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ABSTRACT

Pre-collisional plutonic rocks of Bulfat Complex, Qala Deza, NE Iraq were
emplaced into the ophiolite-bearing terraine (Albian-Cenomenian) shortly after the
45Ma. At Wadi Rashid, the plutonic rocks consist of contemporaneous leucocratic
'granitoid' and melanocratic 'gabbro' rock types, with a “Daly gap” (compositional
bimodality) that spans ~50—-60 wt% SiO,. The relationship between the granitoid
and gabbro magmas at Wadi Rashid in particular is ambiguous. This is attributed
to rock types having their own geochemical characteristics. Reconnaissance data
suggest that Wadi Rashid granitoid is illustrated by characteristics akin to a
volcanic-arc granitoid setting. Their enrichment in the LREE relative to HREE is
relatively modest (La/Yb ratios are 4.46-8.61% chondrite), with Eu anomalies that
are typically positive. The low HREE in Wadi Rashid granitoid rocks seems to be
due to partial melting of metamorphosed oceanic crust leaving REE rich accessory
minerals (i.e. garnet) as residual phases in the source. In contrast, the gabbros are
all moderately light REE-enriched (La/Yb = ratios range from 1.77 to 3.43x
chondrite), and flat heavy REE profiles (chondrite normalized Tb/Yb = ratios
range from 1.09-1.28x chondrite) and small negative Eu anomalies
(Ew/Eu*= 0.79-0.91). In primitive mantle-normalized multi-element diagrams,
Wadi Rashid gabbroic samples show depletion in Pb and Sr relative to adjacent
REE elements, Nb and Ta negative anomalies and flat Zr to Sm profiles similar to
those of Enriched MORB. The Hf-Th-Ta, Nb-Zr-Y, Ti-Zr-Y and Ti-Zr-Sr
diagrams of Wadi Rashid gabbros support an E-type MORB affinity. The
geochemical data indicate that the gabbroic and granitoid rocks at Wadi Rashid are
not cogenetically related. The dearth of intermediate magmatic compositions are
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interpreted as the result of low to medium pressure breakup of pre-existing semi-
consolidated and buoyant granitoid material due to density instabilities in the
underlying crystal mush of the intruded gabbroic magma.

A puzzling aspect of Wadi Rashid granitoid- gabbroic suite is the variability
of magmatic conditions (i.e. temperature, oxygen fugacity (fO,) and water fugacity
(fH,0O). Based on the empirical thermo-barometric results for kaersutite; The
primary liquidus phases (i.e. augite, kaersutite and ilmenite) equilibrated at a
nearly constant pressure of about 269-277 MPa and at temperatures of
crystallization of about 933—-935°C. logfO, during equilibration of kaersutite in the
hosting melanosome is in the range of -12.2 to -12.4 (Alog fO, (FMQ) ~ 0.6). The
petrography and mineral chemistry of leucocratic rocks indicate that there are two
contrasting alkali metaluminous facies: (i) Fe-biotite granitoid and (ii) kaersutite-
aenigmatite granitoid. These rocks occasionally encompass primary phases of
mafic origin as resorbed xenocrysts (i.e. augite, An-rich plagioclase and ilmenite).
Under such contrasting magmatic condition, primary ilmenite was transformed
either into agpaitic (kaersutite-aenigmatite) or alkali metametaluminous (Ti-rich
Fe-biotite) bearing mineral assemblages. These minerals are frequently observed in
late-magmatic phase where the temperature of transformation of ilmenite (Alog fO,
(FMQ) ~ -4 ) into aenigmatite was about 753°C under H,O™" poor near-
peralkaline conditions where as Ti-rich Fe-biotite equilibrated at about 647°C
under H,O™" rich reducing conditions.

Wadi Rashid composite intrusion (Paleogene age) of arc affinity is
unequivocally separated from the Walash-Naopurdan arc-backarc complex
(Eocene— Oligocene); found in the same general area but in a structurally lower
thrust slice. The Walash-Naopurdan volcanic activity and the intrusion of the
multiphase Bulfat Complex indicate the presence of a dual subduction-zone system
in Iraqi Zagros Zone.

Keywords: Zagros, Iraq, volcanic-arc granitoid, Collision zone, Bulfat Complex.
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INTRODUCTION

Jabal Bulfat, 30 km east of Qala Deza City, NE Iraq, is a deeply dissected
mountainous area composed generally of a wide spectrum of igneous rocks
referred to as the Bulfat Complex ( Jassim et al., 2006). It forms a major part of the
Upper Allochthon 'ophiolite-bearing terraine' and encompasses a volcano-
sedimentary unit — the 'Gemo-Qandil Sequence'. This sequence was originally
referred to the Bulfat Group by( Jassim et al., 1982).This has been intruded by
voluminous gabbro-diorite intrusions and late stage differentiates of syenite and
nepheline syenite, forming epizonal multiphase intrusive bodies during an early
Tertiary (Paleocene-Eocene) magmatic episode (Jassim et al, 2006; Fig. 1).
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The Gemo-Qandil Sequence has experienced a medium-grade regional
metamorphism overprinted by a high-grade contact metamorphism during
Paleogene (Jassim ef al., 2006).

Contact metamorphic rocks occur on the highest summits (~2340 m) forming
roof pendants surrounding intrusions that protrude into this sequence (Buda, 1993).
The pyroxene hornblende gabbros and diorites form a considerable part of the
complex and generally contain calc-schist xenoliths. The dissemination of calc-
schist xenoliths throughout the intrusion have resulted the from partial assimilation
of Gemo-Qandil meta-sediment. In contrast, the metapelitic units of the meta-
sediment have been completely assimilated; with only some streaks of biotite and
relicts of the initial texture remaining. Peak temperature of the contact
metamorphism of the calc-schist xenoliths is estimated to have been around 850°C
corresponding to the pyroxene hornfels facies (i.e. calcite-melilite-diopside-
anorthite assemblages). Most of the reactions occurred under low pressure and
extremely water-deficient conditions (i.e. Xco, ~0.9; Aswad and Pashdary, 1984).
(Buda, 1993) suggested that the assimilation of the calcareous and pelitic host
rocks resulted in peralkaline magma which led to the formation of pegmatite and
nepheline syenite. (Jassim et al., 2006) have noted that the calc-schist xenoliths are
very rare in the olivine gabbro and diorite (i.e. younger intrusions) which are the
least contaminated intrusions in the mafic Bulfat Complex. K-Ar dating of these
rocks indicates a cooling age of 45 Ma, suggesting that the intrusions formed in the
Paleogene and are, therefore, much younger than the Cretaceous country rocks
(i.e. Gemo-Qandil Sequence; Jassim et al., 2006).

It is unclear whether the pyroxene-hornblende gabbros and the diorites show
geochemical and mineralogical constraints exclusively due to the assimilation of
calcareous and pelitic host rocks by the mafic magma, or contamination of the
magma with pre-existing granitoid rocks, or both. In view of this aspect, we
undertook a combined in-situ mineral and whole-rock study of the gabbro along
Wadi Rashid and its granitoid associate.

It is apparent from our in-situ field inspection that the studied igneous rocks
within Bulfat Complex in Wadi Rashid near Pauza form a bimodal association,
composed of leucocratic breccias within anatectic melt (granitoid; Fig. 2D) and
melanocratic rockes (gabbro; Fig. 2B,C) forming a granitoid-gabbro suite. The
melanosome—leucosome contact, however, is occasionally marked by an abrupt
change in grain size and mineralogy, revealing the hybrid signature of the
melanosome (Fig. 2D). The purpose of this paper is to describe the petrology,
mineralogy and geochemistry of the granitoid rocks in Wadi Rashid and assess
their impact on the gabbro intrusions. This will lead to an interpretation of the
petrology and geotectonic evolution of the granitoid-gabbro suites in Wadi Rashid
and to correlate them with the coeval Walash-Naopurdan arc-back arc volcanic
rocks in the Lower Allochthonous thrust sheet.
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GENERAL GEOLOGY

The nappe in the studied area, 30 km east Qala Deza City, NE Iraq, comprises
allochthonous detachment of the Albian-Cenomanian Gemo-Qandil Sequence
(Upper Allochthon) and the Paleocene-Eocene Walash Volcano-sedimentary
Sequence (Lower Allochthon; Aswad et al., 2011; Aziz et al., 2011). On the basis
of recent studies (Aziz et al., 2011; Aswad et al., 2011; Ali et al., 2012), these two
allochthonous sheets were juxtaposed and amalgamated into a single nappe
(Walash-Penjween Subzone) following the closure of the Neo-Tethys. Coeval
volcanic activity of Walash-Naopurdan 'Lower Allochthon' with the multiphase
intrusion of the Bulfat Complex is common along the entire length of the Iraqi
Zagros Suture Zone and the volcanic activity represents widespread arc-back arc
volcanism during the Paleogene. With the exception of the Bulfat Complex, the
remainder of the Lower Allochthon does not show any similar intrusive features.
Furthermore, the thrust faults separating these two allochthons were formed due to
later tectonic activity which presumably post-dates the emplacement of the
Paleogene magmatic activity.

Field evidence shows that the nappe which incorporates the two
amalgamated sheets rests on top of various units: Tertiary Mollasses (Tertiary Red
Beds), Neoautochthonous flysch (Maastrichtian) and parautochthonous radiolarite
(Albian-Cenomanian; Aswad, 1999). Exhumation of the Bulfat Complex occurred

through the formation of nappes in a continental collision (Jassim and Buday,
2006) that terminated during the Middle Miocene (Aswad, 1999).

ANALYTICAL METHODS

Microprobe analyses were carried out on polished thin sections utilizing a
fully automated, Cameca SX100 Electron Microprobe at Macquarie University,
Australia, fitted with 5 wavelength dispersive spectrometers (WDS) and a PGT
energy dispersive system (EDS). Further analytical details are provided by
(Ali, 2012). Bulk whole rock chemical analysis of 12 samples using ICP-MS
analysis with a 4-acid digestion at Acme Analytical Laboratories Ltd. in
Vancouver, Canada. Chemical analysis of Si0, and FeO was performed according
to standard methods described by (Jeffery and Hutchison, 1981). Further analytical
details of whole rock chemical analyses are provided by (Al.Sheraefy, 2009).

PETROGRAPHY

The polished slabs (e.g. R3A and R3B, Fig. 2D) and microscopic
investigations of rock-forming minerals and their textural relationships suggest that
the granitoid-gabbro association in Wadi Rashid is generally marked by an abrupt
change in grain size and mineralogy as response to the gabbroic magma being
intruded against cold granitoid rocks. The slightly deformed granitoid (Fig. 2A)
occasionally remains in a solid form or is partially split into plagioclase-rich
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porphyroclasts and thermally mobilized granitoid anatectic melt ; the latter mainly
comprises a polygonal texture of Na-rich alkali feldspar (e.g. anorthoclase,

Fig. 3B).
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The mixing-mingling between granitoid and gabbroic magma caused
resorption of liquidus plagioclase and the formation of new Na-rich alkali feldspar
crystals due to equilibration with the anatectic melt. The pre-mixed plagioclase
crystals are occasionally mantled by polygonal alkali feldspar forming texture
mimic anti-rapakivi texture (Fig. 3E). The narrowing of the micro-scale
mineralogical gap reflects a significant assimilation of granitoid anatectic melt by
the intruding gabbroic magma and clearly reveals the hybrid signature of latter
(Fig. 2D). The current in-situ investigation suggests that the granitoid-gabbro
association has a peculiar petrological signature and provides an ultimate
indication of the occurrence of open-system processes for multiple-sources
(e.g., assimilation of granitoid anatectic melt and fractional crystallization of the
intrusive gabbroic magma).

In thin section, clinopyroxene grains occur as partly resorbed euhedral to
subhedral crystals but never occur as interstitial grains (Fig. 3C). In melanocratic
rocks, for instance, there are numerous intergrowths of pyroxene and amphibole
indicating that clinopyroxene grains are partly replaced by orthomagmatic brown
hornblende during magmatic evolution (Fig. 3C). The resorbed relicts of
clinopyroxene in the composite 'ganitoid-gabbro suite' preserves its primary
igneous characteristics during agpaitic processes (i.e. brown hornblende and
aenigmatite occasionally replaced the clinopyroxene and Fe—Ti oxides, (Fig. 3D)
in the leucosome unit as well as in the melanosome unit. The melanosome-—
leucosome contact is generally marked by an abrupt change in grain size and
mineralogy, with a strong tendency for pyroxene and brown hornblende crystals to
form clusters (Fig. 3D). The clinopyroxenes in the leucocratic granitoids are often
observed as colorless relicts (i.e. xenocryts). Fe-Ti oxides are replace by small
crystals of aenigmatite (Na—Fe-Ti silicate; Fig. 3D).The latter is usually found
exhibiting a brown or black colour. In general, the ilmenite and rim of Ti-Fe-
silicate (i.e. aenigmatite or Ti-rich Fe-biotite) are themselves enclosed in
amphibole. It is concluded that the petrographic investigation of the melanocratic

'gabbroic' matrix reveals that there is a shift towards agpaitic mineral constituents
(Fig. 3D).
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Fig . 2: Photographs of representative samples of the composite rocks 'ganitoid-
gabbro suite ' from Wadi Rashid. A) Pseudogranioid gneiss' ductile
deformed leucosome' with foliation of pyroxene (R6). (B) Melanosome
shows rhythmic Layering of R13 showing labradorite (light) and mafic
minerals (i.e. augite and hornblende (dark) (see Fig. 3F and 3G for more
information). C) Melanocratic ‘gabbroic’ rock sample showing a dark
irregular crystal of magmatic kaersutite (R4). D) The polished slabs of
granitoid-gabbro association is generally marked by an abrupt change in
grain size and mineralogy as response of gabbroic magma intruded against
cold granitoids (R3A and R3B).
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Fig. 3: Photomicrographs of selected samples used for mineral microprobe analysis
(polarized light). (A-D). A: Photomicrograph of R6 shows resorption of liquidus
plagioclase (PL) and the formation of new Na-rich alkali feldspar crystals (Ab, albite;
Anor, anorthoclase ) due equilibration with the anatectic melt and augite relics (PX)
completely surrounded by a narrow rim of aegirin. B: Photomicrograph of R3B illustrating
anatectic melt encompass the prevalence crystals of homogeneous-polygonal anorthoclase
showing triple -point junction. C: Photomicrograph of R13 showing augite relic (PX)
surrounded by hornblende 'kaersutite ' (Hbd). D: Crystal of aenigmatite (black) partly
enclosed by augite(PX) and hornblende 'kaersutite ' (Hbd). E: Photomicrograph of R6
illustrating crystals of ilmenite (black) partly surrounded by a Ti rich Fe-Biotite as well as
anti-rapakivi texture (e.g. plagioclase (PL) crystals ringed with alkali Feldspar). F: XRD
patterns of non-magnetic fraction of R13 indicates that the dominant felsic minerals are
labradorite with negligible amount of anorthoclase. G:XRD patterns of less magnetic
fraction (at 60-1.0 AMPS) of the sample R13 showsthat the dominant mafic minerals are
hornblende followed by augite (Photographs of the sample shown in Fig. 2B ).
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MINERAL CHEMISTRY AND P-T CONDITIONS

The bulk composition of the granitoid-contaminated gabbroic magma,
coupled with magmatic conditions (i.e. temperature, oxygen fugacity (fO,) and
water fugacity (fH,O)) have greatly influenced mineral compositions. Therefore,
the mineral assemblages and their compositions can be used to determine the likely
magmatic conditions during their crystallization. Chemical analyses for most
widespread minerals of the studied rocks from Wadi Rashid area are shown in
Table 1.

Plagioclase

Microprobe analyses of plagioclase in the leucosome (R6 and RS8) and
melanosome (R2 and R4) samples are provided in Table 1. The anorthitic
component (An) of normally zoned plagioclase crystals ranges between oligoclase
(An;s to Anj,) and andesine (Any, to An;g) for the leucosome and melanosome,
respectively, whereas anorthoclase 1s quite homogeneous in composition. There are
noticeable differences between the compositions of plagioclase crystals in the
various rock groups ranging from labradorite (Fig. 3F) to oligoclase.

Table 1: Microprobe Analyses of Feldspar from Wadi Rashid Granitoid-Gabbro Suite.

Feldspar

Ii?ﬁ%lgr R6-1 | R6-2 | R8-cl | R8-rl | R2-cl | R2-rl | R4-1 | R4-2 | R4-cl
Si0, 65.041 | 65.495 | 64.041 | 64.485 | 63.098 | 63.705 | 62.418 | 62.688 | 62.330
TiO, 0.027 | 0.020 0.011 0.018 0.018 0.032 0.042 0.031 0.042
Al,O3 21.235 | 21.609 | 21.977 | 21.953 | 22.424 | 22.388 | 23.385 | 23.150 | 23.020
Cr,0; 0.000 | 0.012 0.031 0.043 0.000 0.000 0.000 0.000 0.019
FeO' 0.081 0.084 0.064 0.239 0.079 0.129 0.090 0.055 0.053
MnO 0.004 | 0.000 0.000 0.017 0.011 0.000 0.012 0.004 0.003
MgO 0.002 | 0.000 0.000 0.013 0.017 0.011 0.000 0.000 0.026
CaO 2.611 2.786 3.364 3.197 4.057 4.013 4.792 4.533 4.826
Na,O 10.813 | 10.714 | 10.075 | 10.254 | 9.705 9.778 9.318 9.464 9.269
K>,O 0.177 | 0.144 0.242 0.347 0.559 0.380 0.467 0.391 0.452

Total 99.991 | 100.865 | 99.805 | 100.564 | 99.968 | 100.437 | 100.524 | 100.314 | 100.039

Number of Ions calculated on 8 oxygen basis
Si 2.849 | 2.848 2.822 2.819 2.779 2.795 2.740 2.756 2.750
Ti 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001
Al 1.096 1.107 1.141 1.131 1.164 1.157 1.210 1.199 1.197
Cr 0.000 | 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.001
Fe”" 0.003 0.003 0.002 0.009 0.003 0.005 0.003 0.002 0.002
Mn 0.000 | 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
Mg 0.000 | 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.002
Ca 0.123 0.130 0.159 0.150 0.191 0.189 0.225 0.213 0.228
Ba 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Na 0.918 | 0.903 0.861 0.869 0.829 0.832 0.793 0.807 0.793
K 0.010 | 0.008 0.014 0.019 0.031 0.021 0.026 0.022 0.025
Molecular Ratio

An 11.663 | 12.470 | 15.370 | 14.422 | 18.204 | 18.111 | 21.575 | 20.488 | 21.800
Ab 87.398 | 86.766 | 83.314 | 83.713 | 78.807 | 79.849 | 75.924 | 77.410 | 75.767
Or 0.939 | 0.765 1.316 1.866 2.989 2.039 2.501 2.103 2.433
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Clinopyroxene

Since the intrusive rocks at Wadi Rashid comprise a variety of
petrographically diverse rocks of contrasting composition (i.e. gabbroic and
granitoid), they are well suited for a study of the influence of granitoid assimilation
processes on the composition of clinopyroxene. This assumption is primarily based
on the facts that: 1) clinopyroxene is often the sole liquidus phase to be preserved
during the assimilation process (Nisbet and Pearce, 1977) and 2) it is an ubiquitous
mineral in the studied rocks. The studied clinopyroxene in the 'ganitoid-gabbro
suite ' at Wadi Rashid has preserves its primary igneous characteristics during
agpaitic processes in the leucosome (i.e. R1, R3B, R6, R6A, R7A and R 8) as well
as in the melanosome (i.e. R2, R4, R3A, R9, R11 and R 13)(i.e. restricted chemical
composition of primary clinopyroxene).

The compositions of pyroxenes are represented in the wollastonite-enstatite-
ferrosilite triangular plot (Fig. 4A). The majority of clinopyroxenes (Table 2, R6-
rl, R6-c1 and R6-c2 from leucocratic 'granitoid' rocks and R8-cl and R2-cl from
melanocratic ‘gabbro’) exhibit limited compositional variation within the diopside
field (i.e. Woy6.49-Enze35Fs;s.16). According to the J-Q diagram, which is based on
the nomenclature fields of Morimoto etal.(1988; Fig. 4A), the pyroxene grains
from Wadi Rashid belong to the Ca-Mg-Fe pyroxene 'quadrilateral' field
(i.e. J/(Q+J)> 0.2 and Q+J> 1.5) (Fig. 4A).

Clinopyroxenes from the ganitoid-gabbro suite are distinguished mainly by
high Si0O, (49.95-52.04 wt.%), MgO (11.18-11.58 wt.%), Na,O <1.149 (<9 mol. %
aegirine Ae) K,0O <0.013, ALO; <2.002, TiO, <0.56 and Cr (typically, below
detection). Generally, the gabbro in the studied area does not represent a parental
magma because the Cr,O; values of pyroxenes are below detection limit,
suggesting differentiation of the parental magma before gabbro formation. Silica
undersaturation favours tetrahedral Si substitution by Al whereas increasing
pressure causes preferred Al substitution in the octahedral site and results in an
increased AlY'/A1" ratio. The AIY'/AI" ratio seems to be related to crystallization
pressure for clinopyroxene (Thompson, 1974; Wass, 1979). However, the
crystallization pressure for Wadi Rashid clinopyroxenes (Al''/Al" = 0.27-0.68) is
low and they plot within the “igneous clinopyroxene” field on the Al'Y vs. Al
diagram from Aoki and Shiba (1973) as shown in Figure 4B. Based on the fact that
the solubility of Ti in pyroxene increases with increasing temperature whereas it
decreases with increasing pressure (Yagi and Onuma 1967, Sepp and Kanzmann
2001), the crystallization temperature of Wadi Rashid clinopyroxenes (Ti = 0.011-
0.14 apfu) is below 900 C (Fig. 4C). Crystallization pressures for clinopyroxenes
were determined using a formulated empirical geobarometer proposed by Nimis
(1995) on the basis of the unit-cell volume (V) vs. Ml-site volume (V)
relationship. The calculations of crystallization pressure using the V.q—Vwm
relationship for Wadi Rashid range from 60 to 260 MPa ( i.e. 1 kbar= 100 MPa).
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Table 2: Miroprobe Pyroxene Analyses of Pyroxene from Wadi Rashid Granitoid-

Gabbro Ssuite.
Rock Type Pyroxene
Sample R6-r1 R6-cl R6-c2 R8-cl | R2-cl | R4
Number
SiO, 51.705 51.979 51.617 52.043 | 50.542 | 49.945
TiO, 0.46 0.404 0.461 0.48 0.507 | 0.556
ALO; 1.316 1.391 1.255 1.551 2.002 1.896
fe,0; 0 0 0 0 0 0
Cr,0;5 0 0 0 0 0.036 0
FeO 13.145 13.03 13.091 11.978 | 13.133 | 13.457
MnO 0.471 0.515 0.436 0.376 0.405 0.431
MgO 11.32 11.274 11.178 11.289 | 11.581 | 11.387
CaO 21.305 21.218 21.558 21.728 | 20.585 | 20.046
Na,O 0.883 0.915 0.899 1.149 0.807 | 0.714
K,O 0 0 0 0 0.015 0.013
Total 100.605 | 100.727 | 100.494 | 100.594 | 99.611 | 98.445
Si 1.944 1.951 1.943 1.947 1.916 1.920
Ti 0.013 0.011 0.013 0.014 0.014 | 0.016
ALY 0.043 0.038 0.044 0.039 0.070 0.064
T site 2.000 2.000 2.000 2.000 2.000 | 2.000
ALY 0.015 0.024 0.012 0.029 0.019 | 0.022
Fe® 0.093 0.080 0.098 0.093 0.110 | 0.097
Fe'™ 0.320 0.329 0.314 0.281 0.307 | 0.336
Mn 0.015 0.016 0.014 0.012 0.013 0.014
Mg 0.557 0.551 0.562 0.584 0.550 | 0.532
M1 site 1.000 1.000 1.000 1.000 1.000 1.000
Mg 0.078 0.080 0.065 0.046 0.104 | 0.121
Ca 0.858 0.853 0.869 0.871 0.836 | 0.826
Na 0.064 0.067 0.066 0.083 0.059 | 0.053
K 0.000 0.000 0.000 0.000 0.001 0.001
M2 site 1.000 1.000 1.000 1.000 1.000 1.000
Wo 4733 47.07 48.01 48.88 46.52 | 45.51
En 34.99 34.8 34.64 35.34 36.41 35.97
Fs 17.68 18.13 17.35 15.79 17.07 18.52
Total 100 100 100 100 100 100
Q 1.73 1.73 1.75 1.74 1.69 1.69
J 0.13 0.13 0.13 0.17 0.12 0.11
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Fig. 4 : A: Plot of clinopyroxene compositions of Wadi Rashid in the En—Wo—Fs

(Mg,S1,0—Ca,S1,06—Fe,S1,0¢) diagram with the nomenclature fields of
Morimoto ef al., (1988). B : Al" vs. Al"' diagram of Aoki and Shiba (1973)
shows that the crystallization pressure of WR clinopyroxenes is low and they
plot within “igneous clinopyroxene” field. C: A plot of Ti vs Al
concentrations (Yagi and Onuma 1967, Sepp and Kanzmann 2001), illustrate
that the crystallization temperature of WR clinopyroxenes is slightly below
900 °C, D: Fe’'+Si*'—Fe’'+Al" relationships for WR clinopyroxenes,
showing the negligible increasing fO, during the during agpaitic processe.
Data from Table 1; a.p.f.u. = atoms per formula unit.
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Ti-rich Silicates
Amphibole

Primary amphibole is the most abundant mafic mineral in the studied rocks. It
is essentially homogeneous in composition, and corresponds to K-Ti-enriched
(ca. 0.20 apfu K, 0.50 apfu Ti) hornblende (Table 3, anal. 3 - 4) and lies in the field
of Ti-rich pargasite (kaersutite; Leake ef al, 1997). It is evident from mineral
composition that kaersutite in the melanosome (i.e. R4) crystallized at a high
temperature deduced from its high Ti, Al'"Y (Na+K)" values (Raase, 1974; Ernst
and Liu, 1998), (Bard, 1970; Blundy and Holland, 1990) and. Based on the
empirical thermo-barometric formulations of Ridolfi et al., (2010), the P-T,
logfO,-T, and T7-H,O show that the primary 'orthomagmatic' kaersutite
equilibrated at a nearly constant pressure of about 269-277 MPa and at
temperatures of crystallization of about 933-935°C. The logfO, during
equilibration of kaersutite in the hosting melanosome (i.e. R4) is in the range of -
12.2 to -12.4 (Alog fO, (NNO) ~ -1) and melt water contents slightly higher than 4
wt.%. The relatively high oxidation state (i.e. Fe’"/ZFe ratio = 0.034 - 0.087) in the
amphiboles from the melanosome (i.e. R4) reveals the presence of an oxy-
component in the kaersutitic amphiboles composition. Application of the
hornblende—plagioclase thermometer (Blundy and Holland, 1990) on the
amphiboles in the leucosome (R8) and contaminated melanosome (R2) indicates a
relatively low temperature (~753°C) in comparison with that of the melanosome at
presumably the same presuure stated above. These minor compositional
differences, in particular the Fe’"/ZFe ratio content between the amphiboles in the
melanosome (R4) and leucosome (R8) are possibly related to reducing conditions
during crystallization and a late-stage granitoid assimilation overprint on the
contaminated gabbroic magma.

Biotite

Textural and petrological studies indicate that the biotite in R6 is a subsolidus
phase, partly replacing the nearly pure ilmenite (+ anorthoclase) (Fig. 3E). The
composition of the biotite is Fe- and Ti-rich and Al-poor, taken in conjunction with
( Fe exclusively present as Fe*"). Accordingly, the biotite is classified as Fe-biotite
on the Foster classification diagram (Foster, 1960). Ti is preferentially partition
into biotite as a function of temperature (Henry and Guidotti, 2002), and the Fe
/Mg ratio decreases with increasing temperature (Ferry and Spear, 1978). The
studied Fe-biotite has a Ti content = 0.33, and a Fe /Mg ratio = 3.2. The estimation
temperature of Fe-biotite in R6 i1s 647°C, using the empirical Ti-in-biotite
geothermometer of Henry and (Guidotti, 2002).
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Based on the experimentally calibrated curve of Wones and Eugster (1965),
the oxygen fugacity of the studied Fe-biotite is below QMF.However, the
ilmenite replacement process is the result of an appreciable amount of H,0O
(several wt. % of H,0O) that is required to stabilize Ti-rich Fe-biotite. A notably
absent phase in R6 (leucosome) is hornblende (Fig. 3E). It is presumably that the
latter is not stable at H,O saturated condition with temperature about (i.e. =647 C).

Table 3: Microprobe Analyses of Amphibole and Biotite from Wadi Rashid
Granitoid- Gabbro Suite.

Rocga"rfnylig Amphibole biotite, R6
Narpee R4-1 R4-2 | R4A-3| RS8-cl | R8-c2 R2-1 R2-2 Oxide W%
SiO, | 4138 | 4196 | 41.67| 41.60 | 4156 | 4143 | 41.54 Sio, 3481
TiO, 452 445 491 430 | 427 451 454 o 538
ALO; | 1036 | 10.61 1043 | 1037 | 10.30 | 1020 | 10.34 2 :
FeO | 1690 | 1690 | 1699 | 1758 | 17.46 | 1742 | 1735 ALO; 13.57
MnO 0.32 0.31 0.29 039 | 031 0.37 037 Fe,0; 0
MgO 999 | 1034 | 10.01 955 | 951 9.49 9.67 FeO 27.95
CaO | 10.89 | 1091 10.87 | 11.14 | 11.07 | 11.02| 11.04 MnO 0.19
Na,O 322 3.14 330 332 | 344 312 3.08 MO 289
K,0 0.74 0.79 0.73 1.06 | 0.1 0.97 0.99 g :
Cr,0; 0.03 0.05 0.01 0.05 | 0.00 0.02 0.03 Ca0 0.26
Total | 98.3452 | 99.4899 | 99.2163 | 99.3614 | 98.842 | 98.5538 | 98.9401 Na,O 0.11
Formula on the basis of 13 cations (Leake et al 1997) K,0 9.37
ST 6233 6222] 6223 6261 6285 6270 | 6250 Total 96.52
Al 1.767 | 1.778 | 1.777 | 1.739 | 1.715| 1.730 | 1.750
Ti| 0.000 | 0.000| 0.000 | 0.000| 0.000 | 0.000] 0.000 Oxygens per
AT 0072 | 0077 | 0059 0.01] 0.121] 0.090 | 0.084 formula = 11
Ti| 0512| 0497 | 0552| 0487 | 048 | 0514 0514 Si 2.800
Cr| 0.004 [ 0.006] 0.001 | 0.006| 0.000| 0.003| 0.003 Al 1.200
Fe | 0071 | 0.182] 0041 | 0.000| 0.000 | 0.000| 0.000 total 4
Mg | 2243 | 2285 | 2229 | 2.143| 2.144| 2141 2.169 T 0325
Fe©' | 2057 | 1915| 2081 | 2213 | 2208 | 2205| 2.183 — :
Mn | 0041 | 0039| 0.037| 0050]| 0.040 | 0048 | 0.047 Feﬂ 0
Csite 5.000 5.000 5.000 5.000 | 5.000 5.000 5.000 Fe 1.880
Fe” | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000 Mn | 0.0132
Ca| 1757 1.733] 1.739| 1.796| 1.794 | 1.787 | 1.780 Mg 0,586
Na | 0243 | 0267 | 0261 0204] 0206| 0213] 0220 Total(M) 5389
Bsite | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000
Na| 0697 | 0637 | 0694 | 0765| 0804 0701 | 0.679 Ca| 0022
K 0.142 0.150 0.139 0.204 | 0.176 0.187 0.191 Na 0.016
Asite | 0.840 | 0.787 | 0.833 | 0.969 | 0980 | 0.887 | 0.870 Total(l) 1
Mg/Mg+Fe” | 0522 | 0544 | 0517 | 0492 | 0493 | 0493 | 0.498
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Aenigmatite

Textural evidence (e.g. R7A, Fig. 3D) advocates that aenigmatite coexisted
with augite and kaesutite. Ilmenite was completely substituted by aenigmatite due
to the interaction of liquidus phases with thermally mobilized peralkaline
'granitoid' anatectic melt. The opposed occurrence of aenigmatite and ilmenite
suggests that a reaction relationship between these liquidus phases required a melt
peralkalinity index [PI = molar (Na,O+K,0)/Al,05] higher than 1-2 and pressures
>100 MPa. (D1 Carlo et al., 2010). The antipathetic occurrence of these phases (i.e.
aenigmatite and ilmenite) may be also attributed to the peritectic relationship with
each other (Nicholls and Carmichael, 1969) as a result of the peralkalinity shift
during agpaitic processes.

Fe-Ti oxides

Nearly pure ilmenite (Ilmgs—99) is a widespread Fe-Ti oxide in both the
leucosome (e.g. R6, and R8) and melanosome (e.g. R2) and it consistently has a
high MnO content (MnTiO; < 4 mole %), very low concentrations of Al,0;, MgO,
Cr,0; and Ti-excess over their ferrous end members (Table 4). The small T1 excess
might be related to cationic vacancies (Lattard et al., 2005). [lmenite within R6 has
FeTi0; amounts usually above 99 mol. % and it is surrounded by a rim of Ti-rich
Fe-biotite (Fig. 3E). An interesting point is that at a temperature exceeding 600 C,
the isopleths for nearly pure ilmenite are practically independent of temperature
with rather low oxygen fugacities (Andersen and Lindsley, 1988; Ghiorso and
Sack, 1991). For sample R6, however, the negligible hematite contents in early-
formed ilmenite reveal that the early development of the leucosome was at an
apparently low oxygen fugacity (Alog fO, (FMQ) ~ -4), with Fe dominantly
present as Fe*", Except for sample R7A (Fig. 3D). Ilmenite was the earliest-formed
Ti-bearing phase, but it became unstable in the peralkaline 'granitoid' anatectic
melt and consequently it was apparently replaced by aenigmatite + kaesutite at a
relatively higher oxygen fugacity (Alog fO, (FMQ) ~1) than that of ilmenite-Fe-
biotite assemblages.

Titano magnetite (i.e. magnetite—ulvospinel solid solution) was found only
within sample R4 (melanosome) and its composition is estimated at Uspy; (i.e.
TiO, = 14.292 wt %). Variation in Ti concentration in titano magnetite is
potentially very sensitive to small shifts in fO, and T and its composition is
significantly richer in Ti at low fO, and high T (Andersen and Lindsley, 1988). In
sample R4, the titano magnetite isopleth of Uspy at T ~ 934 C indicates that the
fO, is within ~1 log unit of the quartz—fayalite-magnetite buffer (i.e. Alog fO,
(FMQ) = ~1). This coincides with the logfO, of kaersutite in the same studied
sample (i.e. R4) which is in the range of -12.2 to - 12.4. Whereas the ilmenite
hosting rocks (i.e. R2, R6, and R8) yield the lowest oxygen fugacities (e.g. Alog

JO2 (FMQ) ~ -4).
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Table 4: Microprobe Ilmenite and Titano Magnetite from Granitoid-Gabbro of

Wadi Rashid.
Imenite Titano magnetite
Sample No. R6 | RS | R2 R4
Oxide Wt.% Oxide Wt.%
Si0, 0 0 0 Si0, 2.41
Ti0O, 50.08 50.64 51.26 TiO, 14.29
Al,O; 0 0 0 Al,O; 1.43
CI'203 0 0 0 CI'203 0.24
Fe,0; 3.9996 3.333 0.556 Fe,0; 28.96
FeO 43.4 42.61 43.78 FeO 44.26
MnO 1.71 2.1 1.65 MnO 1.18
MgO 0.06 0.32 0.34 MgO 0.09
CaO 0.03 0.02 0 Totals 92.86
Totals 99.27 99.043 97.61 Formula on the basis 4 Oxy.
Si 0 0 0 Si 0.096
Ti 0.960 0.970 0.995 Ti 0.430
Al 0 0 0 Al 0.067
Cr 0 0 0 Cr 0.007593
Fe" 0.077 0.064 0.011 Fe" 0.872093
Fe” 0.925 0.907 0.945 Fe 1.481076
Mn 0.037 0.045 0.036 Mn 0.039993
Mg 0.002 0.012 0.013 Mg 0.005369
Ca 0.001 0.001 0
Na 0 0.001 0.001

2.002 1.999 2.000

WHOLE-ROCK GEOCHEMISTRY

Wadi Rashid intrusive rocks represent a bimodal granitoid-gabbro suite, with
the absence of rocks of intermediate composition (especially in the range 50—60
wt.% Si0,, the so-called Daly Gap). Mingling of the gabbro magma with coeval
granitoid was hoticed in the field. Concerning bimodality, the rare earth element
(REE) data (Table 5) confirm an apparent enrichment in all the REEs (total REE)
in the melanocratic 'gabbroic' rocks relative to leucocratic 'granitoid' rocks in Wadi
Rashid suite where the total REE contents are 216-556 ppm and 559-1055 ppm for
leucocratic and melanocratic rocks, respectively. This contradicts a basic principle
suggesting that with increasing differentiation, silicic rocks are marked by
increases in their REE contents. Accordingly, the granitoid and gabbro of Wadi
Rashid have their own geochemical characteristics indicating different sources.

It is evident from our in-situ field inspection of the mingling phenomena that
the Daly Gap is a function of density contrast (Weaver, 1977) between leucocratic
'granitoid' breccias and melanocratic 'gabboic' matrix. The Daly Gap may be
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attributed to the variations in magma residence time and cooling rate that can lead
to large thermal and compositional swings, interrupting the assimilation process
and causing bimodality in the rock suite (Bonnefoi et al, 1995). The detailed
microscopic investigations of mineral constituents and their textural relationships
(e.g. grain size and mafic mineral distributions) suggest that the thermal budget of
the gabbroic magma played a major role in the bimodality between gabbroic melt
and the coeval granitoid melt. It is evident from the in-situ field inspection that the
spectrum of composite intrusive rocks clearly grade into each other, therefore the
terms gabbro and granitoid are simply used to provide a working nomenclature for
the individual rock types. In view of this aspect the geochemistry of each rock-type
(i.e. granitoid and gabbro) and their tectogenesis are discussed separately.

Table 5: Major oxides and trace element analyses from Granitoid - gabbro of Wadi
Rashid, as determind ICP-MS(ACME Laboratories).

Samples Leucocratic | Melanocratic
Maj (ortOO}(;des Rl | R3B | R6 | R6A | R7TA | RS R2 | R3A | R4 R9 | RIl | RI3
Wt 70
S0 610 | 605 | 628 | 609 | 619 | 606 | 497 | 472 | 489 | 489 | 509 | 485
2 8 2 8 2 7 6 8 5 9 9 8 2
TiO, 075 | 129 | 1.08 | 1.15 | 093 | 1.15 | 284 | 279 | 23 | 255 | 1.83 | 2.41
ALO 188 | 175 | 167 | 172 | 180 | 176 | 155 | 156 | 159 | 170 | 168 | 143
23 2 7 4 3 8 5 1 8 5 6 4 6
Fe,0; 23 | 1.64 | 105 | 196 | 168 | 1.35 | 7.08 | 7.76 | 6.59 | 6.18 | 4.61 | 821
FeO 261 | 354 | 336 | 337 | 279 | 3.75 | 488 | 459 | 473 | 4.63 | 459 | 4.16
MnO 0.09 | 0.09 | 0.07 | 009 | 0.07 | 0.1 | 024 | 023 | 022 | 0.19 | 0.18 | 0.21
MgO 1.19 | 196 | 076 | 1.08 | 0.8 | 2.06 | 526 | 529 | 577 | 383 | 544 | 71
CaO 381 | 474 | 2.87 | 343 | 2.74 | 528 | 845 | 884 | 845 | 754 | 7.93 | 9.45
Na,O 768 | 7.68 | 835 | 827 | 884 | 751 | 527 | 5.24 | 5.19 6 5.65 | 3.98
K,O 036 | 121 | 1.02 | 086 | 094 | 0.81 | 0.86 | 0.74 | 0.63 | 0.76 | 0.65 | 0.35
P,Os 022 | 035 ] 026 [ 032 | 0.11 | 032 [ 062 | 0.7 | 048 | 047 | 034 | 0.26
LOI 232 | 115 | 12 | 131 | 1.02 | 121 | 101 | 1.73 | 138 | 082 | 1.62 | 1.25
Total T01. | 101. | 99.6 | 999 | 99.9 | 101. | 101. | 100. | 100. | 99.0 | 100. | 100.
21 73 5 9 7 82 78 83 67 2 65 25
FeOt 468 | 5.02 | 431 | 515 | 431 | 497 | 142 | 116 | 190 [ 102 F g6 | 115
262 . 14, 19. 8.1 | 29. 45, . 44,
Mg# G200 IR IR [ ase | %0 | 40| sax
Rl | R3B | R6 | R6A | R7A | RS R2 | R3A | R4 R9 | RII | RI3
Trace Elements (ppm)
Sc 12 [ 114 | 41 3.3 3.1 [ 12.1 [ 332 [ 315 [ 315 [ 207 | 305 | 386
Cr 6 11 2 1 2 22 63 26 69 26 79 167
Ni 3.7 | 134 | 47 3.1 39 | 149 | 323 | 244 | 459 | 22 | 363 | 72.8
Y 74 357 | 175 | 254 | 88 | 368 | 76.6 | 708 | 60 | 57.8 | 43.9 | 494
Zr 177 | M1 1ss | so8 | ora | 10| 210 ] aea | 202 | 2D 216 3
Hf 035 | 295 [ 039 | 129 | 038 | 333 | 7.46 | 7.06 | 546 | 57 | 5.04 | 1.61
Ta 09 | 07 1 0.8 0.6 0.9 1.2 1.1 1 1.4 09 | 07
Th ) 0.5 0.1 0.3 0.1 0.2 04 | 03 0.2 0.2 02 | 08
Mo 049 | 032 | 052 | 048 | 039 | 029 | 045 | 046 | 034 | 0.74 | 04 | 091
Cu 111.0 2%.0 184 | 846 | 244 2%.3 439.3 451.8 43.5 412.3 517.8 4%0
Pb 072 | 554 | 336 | 333 | 368 | 28 | 212 | 223 | 27 | 239 | 2.06 | 2.75
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Samples Leucocratic | Melanocratic
Maj (ortOo}(;des Rl | R3B | R6 | R6A | R7A | R8 R2 | R3A | R4 R9 | RIl | RI3
Wt 70

Zn 365 | 523 | 437 | 579 | 646 | 461 | 111 | 19 [ 19 o5 | 79 | 799
Sr 527 | 329 | 201 | 213 | 248 | 333 | 243 | 292 | 225 | 284 | 306 | 207
Cd 0.04 | 0.16 | 0.05 | 0.12 | 0.09 | 0.17 | 036 | 039 | 037 | 028 | 029 | 0.13
Co 32 | 279 | 275 | 23.1 | 284 | 316 | 47.1 | 458 | 46.6 | 542 | 468 | 56.6
Ba 87 | 218 | 412 | 326 | 423 | 189 | 153 | 131 | 119 | 138 | 68 | 36
Sn 03 | 11 | 03 | 04 | 03 | 07 | 08 | 08 | 09 | 09 | 1.1 | 22
Rl | R3B | R6 | R6A | R7A | R8 | RZ | R3A | R4 | RO | RI1 | RI3

Rb 76 | 92 | 59 | 46 | 57 | 44 | 54 | 51 | 28 | 49 | 56 | 49
Ga 1%.5 181.6 159.8 71 1%.8 8 13.7 181.9 15;.9 181.6 166.6 13.2
v 42 | 124 | 34 | 27 | 31 | 97 | 278 | 270 | 255 | 254 | 217 | 314
Nb 16 | 107 | 382 | 9.64 | 200 | L7 | 293 12l 1019911001 5 9

Rare Erath Elements (ppm)

La 56 1206 | 132 | 179 | 82 | 199 | 344 | 30.1 | 243 | 242 | 156 | 11.1
Co TI1 | 431 | 265 | 369 | 139 | 406 | 791 | 674 | 5 4 | 562 | 348 | 264

8 9 9 6 5 4 5 3 9 4 1

Pr 16 | 61 | 37 | 52 | 19 | 6 | 113 ] 101 | 81 | 83 | 54 | 45
Nd 67 | 26 | 162 | 229 | 78 | 246 | 51 | 452 | 378 | 367 | 249 | 225
Sm 13 | 51 | 33 | 46 | 15 | 51 [ 105 ] 10 | 81 | 76 | 54 | 58
Eu 15 | 17 | 18 | 22 | 17 | 17 | 26 | 27 | 23 | 23 | 18 | 22
Gd 5 6 | 34 | 47 | 15 | 57 | 129 | 109 | 89 | 10 | 67 | 7.7
Tb 0.2 1 06 | 07 | 03 1 2 19 | 1.7 | 16 | 1.1 | 13
Dy 12 | 61 | 32 | 46 | 16 | 64 | 136 | 118 | 103 | 10 | 73 | 79
Ho 03 | 13 | 06 | 09 | 03 | 13 3 25 | 23 | 22 | 16 | 19

Er 07 | 36 | 16 | 23 | 08 | 36 | 79 | 74 | 66 | 61 | 45 5
Tm . 05 | 02 | 03 | 01 | 05 | 12 1 09 | 08 | 07 | 07
Yo 06 | 3 1 | 19 | 07 | 32 | 67 | 63 | 58 | 54 | 43 | 45
Lu . 04 | 02 | 03 | 01 | 05 | 1.1 1 09 | 08 | 06 | 07

GRANITOID ROCKS

1- Chemical classification and petrogenesis

Wadi Rashid granitoid is geochemically classified using total alkalis versus
silica (TAS) diagram (Wilson, 1989). Notably, they roughly correspond to syeno-
diorite/syenite (cf. Fig. 5B), having an agpaitic index (A.l. = mol Na+K/Al)
slightly less than unity (alkali metaluminous; Fig. 5C, D). But the presence of
agpaitic assemblages, such as kaesutite and/or aenigmatite, may indicate that the
melt composition of these rocks experienced at the microscopic scale a
considerable shift from metaluminous to alkali metaluminous mineral assemblages.
Based on their normative orthoclase-albite-anorthite (Or—Ab—An) contents using
the classification scheme of Barker (1979), Wadi Rashid granitoid rocks cluster
close to the Ab corner in the trondhjemite field (Fig. 5E). According to Barker's
classification scheme, the mafic phase in the trondhjemites is usually biotite and in
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most cases these rocks are REE-depleted. Thus the rocks in the present study are
significantly different from typical ‘trondhjemites’ as defined by Barker (1979).
The petrography and mineral chemistry of these rocks indicates that there are two
contrasting alkali metaluminous facies: (i) Fe-biotite granitoid and (ii) kaersutite-
aenigmatite granitoid. In addition, the granitoid rocks occasionally encompass
primary phases of mafic origin as resorbed xenocrysts (i.e. augite, An-rich
plagioclase and ilmenite). At least some of the xenocrysts were probably derived
from remobilisation of partially solidified gabbroic material and mixed with
anatectic granitoid melt.

Wadi Rashid granitoid rocks span a narrow range of 60-63 % SiO, (Fig. 5A). All
are low in K,O (<1.2%, Fig. 5F); these low-K granitoid rocks are similar to
oceanic plagiogranites, which range in composition from trondhjemite to tonalite
and diorite (Coleman and Peterman, 1975; Coleman and Donato, 1979). Also quite
similar low-K trends are seen in primitive island arcs in the western Pacific, e.g.,
Izu-Bonin. However, the name 'plagiogranite’ is not considered for studied
granitoid rocks since plagiogranites are associated with oceanic crust plutonic
suites, e.g., with ophiolite sequences (Gerlach ef al., 1981; Ashley et al., 1983;
Kontinen, 1987; Barbieri et al., 1994; Borsi et al, 1996; Koepke et al., 2004),
which is not the case for Wadi Rashid granitoid rocks. Dehydration melting
experiments on natural metabasalt samples show that low-K,O granitoid melts
form in response to melting of protoliths that are initially low in K,O to begin with,
such as oceanic greenstones (Beard and Lofgren, 1991; Rapp et al, 1991;
Rushmer, 1991). These experiments show that a protolith with ~0.3% K,O is
needed to form melts with the low-K,O concentrations (<1.2%) observed here.
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2- Geochemical Signature and Tectonic Setting

REE data for Wadi Rashid granitoid rocks are given in Table 5, and
chondrite normalized rare earth elements patterns are shown in Fig. 6A. This figure
illustrates parallel to sub-parallel, moderately fractionated REE patterns
[(La/YD)N = 4.46-8.61, (La/Sm)N = 2.51-3.53 and (Gd/Yb)N = 4.46-8.61]. The
granitoid rock samples display depleted REE- chondrite-normalized La (~87-24)
and Yb (~19-4). They are enriched in the light rare earth elements (LREE) relative
to the heavy rare earth elements (HREE; Fig. 6A). This enrichment is relatively
modest (La/YDb ratios are 4.46-8.61% chondrite), with discernible Eu anomalies that
are typically positive. Sample R7A with a low Mg# (~18%) displays a large
positive Eu anomaly and lower HREE concentrations, consistent with its
plagioclase abundance (Fig. 6A). The low HREE in the studied granitoid rocks
seems to be due to partial melting of metamorphosed oceanic crust leaving HREE-
rich accessory minerals (i.e. garnet+ hornblende) as a residual phase in the source.
According to the hydration-melting experiments on metamorphosed oceanic
greenstone melting depths of >48 km (i.e. 1.45GPa) are required to provide
sufficient garnet in the residuum to generate the degree of heavy rare earth element
depletion documented in the granitoid rock type (Nair and Chacko, 2008).

NMORB normalized trace element patterns for Wadi Rashid samples
(Fig. 6B) display enrichment in large ion lithophile elements (LILE; Rb, Ba and K)
and depletion in high field strength elements (HFSE; Nb, Hf, Zr and Ti). These
characteristics are diagnostic of rocks formed in subduction related settings (e.g.
Pearce and Parkinson, 1993). On a multi-element diagram, the samples show both
negative and positive peaks for Sr and Ti, which are interpreted to be due to
variation in feldspar and Ti-rich phases (ilmenite, Ti-rich magnetite, aenigmatite
and Ti-rich Fe-biotite). The negative Th anomaly is well expressed whereas for
many, indeed most, silicic rocks, increasing differentiation is marked by an
increase in Th content (e.g. Stuckless et al., 1977). The lack of enrichment of this
element in Wadi Rashid granitoid rocks implies that this element was mobilized by
some late- or post-magmatic process.

The conclusion drawn from REE and MORB-normalized multi-element
characteristics (i.e. positive LILE and negative HFSE anomalies) is supported by
granitoid trace-element discrimination diagrams based on Y, Yb, Nb, Ta and Rb
(Pearce et al., 1984). Pearce et al. (1984) classified granitoid rocks into four main
groups: ocean-ridge granites (ORG), volcanic-arc granites (VAG), within-plate
granites (WPG), and collision granites (COLG). In the trace element tectonic
discrimination scheme for granites (Pearce et al, 1984), Wadi Rashid granitoid
rocks show volcanic-arc granite characteristics (Fig. 7).
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GABBRO

1- Igneous and structural setting

As stated above, the samples from Wadi Rashid composite suite can be
divided megascopically, microscopically and geochemically into granitoid and
gabbro. Megascopically, the margins of the leucocratic 'granitoid' breccia bodies
against the melanocratic gabbroic matrix are medium to fine-grained and the
boundaries between them are irregular and lobate. While some of the gabbroic
material remained intact, many of the discrete granitoid enclaves are connected by
felsic veins throughout the gabbro-granite interfaces. These veins are formed by
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break up of semi-consolidated leucocratic 'granitoid' material due to density
instabilities in the underlying mafic crystal mush. Contrary to the melanocratic
'gabbroic' rocks, in the leucocratic 'granitoid' rocks magma mingling rather than
mixing is more evident. The petrographic study of gabbro—granitoid interfaces
shows that as gabbroic magma and peralkaline anatectic melt mix, liquidus crystals
(i.e augite, ilmenite and plagioclase) from the gabbroic liquid become partially
dissolved and serve as substrates for the nucleation and precipitation of felsic
minerals (i.e. albite and anorthoclase) and agpaitic assemblages (i.e. kaersutite and
aenigmatite) in the new alkali metaluminous hybrid melt. In addition to partial
assimilation of the anatectic grantoid melt, the gabbro shows rhythmic layering
(R13 in Fig. 2B). In contrast to the granitoid rocks, Wadi Rashid gabbros have an
unusual geochemical signature, which provides evidence for open-system
processes and multiple-sources (i.e., assimilation of granitoid anatectic melt and
fractional crystallization of the intruded gabbroic magma). Quantitative model
describing open-system processes such as assimilation—fractional crystallization
(AFC) based on the chondrite-normalized REE diagram of Wadi Rashid gabbros
was carried by Al.Sheraefy (2009).However the AFC quantitative model needs
further in-situ field and geochemical inspections.

2- Geochemical signature and tectonomagmatic characteristics

The chondrite-normalized REE diagram (Fig. 8) shows the ????Wadi Rashid
gabbros have gently sloping patterns that are all moderately light REE-enriched
(chondrite-normalized La/Yb = 1.77 to 3.43), have flat heavy REE profiles
(chondrite-normalized Tb/Yb = 1.09-1.28) and small negative Eu anomalies
(Eu/Eu*= 0.79-0.91). An exception is R13 which has rhythmic layering and is
characterized by a small positive Eu anomaly and low heavy REE. In primitive
mantle-normalized multi-element diagrams, all samples show depletion in Ba, Pb
and Sr relative to adjacent REEs, Ta and Nb negative anomalies and flat Zr to Sm
profiles that are similar to those of enriched MORB. The exception is the highly
granitoid contaminated R13, which has an unusual Hf-Zr negative anomalies
(Fig. 6). The gabbros and grantoids, are characterized by strong negative anomalies
in Th, and U (Fig. 8). This lack of enrichment of Th and U in Wadi Rishad gabbro-
granitoid suite implies that these elements were mobilized by late-magmatic
processes. The contrast between the two rock groups is most remarkable in rare
earth elements (REE) and multi-elements spider diagrams (Fig. 6 and 8).

The Hf-Th-Ta, Nb-Zr-Y, Ti-Zr-Y and Ti-Zr-Sr diagrams (Fig. 9) are useful
for distinguishing different tectonic settings of gabbros. In these diagrams, Wadi
Rishad gabbros show an affinity with E type MORB (Fig. 9).
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DISCUSSION AND CONCLUSIONS

Petrogenesis of the Wadi Rashid granitoid-gabbro suite

A noteworthy aspect of Wadi Rashid granitoid-gabbro suite is the variability
of magmatic conditions (i.e. temperature, oxygen fugacity (fO,) and water fugacity
(fH,0O)). The primary 'orthomagmatic' kaersutite equilibrated at a nearly constant
pressure of about 269-277 MPa and at crystallization temperatures of between
933-935°C. The logfO, during equilibration of kaersutite in the hosting
melanosome is in the range of -12.2 to -12.4 (Alog fO, (FMQ) ~ 0.6) and melt
water contents slightly higher than 4 wt. %. The amphiboles in the leucosome and
contaminated melanosome indicate equilibration at a relatively lower temperature
(~753°C) in comparison with that of the melanosome. Ti-rich Fe-biotite-ilmenite
and aenigmatite (or titano magnetite) bearing granitoids show fO, in log unit
deviations from the quartzfayalite- magnetite buffer (Alog fO, (FMQ) spanning fO,
from FMQ ~ -4 to FMQ ~1). The stability of Ti-rich Fe-biotite, for instance, is at a
temperature of 647°C and requires an appreciable amount of H,O (several wt. % of
H,0) whereas aenigmatite is stable at a maximum temperatures of 753°C under
H,0 melt-poor conditions with antipathetic relationships between aenigmatite and
Fe-Ti oxides (D1 Carlo ef al., 2010); as indicated by the reaction relationship:

aenigmatite + O,= ilmenite +silica+ Nds (sodium disilicate activity).

In addition to T and fO, conditions, the aenigmatite crystallization requires
melt peralkalinity higher than 12 (e.g. in the form of sodium disilicate) and
pressures >100 MPa (Di Carlo et al., 2010). The alkanilinity index of Wadi Rashid
granitoid, however, is slightly less than unity. But the megascopic and microscopic
observations of Wadi Rashid granitoids verify that peralkaline 'granitoid' anatectic
melt could have been produced from a near-metaluminous source (i.e. Wadi
Rashid granitoid).

Geochemistry and tectonic Setting of the Wadi Rashid granitoid-gabbro suite

The lack of continuous elemental trends from the gabbros to the granitoids on
element-element diagrams indicates that these rocks did not evolve through
differentiation of a single basic magma. The granitoid rocks were formed by partial
melting of a subducted metabasic precursor where as the low HREE suggests that
these elements were compatible during the melting reaction. These data are
consistent with melting of a metabasic source in which garnet = hornblende were
residuals. Thus in low-K calcic amphibolite, garnet is a residual phase during
amphibole dehydration melting at pressure greater than ~0.7-0.9 GPa (e.g., Wolf
and Wyllie, 1994), which is equivalent to a depth of melting of at least 25 km.
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Whereas, the E-MORB type geochemical signatures of the relatively younger
gabbroic rocks advocate that many of them formed in an extensional tectonic
environment, such as an intra-arc rift or a back arc. Hence contrary to the gabbroic
rocks at Wadi Rashid that were erupted in an extensional stress regime, the
granitoid rocks show a volcanic-arc granitoids (VAGQG) signatures.

The style of plutonism and the bimodal nature of the studied rocks suggest
that igneous activity occurred during crustal extension. (Bickford and Hill, 2007)
argued that bimodal igneous suites are characteristic of continental extensional
magmatism, whereas (Whitmeyer and Karlstrom, 2007) contend that bimodal
magmatism is not unusual in oceanic arcs. In principle, these hypotheses can be
tested with geochemical data since arc, rift and back-arc magmatism are generally
compositionally distinct in modern environments (e.g., Pearce and Cann, 1973;
Pearce and Norry, 1979; Wood, 1980; Pearce and Peate, 1995). Nevertheless, the
fact that the relatively younger Wadi Rashid gabbroic rocks have clear EMORB
signatures and the granitoid rocks have a volcanic-arc granitoid (VAG) signatures,
this suggests that the voluminous gabbro diorite intrusions of Bulfat Complex may
reflect granitoid arc magmatism and a subsequent extensional-arc to back-arc basic
magmatism around 45 Ma.

Wadi Rashid composite intrusion (Paleogene age) of arc affinity is
unequivocally separated from the tectonically similar (Eocene-Oligocene)
Walash-Naopurdan arc-backarc complex (Ali et al., 2012), in the same general
area but in a structurally lower thrust slice. These coeval Walash-Naopurdan
volcanic activities with the multiphase intrusion of the Bulfat Complex verify the
presence of a dual subduction-zone system in Iraqi Zagros Zone (Ali et al., 2012).
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