات     تالخوارزميات المستحدثة باستخدام عدد من دوال الاختبار وتم       

DY و FRتائج كفوءة في هذا الاختبار الأصلية مع الحصول على ن.  
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Introduction: 
     Conjugate gradient (CG) methods represent an important class of 
unconstrained optimization algorithms with strong local and global 
convergence properties and low memory requirements. A survey of 
development of different versions of non linear CG method with special 
attentions to global convergence properties is presented by Hager and 
Zhang [12]. This family of algorithms includes a lot of variants (see[2]) 
well known in the literature, with important convergence properties and 
numerical efficiency . 
      For solving the non-linear unconstrained optimization problem: 

(1) ...                                                     nRxf(x),Min ∈  

where RRf n →:  is continuously differentiable function bounded from 

below. Starting from an initial guess: nRx ∈1 , a non linear CG method 
generates a sequence { }kx  as: 
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where kα  is obtained by line search .In eq. (3) kβ  is known as the 
conjugate gradient parameter, defined )( kxfg ∇= . Let kkk xxS −= +1   , 

kkk ggy −= +1 , the line search in the CG algorithms often is based on the 
standard Wolfe conditions [4]. 
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where kd  is descent direction, i.e.: 
(5) ...                                                                             0<k

T
k dg  

and 10 21 <≤< cc  , for some CG algorithms stronger version of the Wolf 
conditions (4a) and : 

(6) ...                                                              21 k
T
kk

T
k dgcdg −≤+  

  are needed to ensure convergence and to enhance stability [2]. 
     Different CG algorithms corresponding to different choice for the 
parameter kβ  therefore a crucial element in any CG algorithm  is the 
formula definition of kβ  because kα  is not exact in practice and objective 
function f  is not quadratic many formulas have been proposed to 
compute kβ  four well-known formulas kβ  are : 
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     where HS  stands Hestenes and Stiefle [13], FR  stands Fletcher and 
Reevers [11], PR  stands Polak-Riebier [14] and DY  stands Dai and Yuan 
[9]. All these methods are equivalent if the step size is exact and objective 
function is quadratic. 
     It is shown that CG methods with 11 ++ k

T
k gg  in the numerator of  kβ  have 

strong global convergence theorems with exact and inexact line searches 
(especially with Wolfe conditions) but has poor performance in practice 
although DY-CG method is better than FR-CG method in application . On 
the other hand, the CG methods with  k

T
k yg 1+  in the numerator of kβ  has 

uncertain global convergence for general non-linear functions, but has 
good performance in practice (see[12]for the details). Therefore CG 
methods have been frequently modified and improved by many authors 
Beale [6] and Powell [15] have described CG methods with improved 
restart. Andrei [5] introduced scaled CG methods. Fried [10], Al-Bayati 
[1], Tassopoulos el al [16] have proposed further modifications of the  
conjugate gradient methods which are based on some non-quadratic 
models. 
     In this paper we generalize the FR-CG and DY-CG methods by 
considering more general function than quadratic which we call it as 
quasi- sigmoid function, our goal is to preserve the convergence properties 
of these methods (FR , DY) and to force their performance in practice. 
 
2- Generalized CG methods based on non-quadratic model. 
 
2-1 Introduction to non-quadratic models  
     most of the currently used optimization methods use a local quadratic 
representation of the objective function. But the use of quadratic model 
may be inadequate to incorporate all the information [10] so that more 
general models than quadratic are proposed as a basis for CG algorithms. 
If )(xq   is a quadratic function defined by: 

(7) ...                             
2
1)( cbGxxxq TT ++=  

where G  is nn×  symmetric and positive definite matrix and b is Constant 
vector in nR  and c constant. Then we say that f  is defined as a nonlinear 
scaling of )(xq  if the following conditions hold [7]: 

(8) ...                            0q     ,        F(q(x))f(x) >=  
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and  
(9) ...                                                               0

dq
dF
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In this area there are various published works. 

a) A CG methods which minimize the function : 
)     ... (R  ,  x    ,p(q(x))f(x) n p 100 ∈>=  

 most n-steps have been described by [10]. 
b) The special polynomial case  

(11) ...                   
2
1 2

21 (x)qεq(x)εF(q(x)) +=  

     where 21  ,  εε  scalars have been investigated by [7]. 
c) A rational model has been developed by [16] where  
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d) Another rational model was considered by [1] where : 
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2-2 The New Extended CG method 
       In this paper we consider the new model function defined by: 

).14...())(()( axfLogxh =  
where 

).14...(
1

)())(()(
)(

b
e

xqxqFxf
xq−+

=  
 

This is  the logarithmic quasi-sigmoid function where 0>q  with further 
assumption that: 
                           (15) ...                                                         .  0>

dq
dF  

From equation (14.b) we have: 
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Return to equation (14) and solve it for q assuming that rqqe q ++−=− 2
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where 
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From  (16) and (17) to compute F ′  , assuming 
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Then we can compute the value of kρ  using function values at two 
points 1+kx  and kx  as follows :  

(20) ...       
)112(

)1(
*

)1(

)112(

2
1

1
1

2
11

2

2

−++−

−+

−+

−++−
=

+
+

+

++

k
k

k

kk

kk

k
k

k

k

f
f

f
f

η

ηη

ηη

η
ρ  

 

The extended DY-CG method can be done by modifying search directions 
given in (3) as follows: 
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The original DY-CG method and EDY-CG algorithm defined in (21-23) 
generates the same set of directions and same sequence of points { }kx by 
using the following theorem: 
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Theorem (1): 
      Given an identical starting point nRx ∈0 . 
The method of DY-CG defined by (2) and (3) with Dyβ  and applied to 

)()( xqxf =  and extended EDY-CG method defined by (21-23) and applied 
to ))(()( xqFxf =  with kρ  defined by (20) generate identical set of 
directions and identical sequence of points{ }kx . 
Proof:  
     The prove is by induction for 0=k   
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Hence the two  methods generate  the same set of directions. 
The FR-CG method can be extended in a similar way, i.e.: the 

search direction in EFR-CG method  is given by: 
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3-Convergence Analysis: 

In this section we are going to discuss the convergence theorem of 
EDY-CG which is similar to the theorem given by Dai and Yuan in [9]. 
We assume that the objective function satisfies the following conditions: 

1. f   is bounded below and belong to 2C . 
2. Level set { })()(: ixfxfx ≤=L   is bounded. 
3. g   is Lipschitz continuous in N , where N is neighborhood of L and 

0L    >∃     S.t: 
(25) ...                             )()( yxLygxg −≤−  

Most of CG methods use  the Zoutendijk theorem to establish global 
convergence hence we state this theorem. 
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Zoutendijk theorem: 
     Suppose 1x is a starting point for which assumptions (1,2,3) are 
satisfied. Consider any algorithm of the for kkkk dxx α+=+1   where kd  is 
descent direction and kα satisfies the standard Wolfe conditions (4a,4b) 
then: 
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Proof: see [9] 
 
Theorem (2): The search directions generated by EDY-CG algorithm are 
descent directions. 
Proof: 
     The proof is by indication for 0=k   we have: 
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By (4b)  
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Hence the search direction are descent and independent to kρ . 
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Theorem (3): Consider any iteration of the form kkkk dxx α+=+1  where kd  
defined in (22) and kα  satisfies the standard Wolfe conditions         (4a , 
4b) further assume that assumption (1, 2, 3) are valid then the algorithm 
either stops at stationary point. 
i.e.: 0=kg  or 0inflim =kg . 
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which is contradiction with Zoutendijk theorem hence 0=kg  therefore 
EDY-CG algorithm is globally convergent. The global convergence of 
EFR-CG method can be established by further assumptions such as 
sufficient descent and 

2
1

2 <C  in standard Wolfe conditions, but we can not 

be sure that EFRCG method generates sufficient descent directions! And 
hence convergence analysis of EFR-CG method is omitted. 
 
4-Numerical results and comparisons: 
     In this section we present computation performance of a Fortran 
implementation of the of EDY-CG and the EFR-CG algorithms on a set of 
unconstrained optimization test problem, these problems are taken from 
[8] and [3]. We selected Large scale unconstrained optimization problems 
in extended or generalized form see appendix for each function we have 
considered numerical experiments with the number of variables n=100 
,500, 1000 ,10000 . 
    All algorithms implement with the standard Wolfe line search 
conditions with  
 

9000010 21 .     ,   C.C ==  and 11 1 g=α  and   kkkk dd /* 11 −−= αα  
 
In  all cases the stopping criteria is  610−≤kg  ,  
The comparison is based on number of iteration (nit), number of function 
gradient evolutions (fge) , and ability of the algorithms to solve particular 
problems. 
 
  All codes are written in double precision FORTRAN (2000) and 
compiled with f77 default compiler settings, these cods are originally  
authored by Necula Andrei and modified by the authors. 
     In table (1) and (2) we compare the EDY-CG and EFR-CG with DY-
CG and  FR-CG for n=100 , 500 and 1000,10000, respectively, Where * 
in table (1) and (2) means that  the algorithm is unable to solve the 
problem in less than the maximum number of iterations which is 
considered to be 2000 in our tests. It is shown in Table (2) that some 
algorithms fail 
to solve problems (4,7,12), for n=1000 or n=10000. To find the total 
number of iterations or total number of function gradient evolutions, we 
replaced the * in each column by the sum of that column divided by 
15(the number of  test problems ). In Tables (3) and (4)we presented the 
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performance of the all algorithms in terms of percentage where FR-CG 
method is considered as 100%, from Table(3) we see that all algorithms 
improve FR-CG method about (4%-37%) in the number of iteration (nit), 
and about (6%-29%) in the number of function gradient evolutions for 
n=100 and for n=500,  also from Table (4) we observe that the 
improvements over FR-CG method are about (5%-43%) in (nit), and (7%-
31%). 

 
Table (1) Comparison of algorithms for n=100, 500 

 DY-CG FR-CG EDY-CG EFR-CG 
PN0 n nit fge nit fung nit fge nit fge 

1 102 18 34 19 35 18 34 19 35 
 500 75 122 76 126 75 119 76 126 
2 102 10 81 47 93 40 80 55 110 
 500 40 89 44 89 40 89 16 94 
3 102 83 125 95 150 94 147 106 168 
 500 226 366 228 371 213 325 215 343 
4 102 73 113 102 161 76 119 101 160 
 500 243 395 380 675 179 285 285 424 
5 102 10 21 32 64 10 21 32 64 
 500 11 22 26 52 11 22 26 52 
6 102 40 61 37 67 39 60 37 67 
 500 42 76 44 77 40 74 42 71 
7 102 79 151 180 313 87 165 163 308 
 500 80 147 248 372 80 152 241 369 
8 102 46 84 124 231 47 83 124 230 
 500 133 232 274 472 120 207 273 471 
9 102 31 59 71 110 31 59 70 110 
 500 24 48 70 126 35 67 42 81 

10  102 39 59 40 65 37 57 40 70 
 500 33 52 39 63 36 56 38 62 

11 102 15 30 13 25 12 23 13 25 
 500 12 24 11 22 12 24 11 22 

12 102 85 133 121 218 84 131 285 424 
 500 179 275 193 355 167 263 205 373 

13 102 106 166 106 166 101 156 116 176 
 500 254 401 220 359 240 381 227 373 

14 102 55 874 34 57 40 567 30 52 
 500 88 929 30 55 28 55 30 55 

15 102 78 177 89 174 77 173 96 190 
 500 67 146 380 675 65 142 196 354 

Total  2305 5492 3373 5818 2134 4136 3240 5459 
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Table (2) Comparison of algorithm for n=1000. 1000 
 DY-CG FRCG EDYCG EFRCG 

PN0 N nit fge nit fge nit fge nit fge 
1 103 38 65 38 65 38 65 38 73 
 104 35 61 32 60 35 61 33 60 
2 103 39 85 78 131 39 84 78 131 
 104 38 86 54 106 38 86 54 106 
3 103 393 629 349 568 415 649 377 616 
 104 1051 1654 1417 2160 1241 1949 1289 2077 
4 103 326 545 * * 329 554 517 811 
 104 * * * * * * * * 
5 103 15 29 77 129 15 29 77 129 
 104 13 27 1392 1443 16 33 1384 1430 
6 103 64 101 73 115 65 102 73 115 
 104 65 102 180 300 85 153 1293 1366 
7 103 85 156 * * 61 114 * * 
 104 89 170 * * 100 191 * * 
8 103 160 280 445 711 182 317 445 710 
 104 609 1072 1279 2203 550 965 1279 2204 
9 103 26 51 47 84 53 97 56 108 
 104 28 54 47 84 30 59 104 162 

10 103 69 1081 43 68 39 59 43 65 
 104 478 4662 160 3964 500 5363 168 3958 

11 103 15 31 15 29 14 29 14 28 
 104 9 20 11 22 8 19 11 22 

12 103 243 381 345 634 230 361 235 434 
 104 662 1027 * * 560 871 * * 

13 103 362 564 335 541 321 496 348 562 
 104 1208 1891 1137 1846 1029 1765 1668 2151 

14 103 141 3956 142 3616 157 4477 140 3614 
 104 176 4862 203 5655 129 3327 203 5655 

15 103 100 235 107 211 102 252 186 389 
 104 161 452 1132 1496 148 332 646 827 
  7144 25950 12184 34988 6964 24382 11601 32845

 
 
     Table(3) Comparison of the algorithms, for n=100 and n=500 

Measure FR-CG DY-CG EFR-CG EDY-CG 
nit 
fge 

100% 
100% 

68% 
94% 

96% 
93% 

63% 
71% 

 
     Table(4) Comparison of the algorithms, for n=1000and n=10000 

Measure FR-CG DY-CG EFR-CG EDY-CG 
nit 
fge 

100% 
100% 

58% 
74% 

95% 
93% 

57% 
69% 

 



               _________________________   Generalized CG-algorithms… ]134[

Appendix  

],2.0,...,2.0 ,2.0 ,2.0[        x,sin)cos1(cosf(x)         

Function  ricTrigonomet  Extended     .1

0

2

11

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

==
ii

n

j
j

n

i
xxxn

 

100c    , ]1,2.1,...,1 ,2.1[     x          ,)1()c(f(x)       

FunctionRosenbrok  Extended    .2

0
2

12
1i

23
122

2
n

=−−=−+−= −
=

−∑ iii xxx  

 

]5.0,...,5.0,5.0[      x                              ,f(x)       

 Function   Quadratic Perturbed   .3

0

n

1i

2

1
10
12 =⎟

⎠

⎞
⎜
⎝

⎛
+= ∑ ∑

= =

n

i
ii xix

 

 

∑
=

=−=
n

i
ii

i xx
1

010 ]1,...,1,1[x          ),)(exp(f(x)       

(1)Raydan         .4
 

]2,...,2,2[ x          )1()32(f(x)      

1 lTridiagona Extended   .5

0

n/2

1i

4
212

2
12 =+−+−+=∑

=
−− iii xxix

 

 

    ,-1][-1,-1,...x                                                                                          

  ,)1)35(()13)35((                

)13)35((f(x)         
Function  2 lTridiagona dGeneralize     .6

0

1-n

1i

2
1

22
11

2

2
21

2
11

=

+−−−++−−−−

++−−−=

∑
=

−+− nnnniiiii xxxxxxxxx

xxxx
 

]1,0,1,3,...,1,0,1,3[x                                                                                          

   ,)(x10)2(x)(x5)10(xf(x)       

Function  Powell  Extended     .7

0

4
43-4i

4
142-4i

2
41-4i

n/4

1i

2
243-4i

−−=

−+−+−++= −
=

−∑ iiii xxxx  

]5.0,...5.0[      x                              xf(x)      

Perturbed Diagonal Quadratic  .8

0
1

2
100

2n

1i
i =+⎟
⎠

⎞
⎜
⎝

⎛
= ∑∑

==

n

i
i

i x
 

{
}

]1,3,1,3,...1,3,1,3[ x                                                                                          
    ),1)(1(8.19)1(x                       

)1(1.10)1()(90)1()(100 f(x)      

Function    WoodExtended    .9

0

424
2

4i

n/4

1i

2
24

2
14

2
4

2
14

2
34

2
24

2
34

−−−−−−−−=
−−+−

+−+−+−+−+−=

−

=
−−−−−−∑

ii

iiiiiii

xx

xxxxxxx

 



The Second Scientific Conference of Mathematics-Statistics& Information_ ]135[

0.1c ],1,...,1,1[x                    ),1)(1()1(x f(x)        

Function  2 lTridiagona  Extended  .10

01

1-n

1i

2
1i ==+++−= +

=
+∑ iii xxcx

 

]1,...,1[  x                              )(100)1(xf(x)      

FunctionNONDILA   .11

0
2

22
11

2
1 −−=−+−= ∑

=
−

n

i
ixx

 

 
 
 

 
 
 
 
 

 

]5.0,...,5.0,5.0[     x                    ,)(xf(x)       

Quodratic Perturbed lTridiagona    .13

0
2

11

1

2

22
i =++++= +−

−

∑ iii

n

i xxxix
 

 

]2,...,2,2[      x                    )34()( f(x)        

(CUTE)Function   ENGAL1    .14

0

1-n

1i

1-n

1i

22
1

2 =+−++= ∑∑
==

+ iii xxx
 

∑
=

−− =++=

=
2/

1
0

22
2i

2
1212   ,0.1].1,0.1,...[1.1,0.1,1        x                              ,  1)-x( f(x)       

100)(c   Function,  Maratos Extended    .15
n

i
ii xcx

 
 
References: 
 
[1] AL. Bayate. A., "A new non-quadratic model for unconstrained 

nonlinear  optimization " Mu tah.J.  For research and studies 
Vol.8, No.1 , 1993. 

[2] Andrei. N,"40 conjugate gradient algorithm for unconstrained 
             optimization" ICI Technical Report No.13108 , 2008 
[3] Andrei. N., "An unconstrained optimization test functions Collection", 

Advanced Modeling and Optimization, 10 , 2008.         
[ 4] Andrei. N., "Numerical comparison of conjugate gradient algorithms    

for unconstrained optimization" Studies in formtics and control, 16 , 
2007. 

[5] Andrei. N., "A scaled conjugate gradient algorithms for unconstrained     
optimization", Computational opti. And Applications  Vol.38, No.3, 
2007. 

( ) ( ) ( )

( )

]2,...,2,2[    x1,k4  0,k3  0,k2 1,k1  0.125,  0,  1,     

 ,                     

)(xx1f(x)      

Function DIXMANE  .12

0

4
2

1
2

3
2

1

42222
11

1

1

2
i

n

1i

12
i

========

+

++++=

∑

∑∑∑

=
+

=
+++

−

==

γβα

δ

γβα

k
n
i

m

i
mii

k
n
i

m

i
mii

k
n
i

ii

n

i

k
n
i

xx

xxxx



               _________________________   Generalized CG-algorithms… ]136[

[6] Beal. E. M., "A derivation of conjugate gradients", In Nonlinear 
Optimization. (Lootsma F. A., ed) Newyourk Academic Press , 1972. 

[7] Boland. W.R., Kamgnia. E. and Kowallik. J.,"A conjugate gradient  
optimization method invariant to non-linear scaling" J. of 
optimization theory and Application,27 , 1979. 

[8] Bongartz. I.,. Conn. A. R, Gould. N. I. M.  and Toint. P.L., CUTE," 
Constrained and unconstrained "testing environment, ACM Trans. 
Math. Software, 21 , 1995. 

[9] Dai. Y. H.  and Yuan. Y., "A nonlinear conjugate gradient method      
with a strong global convergence property" SIAM J. optimization, 10 
, 1999. 

[10] Fried. I.,"N-step conjugate gradient minimization scheme for Non-
quadratic functions", AIAAJ.9 , 1997. 

[11] Fletcher. R. and Reeves. C., "Function immunization by conjugate   
gradients", Comput .J.7 , 1964. 

[12] Hager W. W. and Zhang. H, "A surrevy of nonlinear conjugate 
gradient methods "Paaific Journal of optimization.2,2006. 

 [13] Hestenes. M.R and Stiefel. E. L. ,"Methods of conjugate gradients 
for solving linear systems "J. Research Nat.Bur.Standards.49 , 1952. 

 [14] Polok. E. and Rbiere. G. R. "Note sure La conjugate de directions  
               conjugies"ev. Francaise Informants Recherché operatioelle,3e 

Annei ,16.    (1969) 
 [15] Powell. M. J., "Restart Procedure for conjugate gradient method", 

Math. Programming, 12 , 1977. 
 [16] Tassopoulus. A. and Story. C., "A variable metric method usin  non-

Quadratic model" J. of optimization theory and Applications Vol.43, 
No.3 , 1984. 


