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To determine the provenance, paleoclimate and palacoweathering of
the Upper Miocene sandstones of the Injana Formation, 12 sandstone
samples from two sites (Mirawa and Degala) in Erbil Governorate,
northern Iraq are investigated. Major, trace, and rare earth elements
are measured using X-ray fluorescence (XRF) and inductively
coupled plasma-mass spectrometry (ICP-MS). The elemental
concentrations and ratios of the studied sandstones indicate their
sources from intermediate to mafic igneous rocks. All the chondrite-
normalized REEs samples are similar and exhibit a minor enrichment
of light rare-earth elements (LREE) in comparison to the heavy rare
earth elements (HREE) with a negligible negative europium (Eu)
anomaly. The low to moderate values of the plagioclase index of
alteration (PIA), chemical index of alteration (CIA), high values of
index of compositional variability (ICV > 1), and the A-CN-K plot,
all indicate a low to moderate chemically weathered source area.
Palaeoclimatic information can be provided using the plot of the SiO,
versus (Al,03+Na2O + K;0) indicating that the deposition of Injana
sandstones has occurred under fluctuated climate between arid to
semi-arid.
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Introduction

The provenance, degree of transportation, diagenesis processes, and depositional
environment, all influence the composition of siliciclastic rocks (Garzanti et al., 2008). The
chemical composition is influenced by the type of their source rocks as well as chemical
weathering and diagenesis (Nesbitt et al., 1996). Sandstone mineralogy and petrography are
being extensively utilized to define their origin (Garzanti, 2019), whereas the paleoclimate,
provenance, tectonic setting, and paleoweathering of the sandstone are all determined using the
bulk rock geochemistry of the material (Cullers, 2000). To recreate the source rock
composition, provenance, paleoclimate, paleoweathering, and depositional tectonic context of
siliciclastic rocks, the chemical composition, mineralogy, and petrography of these rocks are
extensively used (McLennan and Taylor, 1991; Roddaz et al., 2011; Zaid et al., 2015; Léwen
et al., 2018; Ge et al., 2019; Chen and Robertson, 2020; Moghaddam et al., 2020). The
utilization of trace elements for provenance interpretation is dependent on their relative
stability. Because the high field strength elements (HFSE such as Th, Y, Nb, Zr) are generally
immobile, therefore they can be used as indicators of provenance (Taylor and McLennan,
1985). Additionally, markers of provenance can be found in the ratios of incompatible to
compatible elements (for instance, Th/Sc, La/Sc, Zr/Sc, and Th/Co) (McLennan et al., 1983;
Yan et al., 2007). CIA (chemical index of alteration; Nesbitt and Young, 1982) and CIW
(chemical index of weathering; Harnois, 1988) are widely used to infer the intensity of
weathering of the sediments and rocks (Roy et al., 2008).
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The studied sandstone samples are collected from two different sites, Degala and Mirawa.
In both areas, the formation has a thickness of 168 and 133 m respectively. At the two sites, the
lower contact with the Fat'ha Formation is gradational and established by the first occurrence
of the gypsum layer. The initial occurrence of the pebbly sandstone bed serves as a gradational
indicator of the upper contact with the Mukdadiya Formation.

Injana Formation sandstones are fine to coarse-grained, of red to grey color, hard to
friable, laminated to thickly bedded, and sometimes interbedded with thin layers of mudstone.
Several types of sedimentary structures may be recognized like cross-bedding, lamination,
ripple mark and bioturbation (Fig. 1).

The Upper Miocene Injana Formation is widely distributed in Irag, and it is quite
significant in terms of raw materials and economics (Al-Rawi et al., 1992). It is made up of
clastic sediment deposits in a fluviatile environment. It is intensively investigated due to its
widespread distribution, but the majority of these investigations concentrated on mineralogy,
sedimentology and the depositional environment (Al-Sammarai, 1978; Al-Juboury,1994;
Mahdi, 2006; Jassim and Goff, 2006). Petrography and provenance studies of the Injana
Formation sandstones were provided by Al-Salmani and Tamar-Agha (2018), who believe that
the Injana Formation's provenances are mainly igneous and sedimentary rocks as well as
metamorphic rocks. The sandstones of Injana Formation are mainly immature litharenite.
Whereas Al-Juboury et al. (2009) investigated the geochemistry of the Injana Formation's
sandstones and hypothesized that the clastics came from earlier sedimentary rock and basic
igneous and metamorphic rocks. Kettanah and Abdulrahman (2022) investigated the
geochemistry and petrography of sandstones of Injana Formation and concluded that the
sandstones are immature in terms of composition and textural development ranging between
arkose and lithic arkose. Based on major oxide discriminant plots, these sandstones were
primarily sourced from intermediate igneous rocks.

f BT

Fig.1. Photographs of the sandstone of Injana Formation (upper Miocene) showing the laminated and
cross-laminated sandstone in Degla section (A, B) and Mirawa section (C, D).
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The study aims to discuss the major, trace and REE geochemistry for the sandstone of the
Injana Formation to infer the provenance, paleoclimate, and paleoweathering of these sandstone
rocks through a bulk-rock geochemical data. In broad interest, the results of this study have
significant implications to reconstruct paleoclimatic conditions.

Geological setting

During the Late Miocene, most of the shelf units were uplifted as a result of the collision
between the Iranian and Anatolian plates with the Arabian plate. A large quantity had been
eroded on the elevated area, and the resulting debris was dumped into the nearby molasse basin
(Jassim and Goff, 2006). Injana Formation sediments reflect the beginning of molasse
sediments created as a result of the collision during the Alpine orogeny (Beydoun, 1993). Injana
Formation in Iraq has been observed in the northern and middle regions of the low folded
(foothill) zone (LFZ) and some parts of the Mesopotamian foredeep (Fouad, 2012). The type
section of the Injana Formation is located at the northeastern border of Jabal Hamrin, where its
thickness is 620 m (Jassim et al., 1984). It also extends into Syria (Upper Fars; Ejel and Abdul
Rahim, 1974), Turkey (Siirt series; Brinkmann, 1976), and Iran (Upper Fars or Aghajari
Formation; James and Wynd, 1965). Injana Formation is composed of fine-grained pre-molasse
sediments that were initially deposited in coastal regions and afterward in a fluvial and
lacustrine system (Al-Rawi et al., 1992). The Fat'ha and Mukdadiya rocks represent the lower
and upper boundaries of Injana Formation respectively (Sissakian, 1992). The investigated
Mirawa and Degla sections are situated in the upper folded area of the unstable shelf (Fig. 2).
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Fig. 2. Tectonic and location map of the studied area (after Fouad, 2015).
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Samples and Methods

A geochemical study of sandstone is implemented on 12 sandstone samples distributed
in the two sites (6 samples from Degala site “named D “, and 6 samples from Mirawa site
“named M “). Major oxides are determined by X-ray fluorescence at Baghdad University (Cu
tube target, Ni filter, power: 40 kV, current: 20 mA; speed: 1 cm/min). Trace and rare earth
elements are measured using inductively coupled plasma-mass spectrometry (ICP-MS) at
Acme Labs in Vancouver, British Columbia, Canada (Code AQ250 EXT REE). The
concentrations of the major and trace elements have been compared to the upper continental
crust (UCC) and the REEs are normalized to the chondrites and UCC values. For the accuracies
of the analysis, sample M17 was analysed three times and the results were highly identical. For
the accuracy, an international standared (STD BVGEOOQ1) was used.

Results

Major oxides geochemistry

The content of the major oxides in the analysed sandstone samples are given in Table (1).
In all of these samples, SiO> is predominated (31.47-40.65%, average 36.84%), Al.Osz and CaO
contents are in the range of 1.64-9.21% (average 5.14%) and 22.28-30.76% (average 25.3%)
respectively. The CaO contents are high in comparison with Fe>O3 (1.91-5.25%), MgO (1.69-
4.06%), Na20 (1.02-3.11%), K20 (0.1-2.58%), and TiO> (0.23-0.78%). In contrast, the Injana
sandstones have low values of both MnO (0.04-0.26%) and P,Os (0.09-0.63%). The average
concentrations of SiO2, Al20s, Fe203, Naz0, K20, and TiO: of the analyzed samples of Injana
Formation are generally lower than the UCC, whereas CaO concentration is much higher than
that of the UCC, and MnO, MgO and P,Os are slightly higher than the UCC (Table 1). The ratio
of log SiO2/Al>03 to log Na,O/K-0 indicates that most of the sandstones under study are
primarily plotted in litharenite fields, except for three samples located in graywacke field (Fig.
3).

1.6
Legend
[@Degla section
12 b n A AMirawa section
= A
— &
(@) I &
~ 0.8 >
o K3 :
5 Q
"N
® 04} - &
=z o
% §/ &
) ° &
] 0} P ) L <
2] © Y B
L 'S
& O
9 >
3
04 } “ §'
~
(o
0.8 |
.1.2 I I A
0 0.5 1 15 2 2.5
Log(SiO2/Al203)

Fig. 3. Log (SiO2/AI203) versus log (Na20/K20) diagram of the Injana sandstones (Pettijohn et al., 1987).
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Table (2) displays the studied sandstone’s trace element concentrations. Commonly, they
have a wide range. The Injana Formation sandstone generally has trace element concentrations
lower than the UCC averages except Cu (149.92 ppm) and Ni (77.48 ppm) (Fig. 4), where their
concentrations are higher. The sandstone has variable Th (1.8-3.20 ppm), U (0.2-0.50 ppm),
and Th/U ratio (4.50-15.50) but is consistent with the (UCC). The La/Th, Th/U, Y/Ni, Cr/V,
Zr/Sc, Cr/Th, La/Y, Th/Sc, Zr/10, Sc/Cr, and Th*10 ratios are listed in Table (3).

From the UCC-normalized trace element spider diagrams (Fig.4), it seems that the Hf and
Zr are severely depleted, Cu is enriched, Ni is slightly enriched; and other elements are slightly
depleted.
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Table 3: Elemental ratios of Late Miocene sandstone from Injana Formation.

Sample No. Th/U La/Th  Cr/V _ YINi Cr/Th Zr/Sc  Th/Sc  Y/Ho La/Y Sc/Cr Zr/10 Th*10

Degla section

D2 5.80 5.14 2.48 0.12 31.66 0.44 0.48 26.61 1.22 0.07 5.02 29.00
D6 1550 4.26 1.56 0.17 22.65 0.17 0.34 27.68 1.08 0.13 5.83 31.00
D11 9.33 471 0.85 0.17 13.68 0.38 0.42 27.05 1.16 0.17 5.48 28.00
D13 10.33  4.55 1.86 0.17 16.77 0.47 0.53 31.86 1.23 0.11 3.93 31.00
D19 8.00 5.34 2.60 0.15 21.09 0.43 0.59 27.29 1.31 0.08 3.85 32.00
D21 7.75 3.68 0.99 0.14 17.48 0.45 0.53 24.49 1.26 0.11 5.07 31.00
Mirawa section

M1 10.67 3.25 1.49 0.11 19.06 0.25 0.51 26.94 1.17 0.10 7.24 32.00
M8 5.25 5.05 0.96 0.19 16.43 0.42 0.37 31.38  1.06 0.17 6.26 21.00
M12 11.00 450 0.96 0.15 21.05 0.73 0.35 30.34 1.02 0.14 7.55 22.00
M15 5.75 6.30 1.84 0.12 32.00 1.08 0.47 29.79 1.16 0.07 5.59 23.00
M17 5.25 5.29 0.91 0.15 21.76 0.84 0.37 30.85 1.06 0.12 6.02 21.00
M22 4.50 6.94 2.00 0.12 42.28 0.76 0.36 32.02 1.12 0.07 4.84 18.00
Average 760 428 1.45 0.14 22.29 0.51 0.44 28.85 1.03 0.10 5.56 26.58
UCC* 3.89 2.95 0.95 0.45 8.76 13.79 0.75 25.30 1.48 0.15 6.70 105.00

*UCC: upper continental crust from Rudnick and Gao (2003).
Rare earth elements

Table (4) displays the quantities and ratios of the Rare Earth Elements (REE) of the Injana
sandstones. The chondrite-normalized REE distribution of the samples (Fig. 5) appears similar
to the REE distribution pattern of UCC as reported by Rudnick and Gao (2003). The REE values
show enrichment of light REEs (LREEs, La- Eu), as well as a somewhat uniform distribution
of heavy REEs (HREEs, Gd-Lu). The quantification of Eu anomaly is calculated as follows:
Eu/Eu* ratio =2*(Eu)cn/(Sm)cen +(Gd)en. The ratio of Ce anomaly is calculated using the
following equation: 2*(Ce)cn /(La)cn +(Pr) cn (Taylor and McLennan, 1985). The subscript
(cn) refers to chondrite-normalized values (Taylor and McLennan, 1985). The normalized ratios
of the REE such as (Lan/(Yb)n, (La)n/(Sm)n, (GA)N/(Yb)n,  (La)n/(Nb)w:
(Element)n=(Element)sampte /(Element)chondrite are reported in Table (4).

There is a considerable difference in the total rare earth elements (ZREE) between 19.02
to 84.13 ppm (average = 54.81 ppm). The XREE in sandstone samples is lower than the ZREE
content of the UCC (Average= 63.05) The £REE in the sandstones of Injana Formation exhibits
relatively positive relationships with Th and P. In contrast, the XREE shows no relationships
with Al (Fig. 6) implying that these elements may be hosted in accessory minerals. This
suggests that phosphate minerals (e.g., apatite, monazite) and opaque minerals may be
predominant host minerals for the REEs (Ramos-V azquez and Armstrong-Altrin, 2019). Lee
et al. (1973) found that appetites from the more mafic rocks contained rare earth assemblages
richer in the lighter REE. The studied samples have low Zr content (average 3.08 ppm) which
is highly lower than that of the UCC (193 ppm). Moreover, the low correlation of REE with Al
indicates that REE distribution is not likely to be controlled by the influence of clay minerals.
The LREE's content ranges from 16.90 ppm to 75.07 ppm (average= 48.28 ppm), and the
HREE's content ranges from 2.12 to 9.06 ppm (average =6.53). The LREE/HREE ratios are
from 7.97 to 8.29 ppm (average=7.41). Typically, the Eu/Eu* values exhibit negative anomalies
(0.78 t0 0.97; average 0.85). The range of the Ce/Ce* anomaly is from 0.82 to 0.98 (average =
0.89). The range of the ratio (La/Nb) cn is 10.50 to 13.05; average = 11.33), whereas the
(Gd/YDb) cn and (La/Sm) cn ratios are between 1.62 and 3.36; average = 2.72), and 2.66 and
4.26; average =3.66) respectively.
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Discussion
Provenance

The geochemical analysis of the sediments and rocks provides hints to describe the
provenance of the clastic sedimentary rocks (Cullers, 2000). Certain trace elements such as Cr,
Sc, V. Ni, Co, Y, Nb, Zr, Th, and REEs are frequently used in interpreting the composition and
provenance of the source area due to their low propensity for mobility during post-depositional
processes (McLennan et al., 1993). Based on diagrams in Figure (7A-C), Th/Co versus La/Sc
diagram of Cullers (2000), Co/Th versus La/Sc versus (McLennan et al., 1993), and Cr/Th
versus Th/Sc (Totten et al., 2000) show that the Injana Formation samples under study are
located close to the field between intermediate and mafic sources. In addition, and from the
ternary diagram V-Ni-Th*10 (Bracciali et al., 2007), the Injana sandstones are located around
the V-Ni line indicating provenance that is both intermediate and mafic (Fig. 8). The Th/Co,
La/Sc Cr/Th, La/Co, and Th/Sc and ratios of the examined Injana sandstones are compared with
the UCC (Table 5) to determine the source of these sandstones. According to these ratios, it is
found that the mafic rocks are mostly responsible for the composition of these sandstones.
Mafic provenance of these sandstones supported by the high concentrations of Cu and Ni; where
these two elements are compatible elements and they are associated with ferromagnesian
minerals such as olivine and pyroxene. Distribution patterns of the REE, Eu anomalies, and
(Gd/YDb) cn ratios in sediments, all provide information about the characteristics of the source
region. Mafic source rocks exhibit lower ratios of LREE/HREE, higher ratios of gadolinium
(Gd) to ytterbium (Yb) normalized to chondrite (CN), and a lack of europium (Eu) anomalies.
In contrast, felsic source rocks display low (Gd/Yb) cn ratios, higher LREE/HREE ratios, and
negative Eu anomalies (Cullers, 1994). The Injana sandstone exhibits a comparatively lower
ratio of LREE/HREE with an average of 7.41. Additionally, it demonstrates a higher ratio of
gadolinium (Gd) to ytterbium (Yb) normalized to chondrite (CN) with an average of 2.77.
Furthermore, it displays negative values for europium (Eu) and its corresponding ratio to the
average europium value in the UCC (Eu/Eu*) (average = 0.80). The Eu/Eu* ratio is reliable
source indicator for Injana sandstones because the plagioclase alteration is low (average PIA=
42%; Table 1) indicating no destroying of the plagioclase of the parent rocks. Destroying the
plagioclase leads to removing the Eu that is incorporated in the plagioclase, which will lead to
a lower Eu/Eu* value for sediments compared to their source rock (Getaneh and Atnafu, 2020).
The Eu/Eu* values of the studied sandstone samples of Injana Formation are in the range of
0.79-0.97. These values are within the mafic rocks range (Table 5).

These observations indicate that the Injana sandstone has been primarily originated from
mafic igneous rock sources (Table 4). Yttrium (YY) exhibits chemical characteristics that are
analogous to those of Holmium (Ho), thereby leading to its classification within the lanthanides
group (Tostevin etal., 2016). According to Song et al. (2014), it has been observed that volcanic
ash and terrigenous materials often exhibit Y/Ho values of about 28, but seawater tends to have
higher values ranging from 44 to 74. The Y/Ho values recorded in the samples of the current
investigation range from 24.48 to 32.02 as shown in Table (3). The aforementioned values are
indicative of terrigenous minerals. The La/Co, Th/Co, Th/Sc, Cr/Th, Th/Cr, and La/Sc ratios of
the Injana sandstone (0.8 0, 0.94, 0.44, 0.19, 0.04, 22.29 and 2.18, respectively) are compared
with those of the UCC (Table 5). This comparison suggests that these sandstones had been
originated from intermediate to mafic rocks. This interpretation is consistent with the
provenance of the mudrocks of Injana Formation (Al-Maadhidi et al., 2023).
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Fig.8. Ternary diagram showing the provenance of the Injana samples (after Bracciali et al., 2007).

Table 5: Elemental ratios of the Injana Sandstone compared with the range values of sediments derived
from mafic and felsic rocks, and upper continental crust (Armstrong-Altrin et al., 2013).

Studied samples Range of sediments Range of sediments

from mafic sources from felsic sources

Elemental ratio ucc* PAAS**

Range Average
Eu/Eu* 0.78-0.97 0.80 0.71-0.95 0.40-0.94 0.63 0.71
La/Co 0.63-1.42 0.94 0.38-0.41 1.8-13.8 1.76 0.9
Th/Sc 0.34-0.75 0.44 0.05-0.22 0.84-20.50 0.79 0.9
Th/Co 0.13-0.26 0.19 0.04-1.40 0.67-19.40 0.13 0.63
Th/Cr 0.02-0.07 0.04 0.018-0.046 0.13-2.70 0.3 0.13
Cr/Th 13.68-42.28 22.29 25-100 4.00-15.00 7.76 7.53
La/Sc 1.43-3.16 2.18 0.43-0.86 2.50-16.30 2.21 2.4

*UCC:Upper Continental Cust (Taylor and McLennan,1985)

**PAAS: Post Archean Australian Shale (Taylor and McLennan,1985)

Paleoclimate

The paleoclimate of the source area has been widely interpreted using geochemical
proxies (Ge et al., 2019). The graphical plot between SiO2 and (Al203+Na>;O + K>0) can be
used to provide palaeoclimatic conditions (Suttner and Dutta, 1986). The examined samples of
the Injana Formation have SiO> values ranging from 31.57 to 40.65 wt.%, with an average of
36.84 (Table 1). These values suggest an arid paleoclimate. The (Al.03+Na20O + K20) values
are between 2.76 t014.9 with an average of 7.63 (Table 1) indicating semi-arid paleoclimate.
These data suggest an arid to semi-arid climate during the deposition of the sandstone of the
Injana Formation (Fig. 9).
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the Injana Formation (Suttner and Dutta, 1986).

Source area weathering conditions

Several methods such as the plagioclase index of alteration (PIA) developed by Fedo et
al. (1995) can be used to assess the intensity of paleoweathering in the source region. Chemical
index of alteration (CIA), the chemical index of weathering (CIW) is suggested by Harnois
(1988), while the index of chemical variability (ICV) is developed by Cox et al. (1995), and the
A-CN-K diagram is presented by Nesbitt and Young (1982) and Fedo et al. (1995). The
mineralogy and geochemistry of clastic deposits and rocks are significantly affected by the
presence and extent of chemical weathering (Bokanda et al., 2021). Various indicators of
weathering can be employed to evaluate the extent of weathering in sedimentary rocks (e.g.,
Fedo et al., 1995). These weathering indicators can be used as parameters to understand the
climatic conditions during deposition in addition to providing a straightforward statement about
the weathering conditions. Low levels of weathering are typically associated with arid or cool
and dry climates, whereas high levels of weathering are typically thought to be associated with
humid temperate to tropical climates (Chen et al., 2021). The CIA is expressed as CIA =
[(Al203)/ (K20+ Al,03+ + Na,O+ CaO*)] x 100, where CaO, Al203, K20, and NazO are in
molar proportion and CaO* is the CaO restricted to calcium derived from silicate minerals
(Nesbitt and Young, 1982). Since the studied sandstone is rich in carbonate cement, the method
employed in this investigation to acquire CaO* is based on that proposed by McLennan et al.
(1993). CaO*= Ca0-(3.33*P20:s). If the corrected molar CaO value exceeds the Na.O value,
the CaO™* value is considered valid as the Na2O value. Conversely, if the CaO* value is equal
to or less than the Na>O value, it is presumed to represent the CaO content.

According to Taylor and McLennan (1985), the Injana sandstone's CIA values (23.41-
66.12, average 42) are more asymptotic than those of the UCC indicating that its parent rocks
underwent low to moderate weathering. The chemical weathering level can be determined using
the CIA vs. (Al203/Na20) plot (Selvaraj and Chen 2006). According to this plot, all the analyzed
samples of Injana Formation are located in the low to moderate weathering field (Fig. 10).
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The chemical weathering degree and the variations in the primary components and
mineralogy during the weathering processes are shown in a ternary plot of A-CN-K (Fig. 11).
All of the Injana Formation samples that have been plotted on this diagram are grouped parallel
to the A-CN junction between the K-feldspar -plagioclase-—line (Fig. 10). This indicates that
the source area of these sandstone samples of Injana Formation is affected by low to medium
levels of chemical weathering (McLennan et al., 1993). The depressed CIA values may reflect
the lower proportion of feldspars than clay minerals in the examined samples (Tobia and
Shangola, 2016). Thus, the diagenetic alteration of feldspar and short-distance transport were
the most important factors in augmenting feldspar in sandstone.
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Fig. 11. The A-CN-K diagram of sandstone samples from Injana Formation (after Xu et al., 2011).
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The conclusion additionally indicates a single low to moderate weathering rate rather than
multiple sedimentary cycles due to the low ICV values of Injana sandstone. Also, the CIW
(CIW= [(Al203)/ (Al203+ Na,O+Ca0*)] x100 values range between 23.84 and72.83 with an
average = 44.35 (Table 1). These CIW readings reveal the source rocks or sediments with low
to moderate stages of chemical weathering (Harnois, 1988)). The PIA (PI1A = [(Al 2 O 3.K20)/
(Al0 3+Ca0*+ Na20O - K20)] x 100) values range between 22.42 and 69.76 with an average =
42 (Table 1) suggesting low plagioclase weathering of the parent rocks (Fedo et al., 1995).

Paleoweathering assessment also employed the indicator of chemical variability (ICV)
(Cox et al. 1995). ICV= (CaO+Na.0+K,0+Fe203+TiO2+MgO)/Al203). According to Harnois
(1988), immature sediments are indicated by an ICV value higher than 1, and mature sediments
are indicated by an ICV value less than 1. This formula shows that alteration products like
muscovite, kaolinite, and illite have ICV values are less than 1 (<1), while rock forming
minerals such as olivine, pyroxenes, feldspars, and amphiboles have ICV values more than 1
(>1) (Cullers and Podkovyrov, 2000). The Injana sandstone's ICV values range from 3.49 to
20.64 with an average of 9.88 (Table 1) indicating that they are linked to alteration products
such as feldspars, amphiboles, and pyroxenes. So, according to Ivanova et al. (2018), the ICV
values of the examined sandstones indicate evidence of poor weathering in the source location
conditions. ICV values >1 is typically present in the studied samples of the Injana Formation
indicating a high impact of short-distance transportation and low weathering of sediment under
arid to semi-arid conditions. The results of the paleoweathering conditions are similar to the
results of the Kettanah et al. (2022) study of the Injana Formation in the Hemrin South
Mountain area.

Scandium and thorium are not separated chemically during the sedimentary process
because they are chemically stable (Hou et al., 2018). The enrichment of zircon during the
sedimentary cycle causes the ratio of Zr/Sc to rise, whilst the ratio of Th/Sc practically remains
the same (Roddaz et al., 2005; Qadrouh et al., 2021). Consequently, sedimentary recycling can
be assessed using the plot of Zr/Sc versus Th/Sc. Injana samples' Zr/Sc ratios are precisely
proportional to their Th/Sc ratios as seen in Figure (12) far away from the trend line of
compositional variations.
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Fig. 12. Th/Sc versus Zr/Sc plot of the Injana sandstone samples after McLennan et al. (1993).
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Conclusions

The elemental ratios of the major, trace and REEs of the examined sandstone samples of
Injana Formation from northern Iraq show that these samples are derived from intermediate-
mafic source rocks. These samples have a low ratio of LREE/HREE, as well as a greater
(Gd/YDb) cn ratio. These sandstones also display negative Eu/Eu* anomalies, which are
indicative of the influence of mafic igneous processes. These ratios also suggest that the source
area had a predominance of low to moderate chemical weathering processes, mostly occurring
within an arid to semi-arid climate.
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