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This work looks at the use of machine learning algorithms to predict 

soil composition (clay, gravel, sand, and silt) using remotely sensed 

data, providing a cost-effective and scalable solution for large-area 

soil mapping. This paper aims to optimize and compare grid search 

and random search for improving the performance of the machine 

learning models for soil texture prediction in the study area using 

Sentinel-1A SAR data and ASTER Global Digital Elevation Model 

(GDEM), and topographic information. Five machine learning 

models—Linear Regression (LR), Support Vector Regression (SVR), 

Random Forest (RF), Decision Tree (DT), and Multilayer Perceptron 

Regressor (MLP Regressor)—are examined. Grid search and random 

search approaches are used to optimize hyperparameters and improve 

model performance. After hyperparameter adjustment using grid and 

random searches, the DT model achieved near-perfect accuracy 

(RMSE ≤ 0.029, MAE < 0.021, R2 = 1.000). The MLP Regressor 

model also performed well in random search optimization (RMSE = 

0.038, MAE = 0.03, R2 = 1.000), outperforming grid search. Based 

on the presented results, the Decision Tree model appears to be the 

most suitable choice for predicting (clay, silt, and sand) soil 

composition, and Multilayer Perceptron Regressor (MLP Regressor) 

is the most suitable choice for predicting gravel composition. The 

improved models may be used in large-scale soil mapping projects, 

allowing for more informed decisions in agriculture, environmental 

management, and land use planning.      
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استخدام الذكاء الاصطناعي وخوارزميات التعلم العميق لاستخراج معالم الأرض من بيانات 
 عالية الدقةبلياد 

    3مصطفى رضا مزعل ،   2علياء عباس علي العطار ،   *1سعد محمود سليمان 

 الجامعة التقنية الشمالية  3،2،1
 

 معلومات الارشفة   الملخص 
استخدام خوارزميات التعلم الآلي للتنبؤ بتركيبة التربة )الطين والحصى والرمل    البحثيتناول هذا  

وقابل  التكلفة  فعالًا من حيث  يوفر حلًا  مما  بعد،  الاستشعار عن  بيانات  باستخدام  والطمي( 
تحسين ومقارنة البحث    الهدف من هذا البحث هو  للتطوير لرسم خرائط التربة في مناطق كبيرة.

الشبكي والبحث العشوائي لتحسين أداء نماذج التعلم الآلي للتنبؤ بنسيج التربة في منطقة الدراسة  
رادار   بيانات  العالمي    SAR Sentinel-1Aباستخدام  الرقمي  الارتفاع   ASTERونموذج 

(GDEM)  .لتدريب النموذج والتحقق من صحته. يتم فحص خمسة    والمعلومات الطبوغرافية
(، والغابة العشوائية SVR(، وانحدار متجه الدعم )LRالانحدار الخطي )  -نماذج للتعلم الآلي  

(RF( القرار  )DT(، وشجرة  الطبقات  متعدد  الانحدار  ومتغير   ،)MLP Regressor يتم  .)
أداء  وتحسين  الفائقة  المعلمات  لتحسين  العشوائي  البحث  وأساليب  الشبكي  البحث  استخدام 

دقة   DTالنموذج. بعد تعديل المعلمات الفائقة باستخدام البحث الشبكي والعشوائي، حقق نموذج  
( مثالية  نموذج RMSE ≤ 0.029،  MAE < 0.021 ،  R2 = 1.000شبه  أظهر  كما   .)

MLP Regressor  ( أداءً جيدًا في تحسين البحث العشوائيRMSE = 0.038 ،MAE = 
0.03،  R2 = 1.000،)   متفوقًا على البحث الشبكي. بناءً على النتائج المقدمة، يبدو أن نموذج

)الطين والطمي والرمل( ونموذج  التربة  بتكوين  للتنبؤ  الخيار الأكثر ملاءمة  القرار هو  شجرة 
MLP Regressor   هو الخيار الأكثر ملاءمة للتنبؤ بتكوين الحصى. يمكن استخدام النماذج

المحسنة في مشاريع رسم خرائط التربة واسعة النطاق، مما يسمح باتخاذ قرارات أكثر استنارة في 
 الزراعة والإدارة البيئية وتخطيط استخدام الأراضي. 
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Introduction 

Soil texture prediction and mapping are critical in many agricultural, environmental, and 

land management applications (Laborczi et al., 2015; Khalil et al., 2016). Soil texture mapping 

has been widely investigated utilizing many ways, among them the remote sensing, laboratory 

spectra, and field-based technologies (Gomez et al., 2019). Several researchers have looked 

into how machine learning models may be integrated with various data sources to predict soil 

texture accurately. Several studies have shown that machine learning approaches and radar data 

work well for mapping soil texture. Forkuor et al. (2017) showed that random forest regression 

can improve indigenous soil knowledge in West Africa at low cost and effort. Ana et al. (2022) 

observed that random forest provided the most accurate forecasts for clay, silt, and sand 

concentrations in the Amazon area, especially when the P-band of airborne radar was included 

as a covariate. Similarly, Rengma et al. (2023) employed a random forest regression (RFR) 

model to map soil texture and organic carbon in the mid-Himalayas, producing very accurate 

results. 

Several researchers have used synthetic aperture radar (SAR) data for soil texture 

mapping. Periasamy et al. (2019) used synthetic aperture radar to successfully identify the 

sandy loam (23%) and clay (35%) soil texture classes. Niang et al. (2014) discovered that using 

RADARSAT-2 polarimetric SAR data as covariates considerably enhanced the accuracy of 
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digital mapping for soil surface texture when compared to regular kriging. Bousbih et al. (2019) 

used radar and optical data from Sentinel-1 and Sentinel-2 to analyze soil texture in Tunisia, 

reaching a 65% overall accuracy with the random forest (RF) method. Their findings showed 

that the soil moisture indicator derived from combined Sentinel-1 and Sentinel-2 data produced 

the best classifications, implying that combining these datasets with soil moisture indicators 

can improve mapping accuracy and soil texture estimation (Bousbih et al. 2019).                             

Grid search and random search are two prominent optimization methods for 

hyperparameter tweaking in machine learning. In the domain of remote sensing and soil texture 

prediction, these strategies have been used to improve machine learning model performance. 

Grid search includes searching exhaustively through a preset set of hyperparameter values, 

whereas random search selects hyperparameter values randomly from a specified range. Both 

strategies have demonstrated potential in optimizing hyperparameters for machine learning 

models in remote sensing applications (Yasser et al., 2023; Vladyslav et al., 2022). Grid search 

is a methodical method for covering the full search space, although it can be computationally 

costly. Random search, on the other hand, is more computationally efficient since it only 

investigates a limited part of the search universe. Random search is more efficient for 

hyperparameter optimization than grid search because it finds better models with a less 

computational budget and covers a broader configuration space (Bergstra and Bengio, 2012).  

The purpose of this work is to evaluate grid and random search optimization strategies 

for fine-tuning different machine learning algorithms for soil texture prediction using Sentinel-

1A SAR data and topographic information. The paper aims to analyze two optimization 

strategies for models including linear regression (LR), linear support vector machine (SVM), 

decision tree (DT), random forest (RF), and artificial neural networks (ANN).  

Study area 

The current study focuses on a region in the eastern part of the Nineveh Governorate that 

stretches approximately 30 kilometers along the Great Zab River, a significant tributary of the 

Tigris River, from Kalak area to Al-Gwair area (Fig. 1). Geologically, the area is a part of 

northern Iraqi Folded Zone, which has a complicated structural and tectonic environment. 

Materials and Methods 

Figure 2  shows several data sources used in the process, including remote sensing data 

(Sentinel-1A SAR pictures and ASTER GDEM) and field data (soil samples). The data sources 

are used to calculate backscattering coefficients, relief characteristics, and field soil 

composition data, and Table 1 shows the input dataset. 

Table 1: Input dataset. 

Sentinel-1A SAR data VV, VH Polarizations 

ASTER Global Digital Elevation Model  (GDEM) 

topographic information Gravel, Sand, Silt, and Clay content 

 

 

The fundamental fact units utilized in this examine are the ASTER GDEM and the 

Sentinel-1A Synthetic Aperture Radar (SAR) image. The 2014 introduction of Sentinel-1A 

SAR information has made some of makes applications of, including monitoring modifications 

in land cover, agriculture, forestry, and catastrophe management. Depending on the mode and 

polarization, Sentinel-1A's SAR imaging has a spatial resolution of five to forty meters, which 

enables an in-depth analysis of the features on Earth's surface. Unlike optical sensors, SAR 

operates within the microwave vicinity of the electromagnetic spectrum, allowing it to function 

day or nighttime and through clouds. Satellite records from Sentinel-1A (S-1A) include the C-

band dual-polarization channels (VV and VH) with a 12-day repeating cycle. Two Sentinel-1A 

photos have been received for this research on January 20, 2024. 
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Fig. 1. Map of the study area. 

At 75 different places within the research region, which extends from (36⸰ 16′ 02″ N, 43⸰ 

38′ 27″ E) and ends at (36⸰ 02′ 27″ N, 43⸰ 29′ 05″ E), soil samples are taken. Sample locations are 

chosen along the Greater Zap River at about equal intervals of 400 m. A 500-gram soil sample 

is taken from the subsurface of each location (50 cm deep). The samples are forwarded to the 

lab for analysis. To test the qualities of the soil, the water content, sieve analysis, and 

hydrometer analysis are carried out.  

NASA and the Japanese Ministry of Economy, Trade, and Industry (METI) collaborated 

to develop ASTER, the Advanced Spaceborne Thermal Emission and Reflection Radiometer. 

NASA's Terra probe collected high-resolution topography data for the Earth's surface using 

stereo-pair photos processed by the ASTER sensor. With a spatial resolution of around 30 m, 

the ASTER GDEM provides global coverage and is suitable for a variety of applications such 

as landform mapping, topography analysis, and natural resource management. Its elevation data 

is critical to many sectors. 

These data sources are merged to form a geodatabase, which serves as the foundation for 

the modeling process. The data is then separated into three subsets: train (60%), validation 

(20%), and test (20%). Before proceeding, Table 2 shows the VIF values for each variable in 

the dataset after doing a multicollinearity analysis. Six variables, including the Topographic 

Wetness Index (TWI), Slope, LS Factor, Landform, Flow Accumulation, and Catchment Area, 

were removed because their VIF values exceeded 10. This shows that there is a substantial 

problem with collinearity with these variables, which may cause difficulties in understanding 

the model's regression findings. The VIF values for the other variables are modest. VH, VV, 

Vertical Distance to Channel Network, Valley Depth, Slope Height, Mid Slope Position, 

Melton Ruggedness Number, Convexity, Convergence Index, and Elevation were among the 

variables retained when the VIF was less than 10. These low VIF ratings indicate fewer major 

problems with collinearity. Eliminating highly collinear variables reduces the dataset's 

redundancy and makes it simpler to identify how the remaining variables in the regression 

model impact each other individually. Although removing collinear variables improves 

interpretability, it is important to note that doing so may result in the loss of some data. 
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Table 2: Accuracy without extraction for classification algorithms. 
Variable VIF 

VH 2.504 

VV 2.622 

Vertical Distance to Channel Network 4.058 

Valley Depth 5.858 

Topographic Wetness Index 133.526 

Slope 50.256 

Slope Height 4.542 

Mid Slope Position 3.021 

Melton Ruggedness Number 4.559 

LS Factor 37.039 

Landform 48.203 

Flow Accumulation 17.14 

Convexity 4.145 

Convergence Index 4.263 

Catchment Area 58.546 

Elevation 1.551 

 The modeling method makes use of machine learning techniques, including linear 

regression (LR), linear Support Vector Machines (SVM), Radial Basis Function (RBF) SVM, 

Decision Trees (DT), Random Forests (RF), and Artificial Neural Networks (ANN). These 

algorithms are trained on the training set, optimized on the validation set, and then assessed on 

the test set. The models are optimized using two basic strategies: grid search and random search. 

These optimization procedures are used to fine-tune hyperparameters in machine learning 

algorithms, which have a significant impact on prediction performance. 

The grid search technique defines a predetermined set of hyperparameter values, and the 

model is trained and tested for every possible combination of these hyperparameters. This 

method is comprehensive and guarantees that the optimal combination of hyperparameters 

within the specified range is found. However, it can be computationally expensive, particularly 

if there are a large number of hyperparameters with various values. Rather than doing an 

exhaustive search, the random search approach chooses hyperparameter values at random from 

a predetermined distribution (such as uniform, normal, or log-normal). This approach may be 

more efficient than grid search, especially in high-dimensional spaces, since it searches the 

hyperparameter space more thoroughly and has a better probability of finding the optimal 

combination of hyperparameters with fewer iterations. 

The best-performing model is chosen based on the evaluation metrics produced from the 

validation set after the models have been improved using different search techniques. The 

chosen model is then utilized to generate projected soil composition maps (clay, gravel, sand, 

and silt) for the research region. 
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Fig. 2. Flowchart of the proposed methodology for soil composition prediction using machine learning 

with optimized hyperparameters. 

Results and Discussion 

Table 3 compares the performance metrics (RMSE, MAE, and R2) of various machine 

learning models for predicting soil compositions (clay, gravel, sand, and silt). The models tested 

include SVR, RF, DT, LR, and MLP Regressor. The data compares the performance of these 

models with their default hyperparameters to their performance after improving the 

hyperparameters using grid search and random search methods.  

Table 3: Accuracy with extraction for classification algorithms. 

Target Variable Model 
RMSE MAE R2 

Default Grid Random Default Grid Random Default Grid Random 

Clay 

SVR 0.072 0.068 0.067 0.062 0.061 0.058 0.900 0.896 0.900 

RF 0.094 0.022 0.008 0.057 0.009 0.003 0.826 0.989 0.999 

DT 0.095 0.003 0.002 0.057 0.002 0.002 0.825 1.000 1.000 

LR 0.169 0.155 0.162 0.143 0.119 0.124 0.441 0.467 0.485 

MLP 0.087 0.011 0.009 0.070 0.008 0.007 0.853 0.998 0.998 

Gravel 

SVR 14.717 2.535 2.535 10.119 0.809 0.809 0.188 0.978 0.978 

RF 10.802 1.523 0.772 8.400 0.581 0.311 0.562 0.992 0.998 

DT 10.736 0.512 0.895 8.089 0.353 0.186 0.568 1.000 1.000 

LR 13.505 13.893 13.893 10.841 10.841 10.841 0.316 0.330 0.330 
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Clay Composition Prediction 

Among the models with default hyperparameters, the SVR model exhibits the best 

performance, with an RMSE of 0.072, an MAE of 0.062, and an R2 of 0.900. The Linear 

Regression model, on the other hand, shows the poorest performance with an RMSE of 0.169, 

an MAE of 0.143, and an R2 of 0.441. Hyperparameter optimization, through both grid search 

and random search techniques, significantly improved the performance of several models. 

 Random Forest and Decision Tree models show the most substantial improvements, 

achieving near-perfect performance (RMSE ≈ 0, MAE ≈ 0, and R^2 ≈ 1) after optimization. 

The MLP Regressor also exhibits significant improvements with an RMSE of 0.011 (grid 

search) and 0.009 (random search), an MAE of 0.008 (grid search) and 0.007 (random search), 

and an R^2 of 0.998 for both optimization techniques. The SVR model shows relatively minor 

improvements, with slightly lower RMSE and MAE values after optimization. The Linear 

Regression model displays modest improvements, with slightly lower RMSE and MAE values, 

and a higher R2 after optimization. 

 
 

Fig. 3. Predicted clay composition with best machine learning models (DT). 

Based on the presented results by Geographic Information System (GIS) software, the 

Decision Tree and Random Forest models appear to be the most suitable choices for predicting 

clay soil composition, exhibiting near-perfect performance after hyperparameter optimization. 

These models offer high accuracy while maintaining interpretability, as their decision-making 

process can be traced back through the tree structure. If computational efficiency is a concern, 

the MLP Regressor could be a viable alternative, as it achieved comparable performance to the 

tree-based models after optimization, while potentially being more computationally efficient 

MLP 16.596 0.424 0.038 13.192 0.295 0.030 0.033 0.999 1.000 

Sand 

SVR 13.115 2.236 2.236 9.074 0.765 0.765 0.133 0.976 0.976 

RF 11.289 1.060 1.070 8.736 0.357 0.422 0.358 0.995 0.995 

DT 11.242 0.117 0.097 8.689 0.050 0.078 0.363 1.000 1.000 

LR 10.213 10.213 10.213 8.568 8.568 8.568 0.474 0.474 0.474 

MLP 19.941 0.249 0.249 16.198 0.185 0.190 0.999 1.000 1.000 

Silt 

SVR 1.364 0.018 0.018 0.062 0.059 0.059 0.900 0.996 0.996 

RF 1.738 0.032 0.038 0.057 0.013 0.018 0.826 0.988 0.983 

DT 1.789 0.023 0.012 0.057 0.029 0.015 0.825 0.994 1.000 

LR 2.307 0.169 0.169 0.143 0.179 0.168 0.441 0.461 0.461 

MLP 1.051 0.040 0.029 0.070 0.032 0.021 0.853 1.000 1.000 
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for large datasets. Figure 3 presents the predicted soil maps for clay composition based on the 

best model. 

Gravel Composition Prediction 

Among the models with default hyperparameters, the Random Forest model exhibits the 

best performance, with an RMSE of 10.802, an MAE of 8.400, and an R^2 of 0.562. The MLP 

Regressor shows the poorest performance, with an RMSE of 16.596, an MAE of 13.192, and 

an R^2 of 0.033. Hyperparameter optimization, through both grid search and random search 

techniques, significantly improved the performance of several models. The MLP Regressor 

shows the most substantial improvements, with an RMSE of 0.424 (grid search) and 0.038 

(random search), an MAE of 0.295 (grid search) and 0.030 (random search), and an R^2 of 

0.999 (grid search) and 1.000 (random search). The Decision Tree model also exhibits 

significant improvements, achieving an RMSE of 0.512 (grid search) and 0.895 (random 

search), an MAE of 0.353 (grid search) and 0.186 (random search), and an R^2 of 1.000 for 

both optimization techniques. The Random Forest model shows improvements, with an RMSE 

of 1.523 (grid search) and 0.772 (random search), an MAE of 0.581 (grid search) and 0.311 

(random search), and an R^2 of 0.992 (grid search) and 0.998 (random search). The SVR model 

exhibits substantial improvements, with an RMSE of 2.535 for both optimization techniques, 

an MAE of 0.809 for both optimization techniques, and an R^2 of 0.978 for both optimization 

techniques. The Linear Regression model shows minimal improvement, with slightly higher 

RMSE and R^2 values after optimization, but no change in MAE. 

Based on the presented results by Geographic Information System (GIS) software, the 

MLP Regressor and Decision Tree models appear to be the most suitable choices for predicting 

gravel composition, exhibiting near-perfect performance after hyperparameter optimization 

using random search. These models offer high accuracy while maintaining computational 

efficiency, particularly for the Decision Tree model. The Random Forest model also 

demonstrated excellent performance after optimization, especially with random search, and 

could be considered as an alternative if ensemble models are preferred over individual tree 

models. Figure 4 presents the predicted soil maps for gravel composition based on the best 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Predicted gravel composition with best machine learning models (ANN). 
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Sand Composition Prediction 

Among the models with default hyperparameters, the Linear Regression model exhibited 

the best performance, with an RMSE of 10.213, an MAE of 8.568, and an R^2 of 0.474. The 

MLP Regressor shows the poorest performance, with an RMSE of 19.941, an MAE of 16.198, 

and an R^2 of 0.999. 

Hyperparameter optimization, through both grid search and random search techniques, 

significantly improves the performance of several models. The MLP Regressor shows the most 

substantial improvements, with an RMSE of 0.249 for both optimization techniques, an MAE 

of 0.185 (grid search) and 0.190 (random search), and an R^2 of 1.000 for both optimization 

techniques. The Decision Tree model also exhibits significant improvements, achieving an 

RMSE of 0.117 (grid search) and 0.097 (random search), an MAE of 0.050 (grid search) and 

0.078 (random search), and an R^2 of 1.000 for both optimization techniques. The Random 

Forest model shows improvements, with an RMSE of 1.060 (grid search) and 1.070 (random 

search), an MAE of 0.357 (grid search) and 0.422 (random search), and an R^2 of 0.995 for 

both optimization techniques. The SVR model exhibits substantial improvements, with an 

RMSE of 2.236 for both optimization techniques, an MAE of 0.765 for both optimization 

techniques, and an R^2 of 0.976 for both optimization techniques. The Linear Regression model 

shows no improvement after hyperparameter optimization, as the performance metrics 

remained unchanged. 

Based on the presented results by Geographic Information System (GIS) software, the 

Decision Tree and MLP Regressor models appear to be the most suitable choices for predicting 

sand composition, exhibiting near-perfect performance after hyperparameter optimization using 

both grid search and random search techniques. These models offer high accuracy while 

maintaining computational efficiency, particularly for the Decision Tree model. The Random 

Forest model also demonstrates excellent performance after optimization and could be 

considered as an alternative if ensemble models are preferred over individual tree models. 

Figure 5 presents the predicted soil maps for sand composition based on the best model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Predicted sand composition with best machine learning models (DT). 
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Silt Composition Prediction 

Among the models with default hyperparameters, the SVR model exhibits the best 

performance, with an RMSE of 0.072, an MAE of 0.062, and an R^2 of 0.900. The Linear 

Regression model shows the poorest performance, with an RMSE of 0.169, an MAE of 0.143, 

and an R^2 of 0.441. Hyperparameter optimization, through both grid search and random search 

techniques, significantly improves the performance of several models. The SVR model shows 

substantial improvements, with an RMSE of 0.018 for both optimization techniques, an MAE 

of 0.059 for both optimization techniques, and an R^2 of 0.996 for both optimization 

techniques. The MLP Regressor also exhibits significant improvements, achieving an RMSE 

of 0.040 (grid search) and 0.029 (random search), an MAE of 0.032 (grid search) and 0.021 

(random search), and an R^2 of 1.000 for both optimization techniques. The Decision Tree 

model shows improvements, with an RMSE of 0.023 (grid search) and 0.012 (random search), 

an MAE of 0.029 (grid search) and 0.015 (random search), and an R^2 of 0.994 (grid search) 

and 1.000 (random search). The Random Forest model exhibits modest improvements, with an 

RMSE of 0.032 (grid search) and 0.038 (random search), an MAE of 0.013 (grid search) and 

0.018 (random search), and an R^2 of 0.988 (grid search) and 0.983 (random search). The 

Linear Regression model shows no improvement after hyperparameter optimization, as the 

performance metrics remained unchanged. 

Based on the presented results, the Decision Tree and MLP Regressor models appear to 

be the most suitable choices for predicting silt composition, exhibiting near-perfect 

performance after hyperparameter optimization using both grid search and random search 

techniques. These models offer high accuracy while maintaining computational efficiency, 

particularly for the SVR model. The Random Forest model also demonstrates excellent 

performance after optimization, especially with random search, and could be considered as an 

alternative if interpretability and computational efficiency are prioritized over ensemble 

models. Figure 6 presents the predicted soil maps for silt composition based on the best model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Predicted silt composition with best machine learning models (DT). 
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The results of the above study are a progression on the trend whereby models that are 

complex, e.g., Decision Tree and Random Forest, give better results than simpler models such 

as Linear Regression in the case of soil composition prediction. They do it due to the tendency 

of complicated models to represent the nonlinear relationships and to detect the small but 

important details in the soil’s structure that are probably used in the classification and prediction 

tasks. 

In general, most models demonstrated more than a 5% increase in performance as a result 

of the parameter adjustments or grid search approach. Thus, this capability is an effective means 

of planning the hyperparameters of models for the better performance of prediction tasks, as 

they may be problem-specific. Both the grid search and the random search optimization 

strategies enhanced performance. Of the two studied, the random search is more successful in 

several diagnoses, such as the MLP Regressor and the Decision Tree. By suggesting that 

random search could be a better way of sampling through the hyperparameter space and also in 

the process come up with the best settings for these models, the soil composition prediction 

could be an easier task. While all methods remained just above the surface, in most rounds, the 

SVR can distinguish itself from the field by continuously attributing nearly perfect values to 

performance measures after the tuning of hyperparameters. This shows that SVR is one of the 

powerful models, which accurately predicts soil composition by sensing complicated 

interactions while preserving the wave of computational efficiency. Ensemble models like 

Random Forest prove strong and most successful after optimizing the hyperparameters. Which 

models are built by the accumulation of joint predictions of multiple decision trees rather than 

the simple addition of such predictions, and are capable of taking into account the nonlinearity 

and interactions in the data of soil compositions. 

Although the more intricate models that involve processes like MLP Regress and Random 

Forest did register much higher accuracy, Decision Tree and SVR Regress models that exude 

transparency and affordability may be the better choice if this factor is of consequence. The 

decision trees, particularly, are best fitted for such purposes because they are straightforward 

and understandable and can be used to spot the main connections that happen between soil 

features. 

While complicated models such as MLP Regressor and Decision Tree achieved great 

accuracy, simpler models like Random Forest and SVR may be selected if interpretability and 

computing economy are important considerations. Decision trees, in particular, provide a 

simple and understandable framework that might be useful in determining the underlying 

correlations between soil attributes and composition. 

Based on the presented results, the Decision Tree, MLP Regressor, and Random Forest 

models are the best choices for predicting soil composition, given their high accuracy, 

computational efficiency, and potential interpretability (in the case of Decision Trees). If 

ensemble-based forecasts are preferable, ensemble models such as Random Forest can be used, 

albeit interpretability may suffer. 

Conclusion 

In this work, we compared the efficacy of different machine learning models in predicting 

the composition of clay, gravel, sand, and silt in soil samples. The investigation includes 

evaluating the models' performance with default hyperparameters and optimized 

hyperparameters derived via grid search and random search approaches. The findings highlight 

the necessity of hyperparameter tweaking and model selection for accurate soil composition 

prediction. Among the models tested, the Multilayer Perceptron Regressor (MLP Regressor), 

Support Vector Regression (SVR), and Decision Tree models perform best with near-perfect 

results after hyperparameter adjustment. The MLP Regressor and SVR models consistently 

exhibit high accuracy, low errors, and strong coefficients of determination, making them viable 

candidates for soil composition prediction. The Decision Tree model, while slightly less 
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accurate than the top-performing models, has the advantage of being interpretable, providing a 

clear comprehension of the decision-making procedure. This interpretability can be useful in 

assessing the links between soil parameters and composition, assisting with domain knowledge 

extraction and decision-making processes. Ensemble models, such as Random Forest, also 

perform well, especially after hyperparameter tweaking. However, their increased complexity 

may sacrifice interpretability for greater forecast accuracy. 

It is vital to highlight that the most relevant model should be chosen based on criteria 

such as accuracy requirements, computing resources, interpretability requirements, and soil 

composition data specifics. Furthermore, additional validation and testing on independent 

datasets is advised to confirm the universality and resilience of the chosen models. Finally, this 

work demonstrates the accuracy and reliability of soil composition prediction using machine 

learning approaches in conjunction with appropriate hyperparameter optimization 

methodologies. The findings benefit soil scientists, agricultural researchers, and environmental 

monitoring applications by allowing for more informed decision-making and a better 

knowledge of soil attributes. 
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