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has clarified the separation between the zones of different rock mass
quality along the Bekhme Gorge, Spillway, and Access tunnels. The
evaluations of rock mass matched the common worldwide used rock
mass classification systems. The proposed dam site is classified as high
quality by RSRMS, which is classified between 4-10 according to Q-
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Name: Azealdeen S. Al-Jawadi S_plllway Tunnel, three small zones have very low grades at the

) distance from the SW entrance, two zones have a low grade, and two
Email: zones have a medium grade. The best qualities extend to the eight long
azealdeenaljawadi@uomosul.edu.ig zones and five zones are having very good quality. At the Access

Tunnel, there are two very low-grade zones at the distance from the
SW entrance, six low-grade zones, and eight medium-grade zones.
Approximately half the length of the tunnel has good and very good
quality for five zones and four zones have very good.
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Introduction

The rock mass strength is reduced due to undermining the discontinuity properties, e.g.,
roughness, openness, persistence, healing, spacing as well as orientation, and normal stress.
Initially, the principles of the classification system depend on dividing the site into zones
having different characteristics at the field according to the overall look. Rock masses in
different zones are classified as continuous if they are rarely fractured (intact) or highly
fractured (crushed), while it classifies as discontinuous if the density of fractures is normal.
Each zone should be studied in the field by the syllogism of discontinuity characteristics and
sampled for laboratory tests. The discontinuous zones were investigated for rock mass
classification to obtain the reduction factors that weaken the rock mass strength. The Rock
Mass Strength Reduction System RSRMS mainly branches into two paths depending on the
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type of laboratory and field tests. The field tests are divided into two kinds that are
measurable and portrait or complementary tests. Measurable parameters are the backbone of
this system that related together to deduce the reduction factors. There are five measurable
parameters for discontinuities; they are continuity, attitude (dip and strike), spacing, openness,
and roughness. The reduction factors are scale, morphology, persistence, and orientation
obtained from the measurable parameters and the reduction factors ranged from zero to one.
The laboratory tests are physical, mechanical, static, dynamic, petrography, and mineralogy.
The three types of rock mass strength i.e., compression, tensile, and shear that are appreciated
or measured would be reduced by multiplying the strength by the reduction factors. The scale
and orientation factors are illustrating the type of failure, which may be, typify compression,
tensile, or shear.

Shear strength of discontinuities for example depends on several parameters at the same
time, e.g., roughness, openness, persistence, healing as well as orientation, and normal stress.
The reliability of the site investigation depends primarily upon the extent of the proposed
works and the nature of the site, i.e., scale. The spacing of discontinuities is a parameter of
most classification systems, while the relation between spacing and engineering structure size
is of even more significance. The quality of discontinuity surfaces such as roughness,
openness, type, and degree of filling materials, moisture condition, weathering, and wall
strength are complementary characteristics. Density and frequency of discontinuities can be
included along with the relationship between scale and spacing. The persistence of
discontinuities is the factor controlled by the expected daylight of discontinuities on the free
surface of the engineering body.

Site investigation for rock mass classification depends on the stage of the engineering
project (Brand, 2000). Each stage of the engineering project requires some parameters that
may be different from those of other stages. The stages of an engineering project are four,
preplanning, planning, construction, and post-construction. Basic data collected from the field
and that obtained from the laboratory for all four stages were approximately the same.
Formulated parameters for classification systems may vary according to the application. The
application of well-known rock mass classification systems to prepare different kinds of
engineering geological maps is to take place in the preplanning stage. Stages of planning and
construction require some parameters that differ from what is ordinary. The post-construction
stage deals with the treatment of the problems that appear or that may be expected.

Objective

Parameters obtained from the RSRMS classification surpass simplicity and are easy to
use for providing quantitative data. Simple and easy calculations are useful for the treatment
of a huge amount of data in a short time. The strength of rock masses depends on the strength
of the intact pieces and on their discontinuities, which in turn, depends on the number,
orientation, spacing, and strength of the discontinuities. The understanding of the problem for
estimating the strength of jointed rock masses depends on the strength of the intact pieces and
their freedom of movement along discontinuities (Hoek, 1983). For engineering purposes,
there is no single parameter or index that can fully and quantitatively describe a rock mass
(Bieniawski, 1989). The critical analysis of the experimental methods in the classification of
rock blocks emphasizes the importance of applying these classifications in designing
engineering structures and calculating their safety coefficient (Yang, and Elmo, 2022). This
proposed classification is very close to the possibility of being used in classification and
safety coefficient calculation. The idea of this classification is close to the idea of the rock
mass deformation coefficient (Hussain, et al., 2022) which can be used in its assessment of
the sustainable design of engineering structures.
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Methodology
Zonation

At the beginning of any study to evaluate the rock mass, the site must first be divided
into zones according to the dissimilarity of rock mass in the field. Differences in geologic
structure, lithology, weathering, morphology, hydrogeology and other field conditions
delineate the boundaries between zones (Fig. 1). The reconnoitering survey helps the
investigator to make the primary decision for which path the site investigation will take. All
structural geology and engineering geology data must be obtained from the field according to
the field form (Table. 1). Tests on rock samples are also performed in the laboratory (Fig.1) to
extract the parameters of any classification system. Differences in geologic structure,
lithology, weathering, morphology and other field conditions delineate the boundaries
between zones (Fig.1).
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Fig.1. The first step for entrance to the rock mass classification.

Prediction of failure type

The relationship between shape, size, and attitude of the restricted blocks between
discontinuities and the free surface of engineering structure predicts the type of failure
(Goodman and Shi, 1985) (Fig. 2). Visualization of blocks and free surface relation in the
field inflicts some difficulties. From the complimentary desk study, workers can usually
predict the type of failure.
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/ Types of blocks \
Infinite Finite
Nonremovable Removable
v / I \
Stable even Stable with Unstable without
without friction sufficient friction suppoﬂ
Infinite Tapered Potential key block Key block

Fig.2. Classification of blocks that are based on block theory (Goodman and Shi, 1985).

Plotting of geological structures and free surfaces of engineering structures on
orthographic projection or stereographic lower hemisphere projection are useful methods to
assess the shape and direction of block failure. Hammett and Hoek, 1981 explain the potential
failure mechanisms in a vertical wall and horizontal roof in the orthographic and
stereographic diagrams. Block posture refers to the stability, flexure, tensile, compressive, and
shear failure related to gravity and internal forces (Hoek and Bray, 1989). The most probable
failures of rock blocks at the free surface of engineering structures are shear, fall, and burst.
Shear failure mostly depends on discontinuity characteristics, while the others depend on
intact rock and/or discontinuity characteristics.

Reduction factors

From the combination of different related parameters, reduction factors of rock mass
strength can be obtained. The reduction factor is the average of all reduction factors that are
the percent of one time the intact rock strength. Singh, 1979 defined the modulus reduction
factor MRF (Fig. 3) as a ratio of the deformation modulus of a rock mass Eq to the elastic
modulus of the rock material E; obtained from the core. Thus, the deformation modulus of a
rock mass can be determined as a product of the modulus reduction factor corresponding to a
given rock mass rating and the elastic modulus of the rock material from the equation in Fig.3
(Singh, 1979). Other researchers suggested different equations for the reduction factor
(Bieniawski, 1978; Nicholson and Bieniawski, 1990; Hoek and Brown, 1997 and others).
Reduction factors were formulated from measurable parameters (free surface extension,
discontinuity attitude, spacing, openness, roughness, and continuity). Other field and
laboratory rock mass classification parameters are complementally parameters (Fig.4).
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Table 1. Field form that is used to record the discontinuity parameters.

Project Location Recorded by Date
Traverse length Northing Easting Trend
Unit designation Mineralogy | Rocktipe | Degree of weathening | Hardness Texture [ Color | Alterafion | Primary poresity

Fracture type | Dip | Strike | C JE [R M | H | W] 0] T | AL El *1:13"1-
- -2

Continuity | C3 [ 3-10m

€4 [ 1030m.

€5 | =30m.
E0 | No ends visible

Ends El | One end visible

EI | Both ends visible
Rl | stepped
R2 | Rough
R3 | M. rough

Roughness RIS roneh
R5 | Smooth
R6 | Polished

M1 | Dry, not possible

M2 | Dry, no evidence

M3 | Dry, some evidence
Moisture M4 | Damp. no free water
M35 | Wet, some drops

M6 | Cont. flow, low pres.
M7 [ Cont. flow, high pres.
H1 | Extremely hard

H2 | Verv hard

H3 | Hard

L I | Moderately Bard
H5 | Moderatelv soft
H6 | Soft
H7 | Verv soft
W1 | Fresh
W2 | Slightly weathered to fresh
W3 | Shightlv weathered
W W4 | Moderately to slightly weathered
X '1“. W35 | Moderately weathered
weathering

W6 | Imtensely to moderately weathered
W7 | Intenselv weathered

W8 | Verv Intensely weathered

W9 | Decomposed

01 | Tight
01 | <lmm.
03 | 1-3mm.

Opemness 5 T3 10mm.

05 [ 10-30mm.
06 | =30mm.

T0 | None
Tl | <lmm.
- T2 1-3mm.
Thickness 5515 Tomm.
T4 10-30mm.
T5 | =30mm.
HI) | Completelv. to strength of wall rock
Healine HIZ | =50% or weaker than wall rock
calng THR [ <50
HIS | Noindurations
1.0
I I I
. E4s=E.MRF
E\« 0_8 e
E"‘j B Kotlibel Dam, India | ]
-
c . .
E 06— ® Tehri Dam, India
[
g A Cases of Bieniawski /
2 /
2 04
[
)
= ]
3 . X
2 02 =
e o0¢
0.0
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RMR

Fig.3. Relationship between rock mass rating RMR and modulus reduction factor MRF (Singh, 1979).
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Fig.4. Flowchart of the RSRMS rock mass classification system.

Scale effect

Many researchers have studied the scale effect on the evaluation of rock masses
previously. Scale effect depends on the size of the engineering project (extent of free surfaces)
and spacing of discontinuities. Discontinuity set spacing is the distance between individual
discontinuities within a set. The smallest and biggest spacing give continuous crushed and
intact rock mass respectively. Convergence between size and spacing gives a discontinuous
rock mass (Fig.5). The shear strength also decreases on rock discontinuities rather than on
small-scale rocks (Borri-Brunetto, 2004).

Block size restricted between sets of discontinuities is an extremely important indicator
of a rock mass. Large blocks tend to be less deformable and develop favorable arching and
interlocking in underground openings. In the case of slopes, the small block size may cause
rotational slides instead of structurally controlled modes of failure (Sonmez and Ulusay,
1999). Kovari, 1979 presents the influence of the ratio between the span of the tunnel and the
average spacing of discontinuities that is decisive, in many cases, for stability considerations
(Fig.6). The extent of the free surface of any engineering structure represents the value of the
span D in Kovari explanation. With increasing span, or the ratio between span and spacing
D/d respectively, the influence of the jointing becomes more marked and the probability of an
unfavourable joint combination could give rise to increased rock mass failure (Kovari, 1979).
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The Scale Reduction Factor SRF derived as the ratio between discontinuity spacing and
free surface extent, takes into account the angle between them.

SRF =dsin"'a /D 1

Where:

d is the spacing of discontinuities,

D is the free surface extent, and

a is the angle between discontinuity and free surface planes.

Intact Jointed Crushed Rock mass

vy wariE

Tunnels
‘t‘*r AR "Q
P,
/_\ Foundations
RS
LA
AN KR
KR SRR | S
Continuous Discontinuous Continuous Rock mass
High Moderate Low Scale Factor

Fig.5. Various spacing of discontinuities of the same engineering project size reproduce various amounts
of scale reduction factor SRF.

Fig.6. Influence of the span D on the stability in jointed rock (Kovari, 1979).

Equation 1 shows a linear relation between scale factors plotted as ordinate and a
sequence value of spacing values for the constant value of free surface extent as abscissa
(Fig.7). In the case of application of the scale factor, the rock quality designation RQD, block
volume Vp, volumetric joint count Jyv and joint number J, conjoined with it. In addition, block
shape, joint set, the orientation of the main joint set, and thickness of weak zones are
sometimes conjoining with the scale factor.

A New Engineering Classification System (Capigian and Al-Khateeb, 2008) for rock
according to the number of fractures per meter can also be conjoining with the scale effect.
The difficulty of scanning discontinuities in three dimensions leading to assuming the rock
mass is homogeneous for Jy calculation (Sonmez and Ulusay, 1999).



1 Y
L]
L]
L]
- L]
0.9 .
[ ]
[ ]
- [ ]
0.8 o
L]
L]
507 o*
2 .
3] P
w© .
K 05 P
g .
= _ e ¢
g 05 .
law] [ ]
o] o
R~ 0.4 .°
= o
o] [ ]
Q L]
v 03 —
L ]
L]
L
02 —
[ ]
[ ]
[ ]
0.1 .
L]
L]
L
0 . . ; . ; . . . . .
0 5 10 15 20 25 30 35 40 45 50
Spacing for 50 unit free surface

Fig.7. Scale reduction factor for 50-unit free surface.

Openness and roughness effect

The relationship between openness and shear strength of discontinuities is inversive.
Contrarily, the relation between asperities amplitude with shear strength is extrusive.
Increasing openness or decreasing asperities amplitude serves to facilitate easy movement on
discontinuity planes. The shear strength drops as a hyperbolic function of the ratio between
infilling thickness (openness) and asperity height (Indraratna, et al., 2005). The rating of
discontinuity description for the RMR7s classification system drop from 25 to 0 when the
openness increases from 0 to 5mm. or more (Bieniawski, 1976). The relation between
openness and roughness was formulated as the Morphology Reduction Factor MRF:

MRF = (r—o)/r 2
Where:
r is the asperities amplitude, and

0 iS openness.

Equation 2 represents the morphology effect for one unit of openness, while if openness
equals asperities amplitude the value of the morphology reduction factor will be zero, so the
shear strength is not related to this factor. Shear strength in this case is dependent on the
adhesion of the filling grains. This equation gives the logarithmic relation between a series
value of asperities amplitude and morphology effect with the constant value of openness

(Fig.8).
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Fig.8. Morphology reduction factor for one unit of openness.

The profile that was published by Barton and Choubey (1977) and its origin (Barton,
1976) omits the effect of openness. In the case where asperities amplitudes equal the openness
or are less than it is, the morphology factor will be zero (Fig.9).

penne
I
I
I
I
-
= Roughness

Openness
1

1
w Roughness

%

Fig.9. Relationship between roughness and openness A: roughness greater than openness refers to high
shear strength, B: roughness smaller than openness refers to no effect of roughness to shear.

Orientation effect

The relationship between the discontinuity attitude and the free surface of the
engineering structure is more decisive. This relation relates to the type of expected failure
(Fig.2). Discontinuities orientation can be critical to the deformation or stability of
engineering structures concerning applied loads (USDIBR, 2001). The existence of one set or
two sets of discontinuities in the rock mass is infrequent as there are usually three sets. Most
sedimentary rocks contain bedding planes and at least two sets of joints that present three sets
of discontinuities (Van der Pluijm and Marshak, 2004). Deformed igneous and metamorphic
rocks also contain many sets of joints, while if the rock mass has rare discontinuities, it will
treat as intact. The case of shear failure most probably occurs when the angle between the free
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surface and discontinuity plane exceeds zero, approximately between 20°-70° (Ramsay and
Huber, 1987). The lowest value of major principal stress at fracture to uniaxial tensile strength
for uniaxial and triaxial loads is 30°, while it exceeds on both sides of the angle increases or
decreases (Hoek, 1964). The angle of internal friction of most rocks will vary from about
(75°-80°) down to (20°-25°) (Barton, 1973). The values out-of-range of these angles point to
tension or compression failure. Equation 3 explains the Orientation Reduction Factor ORF of
shear strength reduction according to the angle between discontinuity and free surface
(Fig.10).
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0.3
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0 —i—e % T T J
0 20 40 60 80 100

Angle between discontinuity and free surface

Fig.10. Orientation reduction factor for angles 0-90 between discontinuity and free surface.

ORF = (a —15)/a 3a
ORF = (a — 20)/a 3b
ORF = (a — 25)/a 3c
ORF = (a —30)/a 34
Where:

a 1S the angle between discontinuity and free surface planes.

Ramamurthy, 1994 published the inclination effect as a joint inclination parameter that
can be obtained from Fig.11 shown in the graph included with its table. The parameters of this
figure somewhat are the same as that can be obtained from Fig.10.
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Inclination of joint in degrees | Joint inclination parameter
0 0.82
10 0.46
20 0.11
30 0.05
40 0.07
50 0.31
60 0.46
70 0.63
BO 0.82
20 1.00

L)

Joint inclination parameter
L= L= L=
- o “
4

=1
bt

40 50 &0
Orientation of joint in degrees

Fig.11. Joint inclination parameter (after Ramamurthy, 1994).

Persistence effect

A continuous discontinuity is weaker and more deformable than disjunctive short
discontinuities that are bridged by intact rock. Recording trace lengths to describe persistence
is useful in large exposures because persistence is a difficult parameter to measure (Einstein,
et al., 1983). Identification of the more continuous fractures is an important aspect of
formulating rock stability input data, especially for high-cut slopes and large underground
openings (USDIBR, 2001). The persistence Reduction Factor PRF is the ratio of the
difference between free surface extent and persistence to the free surface extent (Equation 4).

PRF = (fs — p)/fs 4
Where:

fs is the free surface extension, and
p is persistence.

The presence of a rock bridge between discontinuities may change the failure type from
shear to tension or compression. The relation between persistence reduction factors with
persistence values is represented in Fig.12. The relation is for the persistence of
discontinuities from zero to 50 units on a free surface that also extends to 50 units. This
relation shows the acceleration of the persistence reduction factor when the discontinuity
extension reaches near the extension of the free surface. This may be due to the weakness of
the rock bridge through discontinuity propagation.



Evaluation of the Bekhme Dam Site — NE Iraq using the Proposed Reduction System of the Rock Mass........... 97

0.8 \

™~

N

N

AN
AN

0 5 10 15 20 25 30 35 40 45 50

Persistence Reduction Factor

Persistence of 50 unit free surface

Fig.12. Persistence reduction factor for 50 units of the free surface.

Complementary parameters

The engineering characteristics of rocks are complex due to the varied physical,
chemical, and tectonic processes associated with the formation of rock mass in time and
space. After formation, many processes act on the rock mass due to changes in environmental
elements. In addition to reduction factors that affect rock mass strength, complementary
parameters are considered for shear, tensile and compressive failure. The field complementary
parameters are hardness, weathering, healing, moisture, and ends of discontinuities are
concluded in Table 2.

Table 2. Reduction factors of complementary parameters.

Reduction Factors

Parameters

>0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-<1
Hardness Very Low Low Medium High Very High
Weathering Very High High Medium Low Very Low
Healing Not Healed Partially 50% Soft Completely Soft Partially 50% Hard Completely Hard
Moisture High Flow Low Flow Damp Wet Dry
Ends No End Visible One End Visible Both Ends Visible

The complementary parameters are measured on or near the adjacent walls of
discontinuities that affect the failure of the rock mass. Suggested methods for estimating the
compressive strength of rock surface were published by the Williamson, 1984 (Fig.13). In
cases where MRF is near zero and the normal stresses are low, hardness and weathering are
not important. The alteration of the discontinuity wall nearly always will be accompanied by
infill material, which will, generally, have lower shear strength than the altered wall material
(Hack and Price, 1995). Weathering negatively influences the engineering properties of rock
(Farah, 2011), which decreases the strength of discontinuity wall and filling materials. The
presences of water through discontinuities further in pores decrease the rock mass strength
and the intact rock strength respectively.
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Code | Abbreviation | Meaning and estimated strength Nlustration
A Rebound reaction to hammer blow
RQ (>103 MPa)
Pits with hammer blow . @ .
B PQ (55-103 MPa) V7
Dents with hammer blow
C DQ (55-21 MPa) U

Craters with hammer blow
D cQ (21-7MPa) —M—

Canbe remolded with finger e
E MQ pressure Q&QSQ'O-
(<7 MPa) oo A

Fig.13. Unified Rock Classification System estimating for rock strength (Williamson, 1984).

Physical parameters

Laboratory tests are used to determine the net worth of intact rock as new parameters
that can be used to evaluate the rock mass. These parameters are classified into five grades for
reduction factors and are added to the measurable and complementary factors. For the
classification of bulk density, one can use the Unified Rock Classification System
(Williamson, 1984) for soft rocks or the stiffer rocks (NBG, 1985). In the case of crushed
rock mass, soil or aggregate classifications can be used.

Strength of intact rock and rock mass

The intact material strength is shear, tensile, and compressive, though the tensile, rather
than the compressive, plays a major role in predicting the shear strength (Grasselli, 2001).
The shear failure of intact rocks results from kinematic constraints and external compressive
or tensile forces. In the case of open discontinuities, in the rock mass, when the normal stress
is low, the shear strength is due to sliding along the inclined surfaces of asperities. At high
normal stresses, the shear strength is due to the breaking of the intact material (Barton, 1976).

Shear strength

The shear strength for filled discontinuities that have a thickness more than the
amplitude of asperities depends on the strength of this material. The shear strength of
materials in the Coulomb Equation is written as:

T=c+ g, tang 5

Where:

7 IS the shear stress along the shear plane at failure
c is the cohesion

6n IS the normal stress acting on the shear plane, and
o is the friction angle of the shear plane

Equation 5, often called the Mohr-Coulomb criterion, is applied in rock mechanics for
shear failure in intact rock, discontinuities, and rock masses (Edelbro, 2003).

Barton, 1976, Barton, and Choubey, 1977 have studied the behavior of natural rock
discontinuities in detail and have proposed Equation 6 for shear strength of discontinuities:

T =d, tﬂﬂ[fpb +IRC lc'gll} chfﬂuj] 6
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Where:

6n IS the normal stress

ob is the angle of internal friction

JRC is the joint roughness coefficient, and

JCS is the discontinuity wall compressive strength.

The direct and alternative methods for estimating JRC are presented in Fig.14 (Barton
and Choubey, 1977).
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Fig.14. Direct and indirect methods for estimating JRC (Barton, 1976 and Barton and Choubey, 1977).

Tensile strength

Tensile strength is very low or it is equal to zero on discontinuity surfaces if it is not
healed (USDIBR, 2001). Direct tensile strength tests of rocks are not easy because of the
difficulty in specimen preparation. Indirect methods, such as bending and Brazilian tests were
used. The estimation of the tensile strength of rocks depends on tensile crack initiation stress
that is identical to the tensile crack propagation stress and the peak tensile strength (Cali,
2010). Griffith, 1924 proposed that the failure of brittle materials is governed by the initial
presence of micro-cracks. Under uniaxial tension, the tensile strength predicted by Griffith’s
theory is:

_ |2E'y
N e 7
Where:

E’ = E for plane stress problems and = E / (1-v) for plane strain problems,

3

E is Young’s Modulus,

v 18 the Poisson’s ratio,

y 1S the specific surface energy,
c is the half-crack length, and
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A is a numerical constant = 2/xt

Usually, the tensile strength is less than the compressive strength of intact rocks. Many
researchers suggest a relationship between uniaxial compressive strength and tensile strength
(Cai, 2010). UCS is between 8 to 20 times for tensile strength.

The relation between tensile strength and shear strength of rock mass depends on
friction angle and cohesion. The tensile strength of the rock mass can be estimated from the
GSI classification system by using the RocLab Software (Hoek, et. al., 2002). Tensile
strength is more affected by weathering in crystalline rocks in which micro-fractures are more
important (Gupta and Rao, 1998). The tensile strength of rock masses is often the critical
mechanical parameter in the engineering practice involving rocks. Surprisingly, on the
contrary, some authors have even suggested that tensile strength should not be considered a
material property (Coviello, et al., 2005).

Compressive strength

The unconfined compressive strength UCS and tensile strength of rocks are widely used
in the design stage of engineering structures. Although there are several classical approaches
in the literature for strength prediction and there are soft computing techniques such as
artificial intelligence (Baykasoglu, et al., 2008), the field estimation of rock strength is useful
for preliminary stages of engineering projects. Testing procedures for direct determination of
unconfined compressive strength are standardized by the ISRM, 2007. Discontinuities, at any
scale influence UCS according to its orientation to the direction of maximum load, which
gives mastery over. The relationship obtained between UCS for intact rock and rock mass is
logarithmic. The low influence of discontinuities on UCS of the rock mass is for medium to
low intact compressive strength (Figure 13). Each one of the different classifications for
unconfined compressive strength (Fig.15) can be used to obtain the reduction factor.
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Fig.15. Different classifications of unconfined compressive strength.

Weigh of parameters

Reduction factors of measurable parameters are extracted from the relations that are
explained in equations 1 to 4. Each parameter has the same weigh, from zero to one.
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Complementary parameters and laboratory parameters are also classified as a percent of one.
The whole classification parameter is the percent of one, the average of used parameters. This
value is multiplied by the shear, tensile or compressive strength of intact rock to establish the
rock mass strength. The classification grades depend on the value of reduction factors and can
be divided into five categories, very low, low, medium, high, and very high having the values
(>0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8 and 0. 8-<1) respectively.

Systematic application

Systematic application is explained in the flow chart of Fig. 1 and Fig.4. Seven steps are
stated as follows to explain the systematic application:

1. Zonation: is the first stage of any engineering project, from images, maps, literature,
and site reconnoitering.

2. Continuity examination: identification of project continuity, is known from stage one
to specify the path of future investigations.

3. Data acquisition: for continuous paths (Fig.1), the rock mechanics tests are used on an
intact rock branch, the soil mechanics tests for clastic and weathered rocks, or the
aggregate tests for highly crushed and fragmented rock mass.

4. The discontinuous path led to rock mass classification and data amassment from the
field and laboratory.

5. Reduction factors: the four measurable reduction factors are calculated from equations
1 to 4. The complementary and laboratory factors are classified as the percent of one
and added to the measurable factors.

6. Type of failure: is determined from the scale and orientation effects of the rock mass.
The discontinuities control the development of the sliding surfaces, which are sub-
parallel to the topographic slope (Ganerod, 2008).

7. Rock mass evaluations: are divided into two parts. The first one is if the value of
expecting failure strength is not known, the evaluation is classified into five
categories. In the second part when the value of strength is known, the reduction factor
is multiplied by the strength and gives the expected rock mass strength.

Results and Discussion

At the Bekhme Dam Site, the proposed system is applied to evaluate the rock mass. The
system was applied along the spillway tunnel, the access tunnel (Fig.16), and at the Bekhme
Gorge (Fig.17). At the Spillway Tunnel (Fig.16), three small zones having very low grade at
the distance from the SW entrance (38-40, 95-102, 303.3-305.3 m), two zones having low
grade are (130.7-142.3, 154.4-163 m) and two zones having medium grade are (102-130.7,
305.3-384.5 m). The best qualities extend to long zones that are five (47.5-77, 142.3-154.4,
163-259.6, 384.5-433, 449-720 m) and five zones are having very good quality (0-38, 40-
47.5, 77-95, 259.6-303.3, 433-449 m). At the Access Tunnel (Fig.16) there are two very low-
grade zones at the distance from the SW entrance (182-200, 1033-1054 m), six low-grade
zones (148-162, 200-223, 298-363, 683-711, 974-1033, 1127-1148 m) and eight medium
grade zones (0-41, 53-78, 100-123, 123-148, 162-182, 506-683, 1100-1127, 1148-1261 m).
Approximately half the length of the tunnel has good and very good quality for five zones
(41-53, 78-100, 438-486, 1054-1100, 1261-1300 m) and four zones very good (223-298, 363-
438, 486-506, 711-974 m).

The surface section (Fig.17) shows that the carbonate formation from the Chia Gara
Formation to the Bekhme Formation has good to very good quality with only some zones that
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show moderate quality (Fig.17). The Shiranish Formation appears to have moderate quality at
the bottom and top, while low to very low quality at the middle part. The Khurmala
Formation displays moderate quality over the whole zone. Clastic formations i.e. the Kolosh-
Tanjero formations, the Gercus Formation, and the marly part of the Shiranish formation
appear to have low to very low-quality rock mass.
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Fig.16. Evaluation of the spillway tunnel at the left and access tunnel at the right according to RSRMS.
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Fig.17. Evaluation of The Bekhme Gorge according to RSRMS.

Conclusion

Wide-spreading types of rock types with a wide range of weathering degrees and
different properties can be classified by the RSRMS. The conjugation of parameters led to
more fidelity to evaluate the rock mass. The process of linking each of the two parameters in
influence is of great importance in evaluating the rock masses more than the effect of each
parameter separately. The surface data assemblages by simple means without test boring are
sufficient for the evaluation of rock mass. Many worldwide systems are used RQD found
from the boreholes or sometimes estimated from the spacing of discontinuities. The weighing
of parameters in this classification is the same to reduce the strength of the rock mass as for
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intact rock. This study proved that the site of the previously chosen Bekhme Dam must be
changed and pushed to the north by a distance of no more than 50 meters or to the south by
about 20 meters to settle on a very high-quality rock mass.
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