المجلة العراقية للعلوم الاحصائية (17) 2010 عدد خاص بـوقائع المؤتمر العلمي الثاني للرياضيات –الاحصاءوالمعلوماتية [82–65] م ص ص [82–65]

Korteweg-de Vries-Burger

Korteweg-de Vries-Burger (KdV-B) (explicit scheme)

.Crank-Nicholson

Crank-Nicholson

Fourier(Von Neumann)

Crank-Nicholson

 $k \leq (vh^2 / 2(v^2 + \frac{\mu^2}{h^2}))$

Numerical Solution and Stability Analysis of Korteweg-de Vries-Burger Equation

ABSTRACT

Numerical Solution of Korteweg-de Vries-Burger (KdV-B) equation is presented using two finite difference methods ,the explicit scheme and Crank-Nicholson scheme. The accuracy of computed solutions is examined by comparison with analytical solution using example , and it has been found that the explicit scheme is simpler while the Crank-Nicholson is more accurate and has faster convergent . Also , the stability analysis of the two methods by using Fourier (Von Neumann) method has been done and the result was showed that the explicit scheme is stable under the condition $k \le (vh^2/2(v^2 + \frac{\mu^2}{h^2}))$ and the Crank-Nicholson is unconditionally stable.

2009/7/1:

2009/12/6:

^{*} استاذ مساعد/ قسم الرياضيات/كلية علوم الحاسبات والرياضيات ** مدرس/ قسم الرياضيات/كلية علوم الحاسبات و الرياضيات

_____ [66]

: **.1**

Korteweg-de Vries-Burger

) (dispersion) . (KdV-B)

. [2] (dissipation

•

KdV-B

[10] .[6] Burger

[1] .[0,1] KdV-Burger

Decomposition [3] . KdV-Burger

KdV-B Burger's KdV

KdV-B [6]

[2] . Adomain decomposition

Bernstein KdV-Burger

KdV-Burger

Crank-Nicholson

: **.2**

[8]: Korteweg-de Vries – Burger

$$\frac{\partial u}{\partial t} + \varepsilon u \frac{\partial u}{\partial x} - v \frac{\partial^2 u}{\partial x^2} + \mu \frac{\partial^3 u}{\partial x^3} = 0 \qquad \dots (1)$$

 μ, v, ε

 $u(x,0) = u_0(x)$

$$u(a,t) = \beta_{1}, \quad u(b,t) = \beta_{2} \qquad , t \ge 0$$

$$u_{x}(a,t) = u_{x}(b,t) = 0 \qquad , t \ge 0$$

$$u_{xx}(a,t) = u_{xx}(b,t) = 0 \qquad , t \ge 0$$

$$[a,b] \qquad (1) \qquad . \qquad u_{0}(x)$$

KdV-

 $\mu \to 0$ Burger $\nu \to 0$ KdV B

: .**3**

$$u_{x}(x_{i}, y_{j}) = \frac{u_{i+1}^{j} - u_{i-1}^{j}}{2.h} \qquad ...(3)$$

$$u_{xx}(x_i, y_j) = \frac{u_{i+1}^j - 2u_i^j + u_{i-1}^j}{h^2} \dots (4)$$

$$u_{xxx}(x_{i}, y_{j}) = \frac{u_{i+2}^{j} - 2u_{i+1}^{j} + 2u_{i-1}^{j} - u_{i-2}^{j}}{2.h^{3}} \dots (5)$$

[4](

$$\frac{\partial u}{\partial x} = \frac{-3 u_i^{\ j} + 4 u_{i+1}^{\ j} - u_{i+2}^{\ j}}{2 \ h} \dots (6)$$

$$\frac{\partial u}{\partial x} = \frac{3 u_i^{j} - 4 u_{i-1}^{j} + u_{i-2}^{j}}{2 h} \dots (7)$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{2u_i^j - 5u_{i+1}^j + 4u_{i+2}^j - u_{i+3}^j}{h^2} \dots (8)$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{2u_i^{\ j} - 5u_{i-1}^{\ j} + 4u_{i-2}^{\ j} - u_{i-3}^{\ j}}{h^2} \qquad \dots (9)$$

$$\frac{\partial^3 u}{\partial x^3} = \frac{-5 u_i^{\ j} + 18 u_{i+1}^{\ j} - 24 u_{i+2}^{\ j} + 14 u_{i+3}^{\ j} - 3 u_{i+4}^{\ j}}{2 h^3} \dots (10)$$

$$\frac{\partial^3 u}{\partial x^3} = \frac{5 u_i^{\ j} - 18 \ u_{i-1}^{\ j} + 24 \ u_{i-2}^{\ j} - 14 \ u_{i-3}^{\ j} + 3 u_{i-4}^{\ j}}{2 \ h^3} \qquad \dots (11)$$

[4]:
$$O(h^4)$$
.

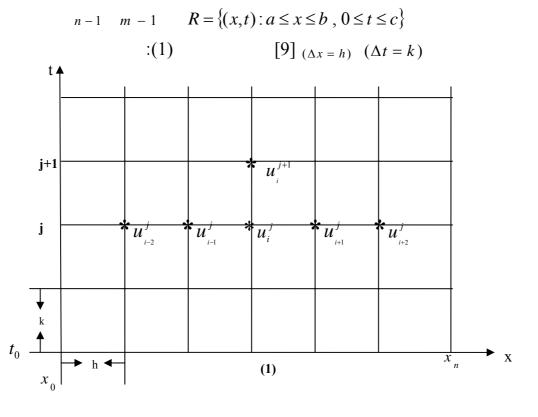
$$\frac{\partial u}{\partial x} = \frac{-u_{i+2}^{j} + 8.u_{i+1}^{j} - 8.u_{i-1}^{j} + u_{i-2}^{j}}{12h} \qquad \dots (12)$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{-u_{i+2}^j + 16 \cdot u_{i+1}^j - 30 \cdot u_i^j + 16 \cdot u_{i-1}^j - u_{i-2}^j}{12 \cdot h^2} \dots (13)$$

______ [68]

KdV-Burger (Explicit Scheme)

.3-1



$$t = t_0 = 0$$

$$u(x_i, t_0) = u_0(x) , i = 0,1,2,3,..., n$$

$$u(x, t)$$

$$\{ u(x_i, t_j) : i = 1,2,..., n - 1 , j = 1,2,..., m \}$$

:

$$i=1$$
 $u(x_i,t_j)$

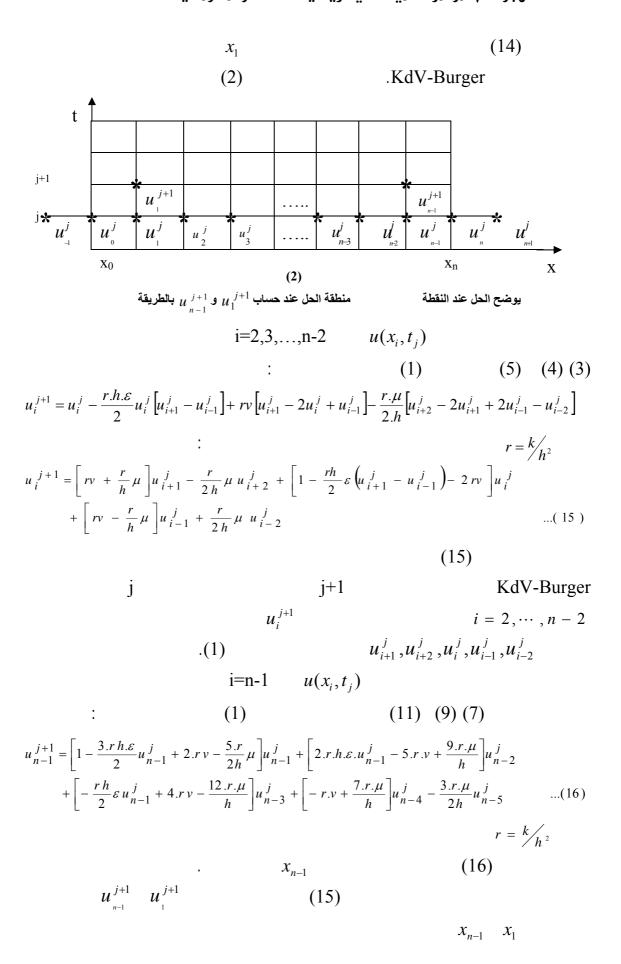
(10) (8) (6) (Forward Finite Difference equations)

 $\frac{u_{i}^{j+1} - u_{i}^{j}}{k} + \varepsilon u_{i}^{j} \left[\frac{-3u_{i}^{j} + 4u_{i+1}^{j} - u_{i+2}^{j}}{2h} \right] - v \left[\frac{2u_{i}^{j} - 5u_{i+1}^{j} + 4u_{i+2}^{j} - u_{i+3}^{j}}{h^{2}} \right] + \mu \left[\frac{-5u_{i}^{j} + 18u_{i+1}^{j} - 24u_{i+2}^{j} + 14u_{i+3}^{j} - 3u_{i+4}^{j}}{2h^{3}} \right] = 0$

$$r = \frac{k}{h^{2}}$$

$$u_{i}^{j+1} = \left[1 + \frac{3.r.h.\varepsilon}{2}u_{i}^{j} + 2rv + \frac{5.r}{2h}\mu\right]u_{i}^{j} + \left[-2.r.h.\varepsilon.u_{i}^{j} - 2.r.v - \frac{9.r}{h}\mu\right]u_{i+1}^{j}$$

$$+ \left[\frac{rh\varepsilon}{2}u_{i}^{j} + 2rv + \frac{12.r}{h}\mu\right]u_{i+2}^{j} + \left[-rv - 7\frac{r}{h}\mu\right]u_{i+3}^{j} + \frac{3.r}{2h}\mu u_{i+4}^{j} \qquad \dots (14)$$



[70]

 $u_{n+1}^j \quad u_{-1}^j$ (Focus)

(2)

.(2)

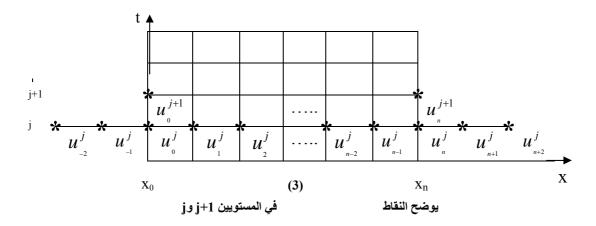
3-1-1

KdV-Burger

$$x = b \quad x = a \quad (2)$$

:
$$x_{-2}, x_{-1}, x_{n+1}, x_{n+2}$$

 $x_{-2} = x_0 - 2\Delta x, x_{-1} = x_0 - \Delta x, x_{n+1} = x_n + \Delta x, x_{n+1} = x_n + 2\Delta x$
:(3)



$$\frac{\partial u(a,t)}{\partial x} = 0$$
$$\frac{\partial u(b,t)}{\partial x} = 0$$

i=0(3)

$$\frac{u_{0+1}^{j} - u_{0-1}^{j}}{2.h} = 0$$

$$u_{1}^{j} = u_{-1}^{j}$$
...(17)

i=n

$$\frac{u_{n+1}^{j} - u_{n-1}^{j}}{2.h} = 0$$

$$u_{n+1}^{j} = u_{n-1}^{j}$$
...(18)

$$\frac{\partial^2 u(a,t)}{\partial x^2} = 0$$

$$\frac{\partial^2 u(b,t)}{\partial x^2} = 0$$

(17)
$$i=0$$
 (13)
$$u_{-2}^{j} = 32 u_{1}^{j} - 30 u_{0}^{j} - u_{2}^{j} \qquad ...(19)$$

$$\vdots \qquad i=n$$

$$u_{n+2}^{j} = 32 u_{n-1}^{j} - 30 u_{n}^{j} - u_{n-2}^{j} \qquad ...(20)$$

$$i=0 \qquad (15) \qquad (19) \qquad (17)$$

$$\vdots \qquad (21)$$

$$u_0^{j+1} = \left[1 - 2 \ r \ v - \frac{15 \ .r}{h} \mu\right] u_0^{j} + \left[2 \ r \ v + \frac{16 \ .r}{h} \mu\right] u_1^{j} - \frac{r}{h} \mu u_2^{j} \qquad \dots (21)$$

: i=n (15) (20) (18)

$$u_n^{j+1} = \left[1 - 2rv + \frac{15.r}{h}\mu\right]u_n^j + \left[2rv - \frac{16.r}{h}\mu\right]u_{n-1}^j + \frac{r}{h}\mu u_{n-2}^j \qquad \dots (22)$$

KdV-Burger Crank-Nicholson 3-2

(John Crank and Phyllis Nicholson)

(10) (8) (6)

$$u_{xxx} \qquad u_{xx} \qquad u_{x}$$

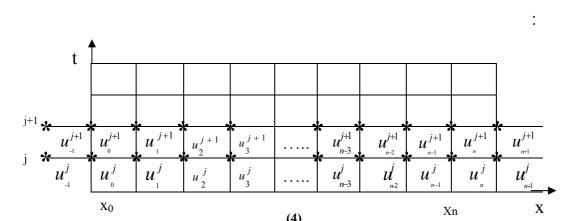
$$u(x_i,t_j) \qquad u(x,t) \qquad (j+1) \quad (j)$$

$$u_1^{j+1}$$

(1)

(Forward Finite Differences equations)

(4)



Crank-Nicholson يوضح الحل عند النقطة منطقة الحل عند حساب u_1^{j+1} و u_1^{j+1} بطريقة

_____ [72]

$$\left[1 - \frac{3 \cdot r h \varepsilon}{4} u_{i}^{\ j} - r v - \frac{5 \cdot r \cdot \mu}{4 h}\right] u_{i}^{\ j+1} + \left[r h \varepsilon u_{i}^{\ j} + \frac{5}{2} r v + \frac{9 \cdot r \cdot \mu}{2 h}\right] u_{i+1}^{\ j+1} + \left[-\frac{r h \varepsilon}{4} u_{i}^{\ j} - 2 r v - \frac{6 \cdot r \cdot \mu}{h}\right] u_{i+2}^{\ j+1} + \left[\frac{r}{2} v + \frac{7 \mu \cdot r}{2 h}\right] u_{i+3}^{\ j+1} - \frac{3 \cdot r \cdot \mu}{4 h} u_{i+4}^{\ j+1} = \left[1 + \frac{3}{4} \varepsilon r h u_{i}^{\ j} + r v + \frac{5 \cdot r \cdot \mu}{4 h}\right] u_{i}^{\ j} + \left[-r h \varepsilon u_{i}^{\ j} - \frac{5}{2} r v - \frac{9 \cdot r \cdot \mu}{2 h}\right] u_{i+1}^{\ j} + \left[\frac{r h \varepsilon}{4} u_{1}^{\ j} + 2 r v + \frac{6 \cdot \mu \cdot r}{h}\right] u_{i+2}^{\ j} + \left[-\frac{r}{2} v - \frac{7 \cdot \mu \cdot r}{2 h}\right] u_{i+3}^{\ j} + \frac{3 \cdot r \cdot \mu}{4 h} u_{i+4}^{\ j} + \dots$$

$$\dots (23)$$

$$u(x_{i}, t_{j+1})$$

$$(5) \quad (4) \quad (3)$$

$$\vdots \quad (1)$$

$$-\frac{r \cdot \mu}{4h} u_{i-2}^{j+1} + \left[-\frac{r \cdot h \cdot \varepsilon}{2} u_{i}^{j} - \frac{r \cdot v}{2} + \frac{r \cdot \mu}{2h} \right] u_{i-1}^{j+1} + \left[1 + r v \right] u_{i}^{j+1}$$

$$+ \left[\frac{r \cdot h \cdot \varepsilon}{2} u_{i}^{j} - \frac{r \cdot v}{2} - \frac{r \cdot \mu}{2h} \right] u_{i+1}^{j+1} + \frac{r \cdot \mu}{4h} u_{i+2}^{j+1} = \frac{r}{4h} \mu u_{i-2}^{j} + \left[\frac{r \cdot h \cdot \varepsilon}{2} u_{i}^{j} + \frac{r \cdot v}{2} - \frac{r \cdot \mu}{2h} \right] u_{i-1}^{j}$$

$$+ \left[1 - r v \right] u_{i}^{j} + \left[-\frac{r \cdot h \cdot \varepsilon}{2} u_{i}^{j} + \frac{r \cdot v}{2} + \frac{r \cdot \mu}{2h} \right] u_{i+1}^{j} - \frac{r \cdot \mu}{4h} u_{i+2}^{j} \qquad \dots (24)$$

$$r = k / h^{2}$$

(25) (24) (23)

Crank-Nicholson

.3-2-1

.

:
$$i=0$$
 (3) ...(26)

i=n

$$u_{n+1} = u_{n-1}$$
 ...(27)

(13)

(27) i=0

i=n

$$u_{n+2} = 32 \ u_{n-1} - 30 \ u_n - u_{n-2}$$
 ...(29)

: i=0 (24) (28) (26)

$$\left[1 + vr + \frac{15 \cdot r \cdot \mu}{2h}\right] u_i^{j+1} - \left[vr + \frac{8 \cdot r \cdot \mu}{h}\right] u_{i+1}^{j+1} + \frac{r \cdot \mu}{2h} u_{i+2}^{j+1}
= \left[1 - vr - \frac{15 \cdot r \cdot \mu}{2h}\right] u_i^{j} + \left[vr + \frac{8 \cdot r \cdot \mu}{h}\right] u_{i+1}^{j} - \frac{r \cdot \mu}{2h} u_{i+2}^{j} \qquad \dots(30)$$

$$\mathbf{i} = \mathbf{n} \qquad (24) \qquad (29) \qquad (27)$$

$$\left[1 + vr - \frac{15 \cdot r \cdot \mu}{2h}\right] u_i^{j+1} + \left[-vr + \frac{8 \cdot r \cdot \mu}{h}\right] u_{i-1}^{j+1} - \frac{r \cdot \mu}{2h} u_{i-2}^{j+1}
= \left[1 - vr + \frac{15 \cdot r \cdot \mu}{2h}\right] u_i^{j} + \left[vr - \frac{8 \cdot r \cdot \mu}{h}\right] u_{i-1}^{j} + \frac{r \cdot \mu}{2h} u_{i-2}^{j} \qquad \dots(31)$$

KdV-Burger

Crank-Nicholson

$$u_{i}^{0} = f(x_{i}), i = 0, 1, 2, 3, ..., n$$

$$\left[1 + vr + \frac{15 \cdot r \cdot \mu}{2 \cdot h}\right] u_{i}^{j+1} - \left[vr + \frac{8 \cdot r \cdot \mu}{h}\right] u_{i+1}^{j+1} + \frac{r \cdot \mu}{2 \cdot h} u_{i+2}^{j+1}$$

$$\left[1 + v \, r + \frac{15 \cdot r \cdot \mu}{2 \, h}\right] u_i^{j+1} - \left[v \, r + \frac{8 \cdot r \cdot \mu}{h}\right] u_{i+1}^{j+1} + \frac{r \cdot \mu}{2 \, h} u_{i+2}^{j+1} \\
= \left[1 - v \, r - \frac{15 \cdot r \cdot \mu}{2 \, h}\right] u_i^{j} + \left[v \, r + \frac{8 \cdot r \cdot \mu}{h}\right] u_{i+1}^{j} - \frac{r \cdot \mu}{2 \, h} u_{i+2}^{j} \qquad , i = 0 \, \forall \, j \ge 0$$

$$\begin{split} &\left[1-\frac{3.r\,h\,\varepsilon}{4}\,u_{i}^{\;j}-r\,v-\frac{5.r.\mu}{4h}\right]\!u_{i}^{\;j+1} + \left[r\,h\,\varepsilon\,u_{i}^{\;j}+\frac{5}{2}r\,v+\frac{9.r.\mu}{2h}\right]\!u_{i+1}^{\;j+1} + \left[-\frac{r\,h\,\varepsilon}{4}\,u_{i}^{\;j}-2\,r\,v-\frac{6.r.\mu}{h}\right]\!u_{i+2}^{\;j+1} \\ &+\left[\frac{r}{2}v+\frac{7\,\mu.r}{2h}\right]\!u_{i+3}^{\;j+1}-\frac{3.r.\mu}{4h}\;u_{i+4}^{\;j+1} = \left[1+\frac{3}{4}\varepsilon\,rh\,u_{i}^{\;j}+r\,v+\frac{5.r.\mu}{4h}\right]\!u_{i}^{\;j} + \left[-r\,h\,\varepsilon\,u_{i}^{\;j}-\frac{5}{2}r\,v-\frac{9.r.\mu}{2h}\right]\!u_{i+1}^{\;j} \\ &+\left[\frac{r\,h\,\varepsilon}{4}\,u_{1}^{\;j}+2\,r\,v+\frac{6.\mu.r}{h}\right]\!u_{i+2}^{\;j} + \left[-\frac{r}{2}v-\frac{7.\mu.r}{2h}\right]\!u_{i+3}^{\;j} + \frac{3.r.\mu}{4h}\;u_{i+4}^{\;j} \qquad , i=1\;,\forall\;j\geq0 \end{split}$$

... [74]

$$-\frac{r.\mu}{4h}u_{i-2}^{j+1} + \left[-\frac{r.h.\varepsilon}{2}u_{i}^{j} - \frac{r.\nu}{2} + \frac{r.\mu}{2h} \right]u_{i-1}^{j+1} + \left[1 + r\nu \right]u_{i}^{j+1} + \left[\frac{r.h.\varepsilon}{2}u_{i}^{j} - \frac{r.\nu}{2} - \frac{r.\mu}{2h} \right]u_{i+1}^{j+1} \\ + \frac{r.\mu}{4h}u_{i+2}^{j+1} = \frac{r}{4h}\mu u_{i-2}^{j} + \left[\frac{r.h.\varepsilon}{2}u_{i}^{j} + \frac{r.\nu}{2} - \frac{r.\mu}{2h} \right]u_{i-1}^{j} + \left[1 - r\nu \right]u_{i}^{j} \\ + \left[-\frac{r.h.\varepsilon}{2}u_{i}^{j} + \frac{r.\nu}{2} + \frac{r.\mu}{2h} \right]u_{i+1}^{j} - \frac{r.\mu}{4h}u_{i+2}^{j} \qquad , i = 2, ..., n - 2$$

$$\left[1 + \frac{3.rh\varepsilon}{4}u_{n-1}^{j} - r\nu - \frac{5.r.\mu}{4h} \right]u_{n-1}^{j+1} + \left[-rh\varepsilon u_{n-1}^{j} + \frac{5.r\nu}{2} - \frac{9.r.\mu}{2h} \right]u_{n-2}^{j+1} + \left[rh\varepsilon u_{n-1}^{j} - 2r\nu + \frac{6.r.\mu}{h} \right]u_{n-3}^{j+1} \\ + \left[\frac{r.\nu}{2} - \frac{7.r.\mu}{2h} \right]u_{n-4}^{j+1} + \frac{3.r.\mu}{4h}u_{n-5}^{j+1} = \left[1 - \frac{3}{4}rh\varepsilon u_{n-1}^{j} + r\nu - \frac{5.r.\mu}{4h} \right]u_{n-1}^{j} + \left[rh\varepsilon u_{n-1}^{j} - \frac{5.r\nu}{2} + \frac{9.r.\mu}{2h} \right]u_{n-2}^{j} \\ + \left[-\frac{rh\varepsilon}{4}u_{n-1}^{j} + 2r\nu - \frac{6.r.\mu}{h} \right]u_{n-3}^{j+1} + \left[-r\nu + \frac{8r}{h}\mu \right]u_{n-4}^{j+1} - \frac{r}{2h}\mu u_{n-5}^{j+1} \\ = \left[1 - \nu r + \frac{15}{2h}\mu \right]u_{n}^{j} + \left[\nu r - \frac{8r}{h}\mu \right]u_{n-1}^{j+1} + \frac{r}{2h}\mu u_{n-2}^{j} \\ + \left[\frac{rh\varepsilon}{2h}\mu u_{n-2}^{j} - \frac{r\nu}{2h}\mu u_{n-2}^{j} - \frac{r\nu}{2h}\mu u_{n-2}^{j+1} - \frac{r}{2h}\mu u_{n-2}^{j+1} - \frac{r}{2h}\mu$$

$$u_n^m$$
 Fourier(Von-Neumann)
[9]. $\beta \quad i = \sqrt{-1} \quad \psi(t) e^{i\alpha x}$

Fourier (Von-Neumann)

.4-1

KdV-Burger

Fourier Von Neumann

$$\begin{array}{c} \vdots & (n=1) \\ \frac{u_n^{m+1}-u_n^m}{k} = v \left[\frac{2u_n^m-5u_{n+1}^m+4u_{n+2}^m-u_{n+3}^m}{h^2} \right] - \mu \left[\frac{-5u_n^m+18u_{n+1}^m-24u_{n+2}^m+14u_{n+3}^m-3u_{n+4}^m}{2h^3} \right] \quad ...(32) \\ n=1 \\ \vdots & i=\sqrt{-1} \;\;, \alpha>0 \qquad \psi(t).e^{i\alpha x} \quad u_n^m \\ \frac{\psi(t+k).e^{i\alpha x}-\psi(t).e^{i\alpha x}}{k} = v \left[\frac{2.\psi(t).e^{i\alpha x}-5.\psi(t).e^{i\alpha(x+h)}+4.\psi(t).e^{i\alpha(x+2h)}-\psi(t).e^{i\alpha(x+3h)}}{h^2} \right] \\ -\mu \left[\frac{-5.\psi(t).e^{i\alpha x}+18.\psi(t).e^{i\alpha(x+h)}-24.\psi(t).e^{i\alpha(x+2h)}+14.\psi(t).e^{i\alpha(x+3h)}-3.\psi(t).e^{i\alpha(x+4h)}}{2.h^3} \right] \quad ...(33) \\ r=\frac{k}{h^2} \qquad \qquad \frac{k}{e^{i\alpha x}} \qquad (33) \\ \frac{\psi(t+k)}{\psi(t)} = 1+v.r[2-5.e^{i\alpha h}+4.e^{2i\alpha h}-e^{3i\alpha h}]+\frac{\mu.r}{2h}.[5-18.e^{i\alpha h}+24.e^{2i\alpha h}-14.e^{3i\alpha h}+3.e^{4i\alpha h}] \\ \hline [7] \\ \frac{\psi(t+k)}{\psi(t)} = 1+v.r.\left[(1-e^{i\alpha h})^3+(1-e^{i\alpha h})^2\right]+\frac{\mu.r}{2h}\left[3(1-e^{i\alpha h})^4+2(1-e^{i\alpha h})^3\right] \\ = 1+r.Y(1-e^{i\alpha h})^3+r.(1-e^{i\alpha h})^2.(v+Z(1-e^{i\alpha h})^2) \end{array}$$

$$Y = (v + \frac{\mu}{h}) \quad Z = \frac{3 \cdot \mu}{2 \cdot h}$$

$$\frac{\psi(t+k)}{\psi(t)} = 1 + r \cdot Y(8 \cdot \sin^{6}(\frac{\alpha h}{2}) - 12 \cdot i \cdot \sin(\alpha h) \cdot \sin^{4}(\frac{\alpha h}{2}) - 6 \cdot \sin^{2}(\alpha h) \cdot \sin^{2}(\frac{\alpha h}{2}) + i \cdot \sin^{3}(\alpha h))$$

$$+ r \cdot (4 \cdot \sin^{4}(\frac{\alpha h}{2}) - 4 \cdot i \cdot \sin(\alpha h) \cdot \sin^{2}(\frac{\alpha h}{2}) - \sin^{2}(\alpha h)) \cdot (v + Z(4 \cdot \sin^{4}(\frac{\alpha h}{2}) - 4 \cdot i \cdot \sin(\alpha h) \cdot \sin^{2}(\frac{\alpha h}{2}) - \sin^{2}(\alpha h))) = A + i \cdot B = \xi$$

$$\vdots \qquad (Amplification Factor)$$

$$A = 1 + 8 \cdot Y \cdot r \cdot \sin^{6}\left(\frac{\alpha h}{2}\right) - 6 \cdot Y \cdot r \cdot \sin^{2}\left(\alpha h\right) \cdot \sin^{2}\left(\frac{\alpha h}{2}\right) - 24 \cdot r \cdot Z \cdot \sin^{2}\left(\alpha h\right) \cdot \sin^{4}\left(\frac{\alpha h}{2}\right) + 16 \cdot r \cdot Z \cdot \sin^{8}\left(\frac{\alpha h}{2}\right) + 4 \cdot r \cdot v \cdot \sin^{4}\left(\frac{\alpha h}{2}\right) - r \cdot v \cdot \sin^{2}\left(\alpha h\right) + r \cdot Z \cdot \sin^{4}\left(\alpha h\right)$$

$$B = \sin(\alpha h) \cdot \left(-12 \cdot Y \cdot r \cdot \sin^{4}\left(\frac{\alpha h}{2}\right) + Y \cdot r \cdot \sin^{2}\left(\alpha h\right) - 4 \cdot r \cdot v \cdot \sin^{2}\left(\frac{\alpha h}{2}\right) - 32 \cdot Z \cdot r \cdot \sin^{6}\left(\frac{\alpha h}{2}\right) + 8 \cdot Z \cdot r \cdot \sin^{2}\left(\alpha h\right) \cdot \sin^{2}\left(\frac{\alpha h}{2}\right)\right)$$

$$\left| \frac{\psi(t + \Delta t)}{\psi(t)} \right| = \xi \le 1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$|\xi| = \sqrt{\xi \, \xi} = \sqrt{A^2 + B^2}$$

$$\alpha h \qquad \sin^2 \frac{\alpha h}{2} = 1 \qquad A^2 + B^2 \le 1 \qquad |\xi| \le 1$$

$$[5] () \qquad \sin^2 \beta k$$

$$A^2 + B^2 = (1 - r.(-2.Y + 7.Z - 3.v)^2 + r^2.(-11.v - 4.v - 24.Z)^2$$

: Z Y

$$\Rightarrow r \le \frac{2 \cdot (-5 \cdot v + \frac{17 \cdot \mu}{2 \cdot h})}{(-5 \cdot v + \frac{17 \cdot \mu}{2 \cdot h})^2 + (15 \cdot v + \frac{47 \cdot \mu}{h})^2} \dots (34)$$

$$\Rightarrow k \le \frac{2 \cdot h^2 \cdot (-5 \cdot v + \frac{17 \cdot \mu}{2 \cdot h})}{(-5 \cdot v + \frac{17 \cdot \mu}{2 \cdot h})^2 + (15 \cdot v + \frac{47 \cdot \mu}{h})^2} \dots (35)$$

$$\frac{u_n^{m+1} - u_n^m}{k} = v \cdot \left[\frac{u_{n+1}^m - 2 \cdot u_n^m - u_{n-1}^m}{h^2} \right] - \mu \cdot \left[\frac{u_{n+2}^m - 2 \cdot u_{n+1}^m + 2 \cdot u_{n-1}^m - u_{n-2}^m}{2 \cdot h^3} \right], n = 2, ..., p - 2 \qquad ...(36)$$

... [76]

$$\frac{\psi(t+k)}{\psi(t)} = 1 - 4.v.r.\sin^{2}(\frac{\alpha h}{2}) + \frac{4.i.r.\mu}{h}\sin^{2}(\frac{\alpha h}{2})\sin(\alpha h) = \xi$$

$$\xi = A + iB
A = 1 - 4.\mu.r.\sin^{2}(\frac{\alpha h}{2})
B = 4\frac{r.\mu}{h}\sin^{2}(\frac{\alpha h}{2})\sin(\alpha h)$$

$$\vdots \qquad \xi$$

$$|\xi| = \sqrt{\xi \cdot \xi} = \sqrt{A^{2} + B^{2}}$$

$$A^{2} + B^{2} \le 1$$

$$A^{2} + B^{2} \le 1$$

$$A^{2} + B^{2} = 1 - 8.v.r.\sin^{2}(\frac{\alpha h}{2}) + 16.r^{2}.v^{2}.\sin^{4}(\frac{\alpha h}{2}) + \frac{16.r^{2}.\mu^{2}}{h^{2}}\sin^{4}(\frac{\alpha h}{2}).\sin^{2}(\alpha h)$$
...(38)
$$[5] () \sin^{2}\beta k \qquad \alpha h \qquad \sin^{2}\frac{\alpha h}{2} = 1$$

$$\vdots \qquad (38)$$

$$r \le \frac{v}{2.(v^{2} + \frac{\mu^{2}}{h^{2}})}, \quad k \le \frac{v.h^{2}}{2.(v^{2} + \frac{\mu^{2}}{h^{2}})}$$

$$n = 1$$

$$r \le \frac{2.(-5.v - \frac{17.\mu}{2.h})}{(5.v + \frac{17.\mu}{2.h})^{2} + (15.v - \frac{47.\mu}{h})^{2}}$$
(stable) KdV-Burger
$$(39) \qquad h \qquad k \qquad n = 2,...,p-2$$

Fourier (Von-Neumann)

Crank-Nicholson

 h, v, μ

.4-2

(40) (35)

KdV-Burger Crank-Nicholson

: Von Neumann

p-1

$$\frac{u_{n}^{m+1} - u_{n}^{m}}{k} = \frac{v}{2} \cdot \begin{bmatrix} \frac{2 \cdot u_{n}^{m+1} - 5 \cdot u_{n+1}^{m+1} + 4 \cdot u_{n+2}^{m+1} - u_{n+3}^{m+1}}{h^{2}} \\ + \frac{2 \cdot u_{n}^{m} - 5 \cdot u_{n+1}^{m} + 4 \cdot u_{n+2}^{m} - u_{n+3}^{m}}{h^{2}} \end{bmatrix} \\
- \frac{\mu}{2} \cdot \begin{bmatrix} \frac{-5 \cdot u_{n}^{m+1} + 18 \cdot u_{n+1}^{m+1} - 24 \cdot u_{n+2}^{m+1} + 14 \cdot u_{n+3}^{m+1} - 3 \cdot u_{n+4}^{m+1}}{2 \cdot h^{3}} \\ + \frac{-5 \cdot u_{n}^{m} + 18 \cdot u_{n+1}^{m} - 24 \cdot u_{n+2}^{m} + 14 \cdot u_{n+3}^{m} - 3 \cdot u_{n+4}^{m}}{2 \cdot h^{3}} \end{bmatrix} \dots (40)$$

$$n = 1$$

$$\vdots \qquad (40) \qquad \psi(t) \cdot e^{i\alpha x} \quad u_{n}^{m}$$

$$\frac{\psi(t+k)}{\psi(t)} = \frac{1+v \cdot \frac{r}{2} \left[2-5e^{i\alpha h}+4 \cdot e^{2i\alpha h}-e^{3i\alpha h}\right] + \mu \cdot \frac{r}{4 \cdot h} \left[5-18 \cdot e^{i\alpha h}+24 \cdot e^{2i\alpha h}-14 \cdot e^{3i\alpha h}+3 \cdot e^{4i\alpha h}\right]}{1-v \cdot \frac{r}{2} \cdot \left[2-5e^{i\alpha h}+4 \cdot e^{2i\alpha h}-e^{3i\alpha h}\right] - \mu \cdot \frac{r}{4 \cdot h} \cdot \left[5+18 \cdot e^{i\alpha h}+24 \cdot e^{2i\alpha h}-14 \cdot e^{3i\alpha h}+3 \cdot e^{4i\alpha h}\right]}{\vdots}$$

$$\vdots$$

$$\frac{\psi(t+k)}{\psi(t)} = \frac{1+\frac{v \cdot r}{2} \cdot \left[\left(1-e^{i\alpha h}\right)^{3}+\left(1-e^{i\alpha h}\right)^{2}\right] + \frac{\mu \cdot r}{4 \cdot h} \left[3\left(1-e^{i\alpha h}\right)^{4}+2\left(1-e^{i\alpha h}\right)^{3}\right]}{1-\frac{v \cdot r}{2} \cdot \left[\left(1-e^{i\alpha h}\right)^{3}+\left(1-e^{i\alpha h}\right)^{2}\right] - \frac{\mu \cdot r}{4 \cdot h} \left[3\left(1-e^{i\alpha h}\right)^{4}+2\left(1-e^{i\alpha h}\right)^{3}\right]}$$

$$\Rightarrow \frac{\psi(t+k)}{\psi(t)} = \frac{1 + \frac{r \cdot Y}{2} (1 - e^{i\alpha h})^3 + r \cdot (1 - e^{i\alpha h})^2 \cdot (\frac{v}{2} + \frac{Z}{2} (1 - e^{i\alpha h})^2)}{1 - \frac{rY}{2} (1 - e^{i\alpha h})^3 + r \cdot (1 - e^{i\alpha h})^2 \cdot (-\frac{v}{2} - \frac{Z}{2} (1 - e^{i\alpha h})^2)} \qquad \dots (41)$$

(41)
$$Y = (v + \frac{\mu}{h}) \quad Z = \frac{3 \cdot \mu}{2 \cdot h}$$

:

$$\frac{\psi(t+\Delta t)}{\psi(t)} = \frac{A-i.B}{A_1+i.B} \qquad \dots (42)$$

$$A = 1 + 4.r.Y.\sin^{6}\left(\frac{\alpha h}{2}\right) - 3.r.Y.\sin^{2}\left(\alpha h\right).\sin^{2}\left(\frac{\alpha h}{2}\right) - 12.r.Z.\sin^{2}\left(\alpha h\right).\sin^{4}\left(\frac{\alpha h}{2}\right) + 8.r.Z.\sin^{8}\left(\frac{\alpha h}{2}\right) + 2.r.v.\sin^{4}\left(\frac{\alpha h}{2}\right) - \frac{r.v}{2}\sin^{2}\left(\alpha h\right) + \frac{r.Z}{2}.\sin^{4}\left(\alpha h\right)$$

$$A_{1} = 1 - 4.r.Y.\sin^{6}\left(\frac{\alpha h}{2}\right) + 3.r.Y.\sin^{2}\left(\alpha h\right).\sin^{2}\left(\frac{\alpha h}{2}\right) + 12.r.Z.\sin^{2}\left(\alpha h\right).\sin^{4}\left(\frac{\alpha h}{2}\right) - 8.r.Z.\sin^{8}\left(\frac{\alpha h}{2}\right) - 2.r.v.\sin^{4}\left(\frac{\alpha h}{2}\right) - \frac{v.r}{2}\sin^{2}\left(\alpha h\right) - \frac{r.Z}{2}.\sin^{4}\left(\alpha h\right)$$

$$B = \sin(\alpha h).[6.r.Y.\sin^{4}\left(\frac{\alpha h}{2}\right) - \frac{r.Y}{2}.\sin^{2}\left(\alpha h\right) + 2.r.v.\sin^{2}\left(\frac{\alpha h}{2}\right) + 16.r.Z.\sin^{6}\left(\frac{\alpha h}{2}\right) - 4.r.Z.\sin^{2}\left(\alpha h\right).\sin^{2}\left(\frac{\alpha h}{2}\right)]$$

_____ [78]

()
$$\sin^2 \beta k$$
 $\sin^2 (\frac{\alpha h}{2})$ αh

 $A = 1 + r.(\frac{5.v}{2} - \frac{17.\mu}{4h})$

$$A_{1} = 1 + r.(\frac{5 \cdot v}{2} + \frac{17 \cdot \mu}{4h})$$

$$B = r.\sin(\alpha h).(\frac{15 \cdot v}{2} + \frac{47 \cdot \mu}{2 \cdot h})$$

$$\cdot |\xi| \le 1$$

$$A < A_{1}$$

$$|\xi| \le 1$$

$$1 + r.(\frac{5.\nu}{2} - \frac{17.\mu}{4h}) < 1 + r.(-\frac{5.\nu}{2} + \frac{17.\mu}{4h})$$

$$\Rightarrow \frac{5.\nu}{2} - \frac{17.\mu}{4h} < -\frac{5.\nu}{2} + \frac{17.\mu}{4h}$$

$$h < \frac{17.\mu}{10.\nu}$$
...(43)

$$\frac{u_n^{m+1} - u_n^m}{k} = \frac{v}{2} \left[\frac{u_{n+1}^{m+1} - 2.u_n^{m+1} - u_{n-1}^{m+1}}{h^2} + \frac{u_{n+1}^m - 2.u_n^m - u_{n-1}^m}{h^2} \right] \\
- \frac{\mu}{2} \left[\frac{u_{n+2}^{m+1} - 2.u_{n+1}^{m+1} + 2.u_{n-1}^{m+1} - u_{n-2}^{m+1}}{2.h^3} + \frac{u_{n+2}^m - 2.u_{n+1}^m + 2.u_{n-1}^m - u_{n-2}^m}{2.h^3} \right] \qquad \dots (44)$$

$$n = 2, \dots, p - 2$$

$$(3.21) \qquad \psi(t).e^{i\alpha x} \qquad u_n^m$$

$$\frac{\psi(t+k)}{\psi(t)} = \frac{1 - 2 \cdot v \cdot r \cdot \sin^{-2}(\frac{\alpha h}{2}) + \frac{2 \cdot r \cdot i \cdot \mu}{h} \sin^{-2}(\frac{\alpha h}{2}) \sin(-\alpha h)}{1 + 2 \cdot \mu \cdot r \cdot \sin^{-2}(\frac{\alpha h}{2}) - \frac{2 \cdot r \cdot i \cdot \mu}{h} \sin^{-2}(\frac{\alpha h}{2}) \sin(-\alpha h)} = \frac{A + iB}{A_1 - iB} = \xi \qquad ...(45)$$

$$A = 1 - 2.v.r.\sin^{2}(\frac{\alpha h}{2})$$

$$A_{1} = 1 + 2.v.r.\sin^{2}(\frac{\alpha h}{2})$$

$$B = \frac{2.r.\mu}{h}\sin^{2}(\frac{\alpha h}{2})\sin(\alpha h)$$

$$|\xi| = \sqrt{\xi \overline{\xi}} = \sqrt{\frac{A^{2} + B^{2}}{A^{2} + B^{2}}}$$
(45)

$$= \sqrt{\frac{(1 - 2.v.r.\sin^{2}(\frac{\alpha h}{2}))^{2} + (\frac{2.r.\mu}{h}\sin^{2}(\frac{\alpha h}{2})\sin(\alpha h))^{2}}{(1 + 2.v.r.\sin^{2}(\frac{\alpha h}{2}))^{2} + (\frac{2.r.\mu}{h}\sin^{2}(\frac{\alpha h}{2})\sin(\alpha h))^{2}}} \dots (46)$$

$$|\xi| \le 1 \qquad A < A_{1}$$

n=1

n=p-1

$$h > -\frac{17 \cdot \mu}{10 \cdot \nu}$$
 ...(47)
 $h > 0$ (47) . (h)

Crank-Nicholson

(unconditionally stable)

: **.**5

KdV-B

$$u(x,t) = \frac{12 \cdot v^{2}}{\varepsilon \mu} \left[1 - \frac{e^{\frac{2 \cdot v}{\varepsilon \mu}(x-wt)}}{(e^{\frac{v}{\varepsilon \mu}(x-wt)} + E)^{2}} \right], \quad w = \frac{12 \cdot v^{2}}{25 \mu}, E = 1000$$

$$.[8] \qquad E$$

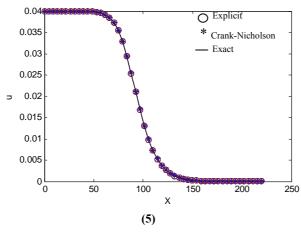
$$h=4.4 \qquad \qquad \mu=2, v=1, \varepsilon=6, \beta_{1}=1, \beta_{2}=0, a=0, b=220$$

k=0.02

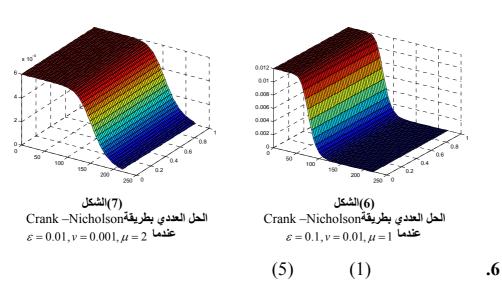
$$u(x,0) = \frac{12 \cdot v^{2}}{\varepsilon \mu} \left[1 - \frac{e^{\frac{2 \cdot v \cdot x}{\varepsilon \mu}}}{\left(e^{\frac{v \cdot x}{\varepsilon \mu}} + E\right)^{2}} \right] , \quad w = \frac{12 \cdot v^{2}}{25 \mu}, E = 1000$$

الجدول (1) الجدول t=0.3 عند الزمن t=0.3 عند الزمن t=0.3

X	Exact solution	Explicit	Crank –Nicholson
0	0.039999960318446	0.039999955148289	0.039999955159623
4.4	0.039999917455490	0.039999916917152	0.039999917298841
8.8	0.039999828360065	0.039999831042243	0.039999828615391
13.2	0.039999643298937	0.039999648925799	0.039999643849634
17.6	0.039999259305798	0.039999270965322	0.039999260444376
22	0.039998463729635	0.039998487800572	0.039998466073458
26.4	0.039996818958375	0.039996868469135	0.039996823759595
30.8	0.039993429053020	0.039993530355763	0.039993438819987
35.2	0.039986473242929	0.039986678974430	0.039986492918280
39.6	0.039972290394539	0.039972703834823	0.039972329494921
44	0.039943630276347	0.039944449030829	0.039943706546412
48.4	0.039886445276387	0.039888034297712	0.039886590383112
52.8	0.039774353780204	0.039777354806152	0.039774621010196
57.2	0.039559966197731	0.039565433937697	0.039560438522562
61.6	0.039163381819971	0.039172896289629	0.039164175685396
66	0.038461556955463	0.038477198862063	0.038462812328880
70.4	0.037288467987453	0.037312501371842	0.037290307610848
74.8	0.035461635026268	0.035495806225642	0.035464071156986
79.2	0.032845195254650	0.032889801792040	0.032847994167581
		•	
136.4	0.000912851204663	0.000917413592494	0.000912391051058
140.8	0.000635995288886	0.000639196955007	0.000635668884972
145.2	0.000442393592640	0.000444631904708	0.000442163720484
149.6	0.000307380606630	0.000308941293698	0.000307219517598
154	0.000213405197478	0.000214491392745	0.000213292695451
158.4	0.000148080487635	0.000148835475892	0.000148002103495
162.8	0.000102713378867	0.000103237682647	0.000102658855086
167.2	0.000071226665812	0.000071590543220	0.000071188782121
171.6	0.000049383222098	0.000049635651094	0.000049356920732
176	0.000034234310793	0.000034409373222	0.000034216060549
180.4	0.000023730444277	0.000023851826805	0.000023717785384
184.8	0.000016448408533	0.000016532559025	0.000016439630248
189.2	0.000011400494581	0.000011458827490	0.000011394408394
193.6	0.000007901524316	0.000007941957736	0.000007897305151
198	0.000005476326366	0.000005504351512	0.000005473401740
202.4	0.000003795436251	0.000003814859260	0.000003793409063
206.8	0.000002630448955	0.000002643864196	0.000002629045329
211.2	0.000001823035575	0.000001832640413	0.000001822099396
215.6	0.000001263450962	0.000001284579391	0.000001262056950
220	0.000000875629206	0.000000846127470	0.000000847101196



مع الحل التحليلي عند الزمن t=0.3



.KdV-B

 \mathcal{E} Crank-Nicholson (7) (6)

لاستنتاجات:

KdV-B

Crank –Nicholson
Crank-Nicholson

Crank-Nicholson

Fourier (Von-Neumann)

$$k \le (vh^2 / 2(v^2 + \frac{\mu^2}{h^2}))$$

المصادر

- [1] Andras Balogh and Miroslav Krstic (2000), Boundary Control of the Korteweg-de Vries-Burgers Equation: Further Results on Stabilization and Well-Posedness, with Numerical Demonstration, IEEE Transactions on Automatic Control, Vol.45, No. 9, pp. 1739-1745.
- [2] Dambaru Bhatta (2008), Use of Modified Bernstein Polynomials to Solve KdV-Burgers Equation Numerically, Applied Mathematics and Computation, 206, 457-464.
- [3] Dogan Kaya (2004), An Application of the Decomposition Method for the KdVB Equation, Applied Mathematics and Computation, 152, 279-288.
- [4] John H. Mathews and Kurtis D. Fink (2004), *Numerical Methods Using Matlab*, Fourth Edition, Pearson Education International.
- [5] Leon Lapidus and George F.P. (1982), Numerical Solution of partial Differential Equation in Science and Engineering, John Wiley and Sons, Inc.
- [6] M.A. Helal and M.S.Mehanna (2006), A Comparison Between Two Different Methods for Solving KdV-Burgers Equation, Chaos, Solitons and Fractals, 28, 320-326.
- [7] Fred S. Roberts, (1984), *Applied Combinatorics*, *Rutgers University*, prentice-Hall, Inc. Englewood cliffs, New Jersey 07932, pp.:56
- [8] Talaat S. Aly El-Danaf (2002) ,Numerical Solution of the Kortewegde Vries Burgers equation by using Quintic Spline method, STUDIA UNIV. "BABES,—BOLYAI", Mathematica , Vol. XLVII, No.2, pp:41-54
- [9] Thakumar ,M.S.(1989) ,*Computer Based Numerical Analysis* ,Khanna Publishers.
- [10] Wei-Jiu Liu and Miroslav Krstic (1999), Controlling Nonlinear Water Waves: Boundary Stabilization of the Korteweg-de Vries-Burgers Equation, Proceeding of the American Control Conference, pp. 1637-1641.