```
المجلة العراقية للعلوم الاحطائية (17) عدد غاص بوقائع المؤتمر العلمي الثاني للرياضيات –الاحطاء والمعلوماتية [238 – 227] من ص ( ( ) )

. (MCAR)
(VIF)
. (1970-2004)
```

Mechanism of Missing Data and Estimating them by Principal Components

Abstract

The mechanism of missing data requires knowing the reason behind missing them because different mechanism easy in which data is missed give rise to different specifications of the available sample. The data on which this study depends has been missed completely at random (MCAR) and changed into complete one. It can also be possible to find the magnitude of unbias after changing the data into complete one. Then observing the problem of multi linear variance which can be detected by Variance Inflation Factor (VIF) gauge. The estimation of data by the principal component, method follows that. Finally the study applies this data on the variants of oil products and the consumption of the refined products in certain regions in the world (1000 barrels a day from 1970 to 2004).

/ / / / * 2009/ 12/ 6 : 2009/7/1: ... [228]

.

. (VIF)

Yates (1932)

Bartlett (1939)

Yates

 Y'^s

Affif & Elashoff (1966) Tacher (1952)

Y's

(1969) (1967)

Glynn & Laird (1986)

(Not MAR)

```
[229]
                عدد ذاص بوقائع المؤتمر العلمي الثاني للرياضيات –الاحصاء والمعلوماتية_
(1987)
                                                      .(Litter & Rubin)
                                         (1998
                                           (
                                                  )
                                                          X_j
                                                      X_{j}
                                                 X_{j}
(MCAR)
                                         . Miss Completely at Random
                                           Missing at Random (MAR)
(not
                                                                MAR)
            .(1998
                       ) .
                                                (MAR) (MCAR)
       MCAR
                                MAR
                                                      Not MAR
```

... [230]

Lest Square (LS) on Imputed Data

(Little & Rubin, 1987)

(not MAR) (MAR) (MCAR)

Conditional mean Imputation
Unconditional mean Imputation

()

Unconditional mean Imputation

$$\widetilde{X}_{j} = \sum_{n_{j}} X_{obs} / n_{j}$$
(1)

 X_j : n_j

$$\begin{array}{cccc} X_j & X_{mis} & & \widetilde{X}_j \\ & & X_j & \widetilde{X}_i & & \overline{X}_j \end{array}$$

$$(n_j - 1)S_{jj}/(n - 1)....(2)$$

 $: S_{ii}$

$$\tilde{S}_{jj}^2 = \sum_{i=1}^{n_j} (X_{ij} - \tilde{X}_j)^2 / n_j$$
(3)

$$\widetilde{S}_{kk}^2 = \sum_{i=1}^{n_k} (X_{ik} - \widetilde{X}_k)^2 / n_k \dots (4)$$

$$\widetilde{X}_{j} = \sum_{n_{i}} X_{ij} / n_{j} \qquad \dots (5)$$

$$\tilde{X}_{k} = \sum_{n_{k}} X_{ik} / n_{k}$$
(6)

$$S_{jj}$$
 (MCAR)
$$(n_{i}-1)(n-1)$$

 X_k , X_j

$$[(n_{jk}-1)/(n-1)]\widetilde{S}_{jk}$$
(7)

 \tilde{S}_{jk}

$$\widetilde{S}_{jk} = \sum_{i=1}^{n_{jk}} (X_{ij} - \widetilde{X}_j)(X_{ik} - \widetilde{X}_k)/(n_{jk} - 1) \dots (8)$$

$$(n_{ik} - 1)/(n - 1)$$
 (9)

. (Positive semi definite)

Principal Component Regression

(1994) (2005)

[232]

X

$$\overset{*}{\mathbf{Y}} = \beta_0 \underline{\mathbf{I}} + \mathbf{X} \mathbf{V} \mathbf{V}' \underline{\beta} + \underline{\mathbf{U}} \dots \dots \dots (10)$$

XV PC

V

 $\stackrel{*}{Y} = \beta_0 \underline{I} + PC\underline{\alpha} + \underline{U} \quad (11)$

$$b(\beta_{PC}^{\circ})E(\hat{\beta}_{PC}) - \beta = VV'\underline{\beta} \dots (12)$$

Variance Inflation Factors (VIF)

(1996

 X_{j}

 $\left[a_{JJ} = VIF \ge 10\right]$

$$(X'X)^{-1}$$

$$a_{JJ} = (1 - R_j^2) \dots (13)$$

عدد خاص بـوقائع المؤتمر العلمي الثاني للرياضيات –الاحصاء والمعلوماتية_ [233] R_j^2 X_{j} $R_{\,j}^{\,2}$ (13) X_{j} a_{JJ} $R_j^2 = 0$ $.a_{JJ}=1$ OPEC Annual Statistical Bulletin (2004) ((1970-2004) 35 \mathbf{X}_1 X_2 X_3 X_4 X_5 X_6 Y (1970-2004) .(MCAR) -1 X_4 (1) . (3) X_4 3224733 5402.08 n=343129888 5402.08 5402.08 . n=35

(2006)

... [234]

(VIF) -2

(VIF)

 X_{j} (10) (VIF)

. (1) VIF

(1) VIF

X _i	VIF
X_1	3.4
X_2	4.3
X_3	1.4
X_4	7.5
X_5	72.3*
X_6	49.6*

J=1,2,3,4,5,6

*

(1) VIF (10) X_{6}, X_{5}

-3

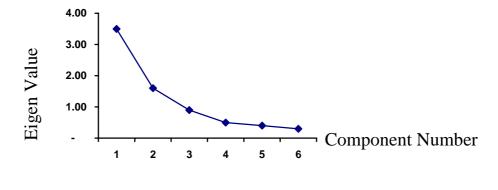
. (84%)

:

(57.8%)

$$(X_3)$$
 (X_1) (X_6) (X_5) (26.5%)

(X4) (X2)


(2)

.

(2)

λ_1	3.4654**
λ_2	1.5896**
λ_3	0.6137
λ_4	0.1933
λ_5	0.1298
λ_6	0.0081

**

... [236]

(1)

·

(VIF) $X_6 X_5$

:

-1

-2

-*Z*

-3

-4

": (2004)

": (2005) Q-Mode - R-Mode

": (1998)

": (1994)

": (1996)

": (2006)

": (1998)

": (1990)

... [238]

- Gourieroux, G. and Mont Fort (1981) "on the problem of Missing Data an Linear Models" Review of Economic Studies, XL VIII, P: 579-586.

- Little, and Rubin, (1987) "Statistical Analysis with Missing Data", New York: John-Wiley, P: 88,125-134.
- Little R.J.A. (1988) "Robust Estimation of the Mean Covariance Matrix from Data with Missing Values" Applied Statistics, P: 37,33-29.
- Theil, H. (1971) "Principal of Econometrics" John Wiley & Sons. Inc. P: 90-94