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Spectral Fletcher-Reeves Algorithm for Solving Non-Linear
Unconstrained Optimization Problems

Khalil K. Abbo" Farah H. Mohammed™

Abstract

The non-linear conjugate gradient method is a very useful
technique for solving Large-Scale minimization problems and
has wide applications in many fields . In this paper, we present a
new spectral type, a non-linear conjugate gradient algorithm the
derivatation of this algorithm is based on Fletcher — Reeves and
Newton algorithm, the descent property for the suggested
algorithm is proved provided that the step size a, satisfies the
Wolfe conditions.  Numerical results show that the new
algorithm is efficient in practical computation and superior to the
Fletcher — Reervs algorithm in many situations.
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1 . Introduction

Consider the Unconstrained Optimization problem
min f(x), xeR" (1)

where f: R® — R 1is continuously differentiable function . The

line search algorithm for (1) often generates a sequence of

iterates (xi) by letting

X, =X +a d, (2)

k+1

Where X, is the current iterate point, d, is a search direction,
and a, >0 is step — length. Different choices of d, and «, will

determine different line search methods [1,2] . These methods are

devided into two stages at each iteration [3] :

1 . choose a descent search direction d, i.e
g.d, <0 3)
2. choose a step — length «, along the search direction d, .

Throughout this paper, we denote f(x ) by f,, Vf(x,) by g,

and Vf(x_,) by d,,, , |l.ll denotes the Euclidian norm of vectors .

One simple line search method is the steepest descent

method, if we take d,=—-g, as a search direction at every
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iteration, which has wide application in solving large-scale
minimization problems and training feed forward neural
networks [4]. However, the steepest descent method often yields
zig-zag phenomena in solving practical problems , which makes
the algorithm converges to an optimal solution very slowly, or
even fail to converge [5]. Then the steepest descent method is not
the fastest one among the line search methods. If d, =—H, g, is
the search direction at each iteration in the algorithm, where 1is
an n X n matrix approximating [V-f(x)]7%, then the
corresponding line search method is called Newton like method
[5] such as Newton method, Quasi — Newton method, Variable
metric method etc. Many papers [6] have been proposed by the
method for optimization problems. However, one drawback of
the Newton like methods is required to store and compute matrix

H, at each iteration and thus adds the cost of storage and

computation. Accordingly, this method is not suitable to solve
large scale optimization problems in many cases. When n is
large the related problem is called large — scale minimization
problem. In order to solve large—scale minimization problems,
We need to design special algorithms that avoid the high storage

and computation cost of some matrices.

The conjugate gradient method is a suitable approach for
solving large — scale minimization problems. For strictly convex

quadratic objective functions, the conjugate gradient method with
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exact line searches has finite convergence property [9]. If the
objective function is not quadratic or inexact line searches are
used, the conjugate gradient method has no quadratic
convergence property [7]. When the conjugate gradient method
is used to minimize non—quadratic objective functions, the
related algorithm is called non — linear conjugate gradient
method. Meanwhile, some new non — linear conjugate gradient

methods have appeared in [8].

The non — linear conjugate gradient (CG) method has the form

X, =X +a,d, (4)

k+1

Where X, is an initial paint, ¢, is a step — length and d, can be

taken as d, =—g, and

1

dk+1 =—0.,t ﬁk+ldk (5)

Different g, ., will determine different CG method. Some

famous formula for S, as follows:

= et (Fletcher-Reeves [9]) (6)
g, 9,

s :M (Hestenes-Stiefel [10] ) (7)
Y, d,

ov _ GiaYea (Dai- Yuan [11]) (8)

k+1 T
Y. d,
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Where vy, =g,,, —9d,. Although some conjugate gradient

methods have good numerical performance in solving Large-
Scale minimization problems, they have no global convergence
in some situations such as Hestenens — Stiefiel conjugate gradient
method [12] , and others has global convergence theoretically

but don't performe well in practice such as Fletcher — Reeves (

FR

., ) method. We often have two questions. Can we construct a

conjugate gradient ( CG ) method that has both global
convergence and good numerical performance in practical
computation? or can we design a conjugate gradient method that

is suitable to solve ill - conditioned minimization problems?

Yuan and Stoer in [13] studied the CG method on a subspace
and they obtained a new conjugate gradient method. In their
algorithm, the search direction was taken from the subspace |

d.., d, ]atthe (k+1 )th iteration (k> 1) i.e

dk+1 :_7/k+1 gk+1 + ﬂkﬂ dk (9)

Where y,,, and p, ., are two parameters. The other

important aspect in the line search algorithms is the computing

the step — length ¢, , it has an important influence on the amount

of calculations at each iteration. There are several line search

rules for choosing step — length «, for example, the exact

minimization rule, the step — length ¢, is chosen such that
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f (% + e dy) =arymin f(x, +ad,) (10)

Armijo rule, Wolf rule, etc. In this paper we use the following
two line search conditions:

1. The Wolfe — Powell (WWP) line search condition:
f,<f +pag.d, (11a)
9.,d.209,d, (11b)
2. The Strong Wolfe — Powell (SWP) : The equation (11a) with
lor.d,|<-0ogld, (11c)
where p e (0,1 )andoe(p,1)

In general conjugate gradient methods usually implemented
with restart since the rate of convergence of the algorithm is only
linear unless the iterative procedure is restarted occasionally. It is
usual to restart at every n or n+l iterations but this not
satisfactory since n is large, therefore other restarts are used such

as Powell restarts [15] defined by

l97..9,]2 0.2%]g,| (12)

2 . New Proposed Algorithm (SFR — CG say)

The search direction for the Fletcher — Reeves conjugate

gradient (FR — CG) method is obtained by d, =—g, and
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:
d., =-g,, +%dk (13)
Dai and Yuan in [14] established global convergence results

for FR — CG method for any starting point with exact and inexact

line searches, therefore it has better convergence property
theoretically but it is not recommended for practical use since it
has poor performance in practice see [16]. In order to accelerate

the FR — CG method we use equation (9) as follows

Let y,, =1+ p,, (14)

Where y, ., and g, ,, are two parameters, then

d — 1 g:+lgk+l d 15
k+l — ( +/uk+1)gk+1 + T k ( )
9y 9,

T
OI' dk+1 :_gk+1 _/ukﬂgkﬂ + ngr'Ilgkﬂ dk (16)
k Ik

We incorporate the second order information to the search

direction in (16) by assuming, the direction in (16) is parallel to
oHY

the Newton direction i.e ~G L0 = 9t — it +ﬁdk
k Jk

(17) Where —;2, is the inverse Hessian matrix. Now suppose

-1

—G;2, 1s symmetric(G™' =(G™)"), positive definite and satisfies

the Quaci — Newton condition i.e

Gk_llyk =S, (18)
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Where s, =X, —X, multiply both sides of (17) by », and

considering G, be symetric and positive definite, then

- (ijl Yk )T Oy = _yg Ok ~ My y; G + gk+lgk+l Y d

k k
Use the relation given in (18) to get

=51 Ok =~ Vi Okt — 2 Vi Gt + gglgk“ yrd,

k Jk

Divide both sides in the above equation by y,d, then

T
_ Sk gk+1 _ ,8
Td - k+l lle-H k+1 k+1
Y Oy
-
_ Sk gk+1

Or =
y.d,

= (1 + IleH)IBkH k+1

S gk+1

Or (1 + ﬂk+l)ﬁk+l = kF+R; y‘krdk

FR

T
3 7/|<+1 — k+1 + Sk gk+1 (19)

HS

T
k+1 yk g K+1

Use this value for the y, ., in (15) then

dk+l = _7/k+1 gk+1 + IBkal d (20)

We call the algorithm defined in (19) and (20) as spectral
Fletcher — Reeves algorithm (SFR — CG) and we summarize it as

the following algorithm SFR — CG.

Algorithm(SFR-CG) :
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steep(1) : Initialization : select x, € R™ ,= = 0 , is small positive
real value

and compute

d=-9,, «=11|g/and k=1

step(2) : Test for convergence: If HngSg, stop X, 1s optimal

solution
else go to step(3).

step(3) : Line search : compute «, satisfying the wolf

conditions (11a),

(11b) and update the variable X, =X +¢«,d,,

compute
fk+1’ gk+1’ yk and Sk :
step(4) : Direction computation : compute y,_, from (19), if

Veazlor y <0 set Yy =1 and
d =V Gka ij dk

If Powell restart (12) is satisfied then d, ,=-y,., 0., else
dk+1 = d

and o, =a, *||d] /[d..], kK=k+1 go to step(2).

3.. Descent property

In this section we prove that the our algorithm defined in the
equations (19) and (20) generates descent directions for all
iteration according to the following theorem
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Theorem: Consider the algorithm defined in equation (4) where

d, computed from (19) and (20). Assume that the step size «,

satisfies the Wolfe conditions (11a) and (11b).

Then the search

directions d; generated by the SFR — CG algorithm are descent

for all k provided v[g, ., = 0.
Proof
The prove is by indication,

d, =—g, >d/g, =g, <0

for k=1,

now suppose d, g, <0 or s g, <0 since s, =¢,d,, then for

k+1we
have

BT S0, SHIR
d+l:_( H + T +1)g +1+%d
‘ A yig. " gig,

T T T
_( gk+lgk+1 Sk yk + Sk gk+1

d’ .
0.0 Vel YiOi

k+lgk+1 =

) g;—Hng +

i
Divide both sides by %1951 then
2.9, 9,

9,9, 1

k T
'gk+lgk+l yk gk+1

T
gk+1grk+1 S:’ ng
.9, 9,

T T T T T T
dk+lgk+1 - T (Sk ykgk gk+1 +akgk ngk gk+1) + Sk gk+1

e T T T T T T T
: Skgk+1_Skgk+1_skgk+Skgk_skyk+skgk<skyk
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T

T 1 T T T T T
Lo -gg::giﬂ dk+lgk+l < _m(sk ykgk+1gk+1 + akgk ngk yk) + Sk yk
S Y (o7 : oy 9
. d < — k 7k + _ k+1 I k+1
k+1gk+1 y:—ng (gk+1gk+l akgkgk yk gk-¢—1)6¥kg:gk
dngk+1 < k yk (a g gk + g ng) gk+19k+1
ykg .9, 9,
—_ k yk (gkﬂgk+1 gk+lgk+lgk+1gk)
Ye O 9,9,

Use the Cuchy — Schuarz inequality then

T
+1 2 1 [ oFR
Hgk g H) — Sk yk H " (1 + ﬂ )

S|y
< _ _"kJk k Jk
Hgk+l ‘gk H yk gk+l k

T
Y O a,

Sy Vi > 0 by Wolfe condition and v g;.. > 0 by assumption

k-
Aiy1Gxes <0
The proof is complete.
4 . Computational Results and Comparisons.

This section presents the performance of FORTRAN
implementation of our new spectral conjugate gradient
algorithm (SFR -CG) on a set of unconstrained optimization test
problems taken from [17]. We select (15) Lange — Scale test
problems in extended or generalized from (see Appendix), for
each function we have considered numerical experiments with
the number of variables n=100 , 1000 and 10000. We have
compared the performance of this algorithms versus To FR —
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CG algorithm. These algorithms are implemented with standard

Wolfe conditions with g = 0.001 and &= 0.9 where the initial
1

step — size o, = and initial guess for other iterations i.e.

+* 31

(k>1) is o, =, *|d,_[/d, . In the all cases the stopping criterion
is |l g..4 |l = 107® and maximum number of iteration is 2000. Our

comparison includes the following

1. Nol : Number of iterations.

2. FGE :Number of function and gradient evaluations.
3. LIN : the number of calling line search subroutin.

4. The total time required to solve (15) problem in particular
dimension.

Tables (1), (2) and (3) show the details of the results for (SFR
— CQ) algorithms versuse FR-CG algorithm

Table (1) Comparison of algorithms for N=100

Test | Dim | FR-CG algorithm | SFR-CG algorithm
Fun | n NOI/ FGE/LIN | NOI /FGE/LIN
1 100 18 / 34 [ 13 18/ 33 / 12
2 100 42 | 86 [/ 35 43/ 91 / 35
3 100 36 / 76 [/ 31 31/ 67/ 25
4 100 11 / 28 [/ 10 9/ 25/ 9
5 100 10 / 19 / 8 10/ 20/ 9
6 100 68 /130 / 61 73 /137 | 63
7 100 63 / 98 [/ 33 63/ 98 / 33
8 100 72 [ 164 | 69 65 /154 / 63
9 100 50 / 89 / 38 48 | 85/ 36
10 100 88 /190 / 86 88 /192 / 86
11 100 77 [ 120 | 42 79 /120 / 40
12 100 30 / 48 | 17 31/ 52/ 20
13 100 24 [ 46 /| 19 24 | 43/ 16
14 100 17 [/ 33 [ 15 17/ 33/ 15
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15 [100 [ 28 / 49 / 18 29 / 50 / 18
Total 634 /1210 / 493 | 628 / 1138 /444
Total Time : 3.027 Sc 3.021 Sc

Table (2) Comparison of algorithms for N=1000

Test Dim | FR-CG algorithm SFR-CG algorithm
Fun N NOI/ FGE /LIN NOI /FGE/LIN
1 1000 40 / 69/ 24 39/ 69/ 25
2 1000 42 |/ 96/ 40 38/ 84/ 34
3 1000 37/ 80/ 33 371 77129
4 1000 94 /| 96/ 86 22/ 47/ 13
5 1000 22 | 3/ 12 11/ 21/ 9
6 1000 85 / 62/ 76 78/ 149/ 70
7 1000 67 / 105/ 35 67/ 105/ 35
8 1000 170 / 336 / 86 73/ 179/ 71
9 1000 167 / 290 / 122 165/ 296/ 130
10 1000 86/ 184/ 84 93/ 199/ 91
11 1000 | 247 / 409 / 161 230/ 391/ 160
12 1000 33/ 63/ 26 36/ 62/ 22
13 1000 70 / 1313/ 60 67/1063/ 55
14 1000 19/ 42/ 18 22/ 49/ 21
15 1000 | 132/ 565/ 129 100/ 333/ 94
Total 1311/ 3842 /| 992 1078/ 3124/ 859
Total Time : 359 Sc 327 Sc

Table (3) Comparison of algorithms for N=10000

Test Dim FR-CG algorithm SFR-CG algorithm
Fun n NOI/ FGE/LIN NOI /FGE/LIN
1 10000 37 | 65/ 25 32/ 60/ 24
2 10000 40 [/ 91/ 34 37/ 83/31
3 10000 44 | 95/ 39 39/ 85/ 30
4 10000 25 | 65/ 16 23/ 59/ 15
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5 10000 | 23 / 37/ 13 23/ 371713
6 10000 | 104 / 199/ 93 61/ 116 / 53
7 10000 | 72 / 113/ 38 72/ 113/ 38
8 10000 | 77 / 174/ 73 70/ 70 / 68
9 10000 | 657 / 1158/ 500 579/ 1055 /475
10 10000 | 86 / 182/ 84 85/ 181 / 83
11 10000 | 49 / 91/ 41 41/ 751/ 33
12 10000 | 96 / 145/ 46 88/ 153 / 62
13 10000 | 112 / 2589 / 102 68/ 1380 / 64
14 10000 | 16 / 40/ 15 17/ 40/ 16
15 10000 | 221 / 6472 / 215 297 /7498 | 290
Total 1665/ 11516 / 1334 1533 /11105 / 1294
Total Time : 7423 Sc 6157 Sc
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Appendix

1. Extended Trigonometric Function
2
f(x)= Z([n —Zcos XJ}+ i(1-cosX;)—sin XiJ ,
i=1 i=1
Xo=[0.2, 0.2 e , 0.2].

2. Extended Rosenbrock Function

n/2

f(x)= ZC(Xzi —X5)" + (1= Xy,)’,
i1
Xo=[-12, 1y , —1.2 , 1].c =100
3. Extended White & Host Function

n/2

f(x)= ZC(Xzi X )+ (=%y,),
i=1
X, =[-1.2,L,......... ,—1.2,11.c =100

4. Extended Penalty Function



[37] Iraqi Journal of Statistical Science (19) 2011

f(x)= f:(xi -1)%+ (Zn: X; —0.25)%,

5. Extended Himmelblau Function

n/2

f(x) = Z(x;_1 + Xy =117 + Xy, + X5 =77,
i=1

6. Generalized PSC1 Function

=L (X2 + X2+ X X ) +sin? (X)) +cos®(X.),
f(X):Z( 1 i+1 1 |+1) ( |) ( |)
i=1
Xy =[3,0. 1y 3,0.1]

7. Extended PSC1 Function

n/2
2 2 2 s 2 2
) =D (X3, + X5 + Xy X)) +8in* (X, ) +c0s” (Xy),
i=1

Xo =[3,0. Leuecereenne. ,3,0.1].
8. Extended Powell Function
n/4

f(x)= Z(X4i—3 +10%,5)% +5(Xg = Xg)” + (X5 = 2% )" +10(X,; 5 = X4)*,

i=l

10. Extended Maratos function (c=100)
n/2
FOO =D %, +C0G, + X5 = 1)7,
i=1

Xo =[1.10.L..cccceuinins ,1.1,0.11.c =100
11. NONDQUAR Function (CUTE)
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n-2
f (X) = (Xl - X2)2 + z(xi + )(i-¢—l)(n)4 + (Xn—l + Xn)z’
i=l

Xo= 11, J.,—1.,1.
12. DQDRTIC function (CUTE)

n-2
fO0) =06 +cx, +dx,),

i=1
¢ =100.,d =100.
O i S 3.

13. DIXMAANA-DIXMAANL Function
M AX. X:

n i n-1 H 2m H L k4
TOTSED P TLNLES W U REE UL LS Y S NLOSED s

“'m=n/3

14. Almost Pertubed Quadratic Function

0 1
fX) =) ix +— (X, + %)%,
( ) ; i 100( 1 n)
Xy =[0.5,0.5,0cccrrer 0.5]

15. Staircase 2 Function

f(x):i{(i}xj)—i}



