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To determine the provenance, paleoclimate and palaeoweathering of 

the Upper Miocene sandstones of the Injana Formation, 12 sandstone 

samples from two sites (Mirawa and Degala) in Erbil Governorate, 

northern Iraq are investigated. Major, trace, and rare earth elements 

are measured using X-ray fluorescence (XRF) and inductively 

coupled plasma-mass spectrometry (ICP-MS). The elemental 

concentrations and ratios of the studied sandstones indicate their 

sources from intermediate to mafic igneous rocks. All the chondrite-

normalized REEs samples are similar and exhibit a minor enrichment 

of light rare-earth elements (LREE) in comparison to the heavy rare 

earth elements (HREE) with a negligible negative europium (Eu) 

anomaly. The low  to moderate values of the plagioclase index of 

alteration (PIA), chemical index of alteration (CIA), high values of 

index of compositional variability (ICV > 1), and the A-CN-K plot, 

all indicate a low to moderate chemically weathered source area. 

Palaeoclimatic information can be provided using the plot of the SiO2 

versus (Al2O3+Na2O + K2O) indicating that the deposition of Injana 

sandstones has occurred under fluctuated climate between arid to 

semi-arid.  
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الأرضية النادرة للحجر الرملي لتكوين انجانة  و  جيوكيميائية العناصر الرئيسة والاثرية
 ة التجوية القديمو  المناخ القديم ، المصدرية شمالي العراق: ،)لمايوسين الأعلىا)

   3لفتة سلمان كاظم ،   * 2محمد وكاع الخفاجي  ،   1أنوار سويد جاسم المعاضيدي 
 العراق. كركوك، ، جامعة كركوك  ، الارض، كلية العلوم   علوم قسم  1
 العراق.  تكريت،  ،جامعة تكريت  ، كلية العلوم ،قسم علوم الأرض التطبيقية  2،3

 معلومات الارشفة   الملخص 

المايوسين    من  المناخ القديم والتجوية القديمة للحجر الرملي    ،لمعرفة المصدرية
نموذجا من الحجر الرملي من موقعين    12الأعلى لتكوين إنجانة، تم فحص  

والعناصر   الرئيسة  الأكاسيد  تحليل  تم  أربيل.  محافظة  في  وديكلة(  )ميراوا 
بواسطة   النادرة  الأرضية  والعناصر  تشير   ICP-MSو  XRFالثانوية   .

الرملي إلى ان مصدرها  التراكيز ونسب العناصر الأرضية النادرة في الحجر  
مافية . جميع تراكيز العناصر الأرضية النادرة    -هو صخور نارية متوسطة

للعناصر    طفيفا    ً  التي تمت معايرتها  بالكوندرايت كانت متشابهة وتظهر اغناء
الثقيلة مع شذوذ   النادرة  بـالعناصر الأرضية  النادرة الخفيفة مقارنة   الأرضية 

ومؤشر     (PIA)تحلل البلاجوكليس    مؤشريمتلك  سلبي ضئيل في الأيروبيوم.  
منخفضة الى متوسطة، بينما كانت قيم مؤشر   ا  قيم  (CIA)التغير الكيميائي 

-CN-K   A   ، ويشير مخطط(ICV > 1)  1التباين الكيميائي اكبر من  
كيميائية كانت منخفضة الى متوسطة في منطقة الدراسة.  اللى أن التجوية  إ

إلى المناخ   )O2K+  O2Na+3O2Al( مقابل  2SiO لـيشير الرسم البياني  
 الجاف إلى شبه الجاف أثناء ترسب الحجر الرملي لتكوين إنجانة.  
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Introduction 

The provenance, degree of transportation, diagenesis processes, and depositional 

environment, all influence the composition of siliciclastic rocks (Garzanti et al., 2008). The 

chemical composition is influenced by the type of their source rocks as well as chemical 

weathering and diagenesis (Nesbitt et al., 1996). Sandstone mineralogy and petrography are 

being extensively utilized to define their origin (Garzanti, 2019), whereas the paleoclimate, 

provenance, tectonic setting, and paleoweathering of the sandstone are all determined using the 

bulk rock geochemistry of the material (Cullers, 2000). To recreate the source rock 

composition, provenance, paleoclimate, paleoweathering, and depositional tectonic context of 

siliciclastic rocks, the chemical composition, mineralogy, and petrography of these rocks are 

extensively used (McLennan and Taylor, 1991; Roddaz et al., 2011; Zaid et al., 2015; Löwen 

et al., 2018; Ge et al., 2019; Chen and Robertson, 2020; Moghaddam et al., 2020). The 

utilization of trace elements for provenance interpretation is dependent on their relative 

stability. Because the high field strength elements (HFSE such as Th, Y, Nb, Zr) are generally 

immobile, therefore they can be used as indicators of provenance (Taylor and McLennan, 

1985). Additionally, markers of provenance can be found in the ratios of incompatible to 

compatible elements (for instance, Th/Sc, La/Sc, Zr/Sc, and Th/Co) (McLennan et al., 1983; 

Yan et al., 2007). CIA (chemical index of alteration; Nesbitt and Young, 1982) and CIW 

(chemical index of weathering; Harnois, 1988) are widely used to infer the intensity of 

weathering of the sediments and rocks (Roy et al., 2008).  
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The studied sandstone samples are collected from two different sites, Degala and Mirawa. 

In both areas, the formation has a thickness of 168 and 133 m respectively. At the two sites, the 

lower contact with the Fat'ha Formation is gradational and established by the first occurrence 

of the gypsum layer. The initial occurrence of the pebbly sandstone bed serves as a gradational 

indicator of the upper contact with the Mukdadiya Formation. 

Injana Formation sandstones are fine to coarse-grained, of red to grey color, hard to 

friable, laminated to thickly bedded, and sometimes interbedded with thin layers of mudstone. 

Several types of sedimentary structures may be recognized like cross-bedding, lamination, 

ripple mark and bioturbation (Fig. 1). 

The Upper Miocene Injana Formation is widely distributed in Iraq, and it is quite 

significant in terms of raw materials and economics (Al-Rawi et al., 1992). It is made up of 

clastic sediment deposits in a fluviatile environment. It is intensively investigated due to its 

widespread distribution, but the majority of these investigations concentrated on mineralogy, 

sedimentology and the depositional environment (Al-Sammarai, 1978; Al-Juboury,1994; 

Mahdi, 2006; Jassim and Goff, 2006). Petrography and provenance studies of the Injana 

Formation sandstones were provided by Al-Salmani and Tamar-Agha (2018), who believe that 

the Injana Formation's provenances are mainly igneous and sedimentary rocks as well as 

metamorphic rocks. The sandstones of Injana Formation are mainly immature litharenite. 

Whereas Al-Juboury et al. (2009) investigated the geochemistry of the Injana Formation's 

sandstones and hypothesized that the clastics came from earlier sedimentary rock and basic 

igneous and metamorphic rocks. Kettanah and Abdulrahman (2022) investigated the 

geochemistry and petrography of sandstones of Injana Formation and concluded that the 

sandstones are immature in terms of composition and textural development ranging between 

arkose and lithic arkose. Based on major oxide discriminant plots, these sandstones were 

primarily sourced from intermediate igneous rocks.  
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig.1. Photographs of the sandstone of Injana Formation (upper Miocene) showing the laminated and 

cross-laminated sandstone in Degla section (A, B) and Mirawa section (C, D). 
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The study aims to discuss the major, trace and REE geochemistry for the sandstone of the 

Injana Formation to infer the provenance, paleoclimate, and paleoweathering  of these sandstone 

rocks through a bulk-rock geochemical data. In broad interest, the results of this study have 

significant implications to reconstruct paleoclimatic conditions. 

Geological setting 

During the Late Miocene, most of the shelf units were uplifted as a result of the collision 

between the Iranian and Anatolian plates with the Arabian plate. A large quantity had been 

eroded on the elevated area, and the resulting debris was dumped into the nearby molasse basin 

(Jassim and Goff, 2006). Injana Formation sediments reflect the beginning of molasse 

sediments created as a result of the collision during the Alpine orogeny (Beydoun, 1993). Injana 

Formation in Iraq has been observed in the northern and middle regions of the low folded 

(foothill) zone (LFZ) and some parts of the Mesopotamian foredeep (Fouad, 2012). The type 

section of the Injana Formation is located at the northeastern border of Jabal Hamrin, where its 

thickness is 620 m (Jassim et al., 1984). It also extends into Syria (Upper Fars; Ejel and Abdul 

Rahim, 1974), Turkey (Siirt series; Brinkmann, 1976), and Iran (Upper Fars or Aghajari 

Formation; James and Wynd, 1965). Injana Formation is composed of fine-grained pre-molasse 

sediments that were initially deposited in coastal regions and afterward in a fluvial and 

lacustrine system (Al-Rawi et al., 1992).  The Fat'ha and Mukdadiya rocks represent the lower 

and upper boundaries of Injana Formation respectively (Sissakian, 1992). The investigated 

Mirawa and Degla sections are situated in the upper folded area of the unstable shelf (Fig. 2).  

 

 

Fig. 2. Tectonic and location map of the studied area (after Fouad, 2015). 
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Samples and Methods 

A geochemical study of sandstone is implemented on 12 sandstone samples distributed 

in the two sites (6 samples from Degala site “named D “, and 6 samples from Mirawa site 

“named M “). Major oxides are determined by X-ray fluorescence at Baghdad University (Cu 

tube target, Ni filter, power: 40 kV, current: 20 mA; speed: 1 cm/min).  Trace and rare earth 

elements are measured using inductively coupled plasma-mass spectrometry (ICP-MS) at 

Acme Labs in Vancouver, British Columbia, Canada (Code AQ250 EXT REE). The 

concentrations of the major and trace elements have been compared to the upper continental 

crust (UCC) and the REEs are normalized to the chondrites and UCC values. For the accuracies 

of the analysis, sample M17 was analysed three times and the results were highly identical. For 

the accuracy, an international standared (STD BVGEO01) was used. 
Results 

Major oxides geochemistry 

The content of the major oxides in the analysed sandstone samples are given in Table (1). 

In all of these samples, SiO2 is predominated (31.47-40.65%, average 36.84%), Al2O3 and CaO 

contents are in the range of 1.64-9.21% (average 5.14%) and 22.28-30.76% (average 25.3%) 

respectively. The CaO contents are high in comparison with Fe2O3 (1.91-5.25%), MgO (1.69-

4.06%), Na2O (1.02-3.11%), K2O (0.1-2.58%), and TiO2 (0.23-0.78%). In contrast, the Injana 

sandstones have low values of both MnO (0.04-0.26%) and P2O5 (0.09-0.63%). The average 

concentrations of SiO2, Al2O3, Fe2O3, Na2O, K2O, and TiO2 of the analyzed samples of Injana 

Formation are generally lower than the UCC, whereas CaO concentration is much higher than 

that of the UCC, and MnO, MgO and P2O5 are slightly higher than the UCC (Table 1). The ratio 

of log SiO2/Al2O3 to log Na2O/K2O indicates that most of the sandstones under study are 

primarily plotted in litharenite fields, except for three samples located in graywacke field (Fig. 

3). 

 

Fig. 3. Log (SiO2/Al2O3) versus log (Na2O/K2O) diagram of the Injana sandstones (Pettijohn et al., 1987). 
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Table (2) displays the studied sandstone's trace element concentrations. Commonly, they 

have a wide range. The Injana Formation sandstone generally has trace element concentrations 

lower than the UCC averages except Cu (149.92 ppm) and Ni (77.48 ppm) (Fig. 4), where their 

concentrations are higher. The sandstone has variable Th (1.8-3.20 ppm), U (0.2-0.50 ppm), 

and Th/U ratio (4.50-15.50) but is consistent with the (UCC). The La/Th, Th/U, Y/Ni, Cr/V, 

Zr/Sc, Cr/Th, La/Y, Th/Sc, Zr/10, Sc/Cr, and Th*10 ratios are listed in Table (3). 

From the UCC-normalized trace element spider diagrams (Fig.4), it seems that the Hf and 

Zr are severely depleted, Cu is enriched, Ni is slightly enriched; and other elements are slightly 

depleted. 

Fig. 4. Spider diagrams showing upper crust-normalized trace element distributions for the late Miocene 

sandstone from the Injana Formation. (A) Degla section and (B) Mirawa section. 
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Table 3: Elemental ratios of Late Miocene sandstone from Injana Formation. 

Rare earth elements  

Table (4) displays the quantities and ratios of the Rare Earth Elements (REE) of the Injana 

sandstones. The chondrite-normalized REE distribution of the samples (Fig. 5) appears similar 

to the REE distribution pattern of UCC as reported by Rudnick and Gao (2003). The REE values 

show enrichment of light REEs (LREEs, La- Eu), as well as a somewhat uniform distribution 

of heavy REEs (HREEs, Gd-Lu). The quantification of Eu anomaly is calculated as follows: 

Eu/Eu* ratio =2*(Eu)CN/(Sm)CN +(Gd)CN. The ratio of Ce anomaly is calculated using the 

following equation: 2*(Ce)CN /(La)CN +(Pr) CN (Taylor and McLennan, 1985). The subscript 

(CN) refers to chondrite-normalized values (Taylor and McLennan, 1985). The normalized ratios 

of the REE such as (La)N/(Yb)N, (La)N/(Sm)N, (Gd)N/(Yb)N, (La)N/(Nb)N: 

(Element)N=(Element)Sample /(Element)Chondrite are reported in Table (4). 

There is a considerable difference in the total rare earth elements (ƩREE) between 19.02 

to 84.13 ppm (average = 54.81 ppm). The ƩREE in sandstone samples is lower than the ƩREE 

content of the UCC (Average= 63.05) The ƩREE in the sandstones of Injana Formation exhibits 

relatively positive relationships with Th and P. In contrast, the ƩREE shows no relationships 

with Al (Fig. 6) implying that these elements may be hosted in accessory minerals. This 

suggests that phosphate minerals (e.g., apatite, monazite) and opaque minerals may be 

predominant host minerals for the REEs (Ramos-V´azquez and Armstrong-Altrin, 2019). Lee 

et al. (1973) found that appetites from the more mafic rocks contained rare earth assemblages 

richer in the lighter REE. The studied samples have low Zr content (average 3.08 ppm) which 

is highly lower than that of the UCC (193 ppm). Moreover, the low correlation of REE with Al 

indicates that REE distribution is not likely to be controlled by the influence of clay minerals. 

The LREE's content ranges from 16.90 ppm to 75.07 ppm (average= 48.28 ppm), and the 

HREE's content ranges from 2.12 to 9.06 ppm (average =6.53). The LREE/HREE ratios are 

from 7.97 to 8.29 ppm (average=7.41). Typically, the Eu/Eu* values exhibit negative anomalies 

(0.78 to 0.97; average 0.85). The range of the Ce/Ce* anomaly is from 0.82 to 0.98 (average = 

0.89). The range of the ratio (La/Nb) CN is 10.50 to 13.05; average = 11.33), whereas the 

(Gd/Yb) CN and (La/Sm) CN ratios are between 1.62 and 3.36; average = 2.72), and 2.66 and 

4.26; average =3.66) respectively. 

Sample No. Th/U La/Th Cr/V Y/Ni Cr/Th  Zr/Sc                     Th/Sc       Y/Ho La/Y Sc/Cr     Zr/10 Th*10 

Degla section                     

D2 5.80 5.14 2.48 0.12 31.66 0.44      0.48         26.61 1.22 0.07       5.02 29.00 

D6 15.50 4.26 1.56 0.17 22.65 0.17       0.34          27.68 1.08 0.13       5.83 31.00 

D11 9.33 4.71 0.85 0.17 13.68 0.38      0.42          27.05 1.16 0.17        5.48 28.00 

D13 10.33 4.55 1.86 0.17 16.77 0.47       0.53          31.86 1.23 0.11        3.93 31.00 

D19 8.00 5.34 2.60 0.15 21.09 0.43        0.59          27.29 1.31 0.08        3.85 32.00 

D21 7.75 3.68 0.99 0.14 17.48 0.45        0.53          24.49 1.26 0.11       5.07 31.00 

Mirawa section                    

M1 10.67 3.25 1.49 0.11 19.06 0.25        0.51           26.94 1.17 0.10        7.24 32.00 

M8 5.25 5.05 0.96 0.19 16.43 0.42        0.37           31.38 1.06 0.17       6.26 21.00 

M12 11.00 4.50 0.96 0.15 21.05 0.73        0.35           30.34 1.02 0.14       7.55 22.00 

M15 5.75 6.30 1.84 0.12 32.00 1.08       0.47           29.79 1.16 0.07       5.59 23.00 

M17 5.25 5.29 0.91 0.15 21.76 0.84        0.37           30.85 1.06 0.12      6.02 21.00 

M22 4.50 6.94 2.00 0.12 42.28 0.76        0.36           32.02   1.12 0.07       4.84 18.00 

Average 7.60 4.28 1.45 0.14 22.29 0.51        0.44           28.85 1.03 0.10       5.56 26.58 

UCC* 3.89 2.95 0.95 0.45 8.76 13.79     0.75           25.30 1.48 0.15       6.70 105.00 

*UCC: upper continental crust from Rudnick and Gao (2003).             



 Anwaar S. Al-Maadhidi et al……. 186 

 
Fig 5. Chondrite- normalized REE patterns for the sandstones of Injana Formation (A) Degala section 

and (B) Mirawa section. 

 
 

 

 

 

 
 

 
 

 

 

 

 
 
 

Fig. 6. ƩREE vs. trace elements (Zr, U, Th, Ti, P, and Al) of the study samples of the Injana Formation. 
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Discussion 
Provenance  

The geochemical analysis of the sediments and rocks provides hints to describe the 

provenance of the clastic sedimentary rocks (Cullers, 2000). Certain trace elements such as Cr, 

Sc, V. Ni, Co, Y, Nb, Zr, Th, and REEs are frequently used in interpreting the composition and 

provenance of the source area due to their low propensity for mobility during post-depositional 

processes (McLennan et al., 1993). Based on diagrams in Figure (7A-C), Th/Co versus La/Sc 

diagram of Cullers (2000), Co/Th versus La/Sc versus (McLennan et al., 1993), and Cr/Th 

versus Th/Sc (Totten et al., 2000) show that the Injana Formation samples under study are 

located close to the field between intermediate and mafic sources. In addition, and from the 

ternary diagram V-Ni-Th*10 (Bracciali et al., 2007), the Injana sandstones are located around 

the V-Ni line indicating provenance that is both intermediate and mafic (Fig. 8). The Th/Co, 

La/Sc Cr/Th, La/Co, and Th/Sc and ratios of the examined Injana sandstones are compared with 

the UCC (Table 5) to determine the source of these sandstones. According to these ratios, it is 

found that the mafic rocks are mostly responsible for the composition of these sandstones. 

Mafic provenance of these sandstones supported by the high concentrations of Cu and Ni; where 

these two elements are compatible elements and they are associated with ferromagnesian 

minerals such as olivine and pyroxene. Distribution patterns of the REE, Eu anomalies, and 

(Gd/Yb) CN ratios in sediments, all provide information about the characteristics of the source 

region. Mafic source rocks exhibit lower ratios of LREE/HREE, higher ratios of gadolinium 

(Gd) to ytterbium (Yb) normalized to chondrite (CN), and a lack of europium (Eu) anomalies. 

In contrast, felsic source rocks display low (Gd/Yb) CN ratios, higher LREE/HREE ratios, and 

negative Eu anomalies (Cullers, 1994). The Injana sandstone exhibits a comparatively lower 

ratio of LREE/HREE with an average of 7.41. Additionally, it demonstrates a higher ratio of 

gadolinium (Gd) to ytterbium (Yb) normalized to chondrite (CN) with an average of 2.77. 

Furthermore, it displays negative values for europium (Eu) and its corresponding ratio to the 

average europium value in the UCC (Eu/Eu*) (average = 0.80). The Eu/Eu* ratio is reliable 

source indicator for Injana sandstones because the plagioclase alteration is low (average PIA= 

42%; Table 1) indicating no destroying of the plagioclase of the parent rocks. Destroying the 

plagioclase leads to removing the Eu that is incorporated in the plagioclase, which will lead to 

a lower Eu/Eu* value for sediments compared to their source rock (Getaneh and Atnafu, 2020). 

The Eu/Eu* values of the studied sandstone samples of Injana Formation are in the range of 

0.79-0.97. These values are within the mafic rocks range (Table 5). 

These observations indicate that the Injana sandstone has been primarily originated from 

mafic igneous rock sources (Table 4). Yttrium (Y) exhibits chemical characteristics that are 

analogous to those of Holmium (Ho), thereby leading to its classification within the lanthanides 

group (Tostevin et al., 2016). According to Song et al. (2014), it has been observed that volcanic 

ash and terrigenous materials often exhibit Y/Ho values of about 28, but seawater tends to have 

higher values ranging from 44 to 74. The Y/Ho values recorded in the samples of the current 

investigation range from 24.48 to 32.02 as shown in Table (3). The aforementioned values are 

indicative of terrigenous minerals. The La/Co, Th/Co, Th/Sc, Cr/Th, Th/Cr, and La/Sc ratios of 

the Injana sandstone (0.8 0, 0.94, 0.44, 0.19, 0.04, 22.29 and  2.18, respectively) are compared 

with those of the UCC (Table 5). This comparison suggests that these sandstones had been 

originated from intermediate to mafic rocks. This interpretation is consistent with the 

provenance of the mudrocks of Injana Formation (Al-Maadhidi et al., 2023). 
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Fig.7. Discrimination diagrams for the Injana sandstones showing the provenance. (A) after Cullers 

(2000); (B) after McLennan et al. (1993); (C) after Totten et al. (2000). 
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Fig.8. Ternary diagram showing the provenance of the Injana samples (after Bracciali et al., 2007). 

Table 5: Elemental ratios of the Injana Sandstone compared with the range values of sediments derived 

from mafic and felsic rocks, and upper continental crust (Armstrong-Altrin et al., 2013). 

Elemental ratio  
Studied samples 

Range of sediments 

from mafic sources  

Range of sediments 

from felsic sources  
UCC* PAAS** 

Range Average 

Eu/Eu* 0.78-0.97 0.80 0.71-0.95 0.40-0.94 0.63 0.71 

La/Co 0.63-1.42 0.94 0.38-0.41 1.8-13.8 1.76 0.9 

Th/Sc 0.34-0.75 0.44 0.05-0.22 0.84-20.50 0.79 0.9 

Th/Co 0.13-0.26 0.19 0.04-1.40 0.67-19.40 0.13 0.63 

Th/Cr 0.02-0.07 0.04 0.018-0.046 0.13-2.70 0.3 0.13 

Cr/Th 13.68-42.28 22.29 25-100 4.00-15.00 7.76 7.53 

La/Sc 1.43-3.16 2.18 0.43-0.86 2.50-16.30 2.21 2.4 

*UCC:Upper Continental Cust (Taylor and McLennan,1985)       

**PAAS: Post Archean Australian Shale (Taylor and McLennan,1985)       

Paleoclimate 

The paleoclimate of the source area has been widely interpreted using geochemical 

proxies (Ge et al., 2019). The graphical plot between SiO2 and (Al2O3+Na2O + K2O) can be 

used to provide palaeoclimatic conditions (Suttner and Dutta, 1986). The examined samples of 

the Injana Formation have SiO2 values ranging from 31.57 to 40.65 wt.%, with an average of 

36.84 (Table 1). These values suggest an arid paleoclimate. The (Al2O3+Na2O + K2O) values 

are between 2.76 to14.9 with an average of 7.63 (Table 1) indicating semi-arid paleoclimate. 

These data suggest an arid to semi-arid climate during the deposition of the sandstone of the 

Injana Formation (Fig. 9). 
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Fig .9. SiO2 versus (Al2O3 + K2O + Na2O) to differentiate the climatic conditions during the deposition of 

the Injana Formation (Suttner and Dutta, 1986). 

Source area weathering conditions 

Several methods such as the plagioclase index of alteration (PIA) developed by Fedo et 

al. (1995) can be used to assess the intensity of paleoweathering in the source region. Chemical 

index of alteration (CIA), the chemical index of weathering (CIW) is suggested by Harnois 

(1988), while the index of chemical variability (ICV) is developed by Cox et al. (1995), and the 

A–CN–K diagram is presented by Nesbitt and Young (1982) and Fedo et al. (1995). The 

mineralogy and geochemistry of clastic deposits and rocks are significantly affected by the 

presence and extent of chemical weathering (Bokanda et al., 2021). Various indicators of 

weathering can be employed to evaluate the extent of weathering in sedimentary rocks (e.g., 

Fedo et al., 1995). These weathering indicators can be used as parameters to understand the 

climatic conditions during deposition in addition to providing a straightforward statement about 

the weathering conditions. Low levels of weathering are typically associated with arid or cool 

and dry climates, whereas high levels of weathering are typically thought to be associated with 

humid temperate to tropical climates (Chen et al., 2021). The CIA is expressed as CIA = 

[(Al2O3)/ (K2O+ Al2O3+ + Na2O+ CaO*)] × 100, where CaO, Al2O3, K2O, and Na2O are in 

molar proportion and CaO* is the CaO restricted to calcium derived from silicate minerals 

(Nesbitt and Young, 1982). Since the studied sandstone is rich in carbonate cement, the method 

employed in this investigation to acquire CaO* is based on that proposed by McLennan et al. 

(1993). CaO*= CaO-(3.33*P2O5). If the corrected molar CaO value exceeds the Na2O value, 

the CaO* value is considered valid as the Na2O value. Conversely, if the CaO* value is equal 

to or less than the Na2O value, it is presumed to represent the CaO content.  

According to Taylor and McLennan (1985), the Injana sandstone's CIA values (23.41-

66.12, average 42) are more asymptotic than those of the UCC indicating that its parent rocks 

underwent low to moderate weathering. The chemical weathering level can be determined using 

the CIA vs. (Al2O3/Na2O) plot (Selvaraj and Chen 2006). According to this plot, all the analyzed 

samples of Injana Formation are located in the low to moderate weathering field (Fig. 10). 
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Fig. 10. Scatter plots of CIA versus (Al2O3/Na2O) of the Injana samples (after Selvaraj and Chen, 2006). 

The chemical weathering degree and the variations in the primary components and 

mineralogy during the weathering processes are shown in a ternary plot of A-CN-K (Fig. 11). 

All of the Injana Formation samples that have been plotted on this diagram are grouped parallel 

to the A-CN junction between the K-feldspar -plagioclase-–line (Fig. 10). This indicates that 

the source area of these sandstone samples of Injana Formation is affected by low to medium 

levels of chemical weathering (McLennan et al., 1993). The depressed CIA values may reflect 

the lower proportion of feldspars than clay minerals in the examined samples (Tobia and 

Shangola, 2016). Thus, the diagenetic alteration of feldspar and short-distance transport were 

the most important factors in augmenting feldspar in sandstone. 

 

Fig. 11. The A–CN–K diagram of sandstone samples from Injana Formation (after Xu et al., 2011). 
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The conclusion additionally indicates a single low to moderate weathering rate rather than 

multiple sedimentary cycles due to the low ICV values of Injana sandstone. Also, the CIW 

(CIW= [(Al2O3)/ (Al2O3+ Na2O+CaO*)] ×100 values range between 23.84 and72.83 with an 

average = 44.35 (Table 1). These CIW readings reveal the source rocks or sediments with low 

to moderate stages of chemical weathering (Harnois, 1988)). The PIA (PIA = [(Al 2 O 3-K2O)/ 

(Al2O 3+CaO*+ Na2O - K2O)] × 100) values range between 22.42 and 69.76 with an average = 

42 (Table 1) suggesting low plagioclase weathering of the parent rocks (Fedo et al., 1995). 

Paleoweathering assessment also employed the indicator of chemical variability (ICV) 

(Cox et al. 1995). ICV= (CaO+Na2O+K2O+Fe2O3+TiO2+MgO)/Al2O3). According to Harnois 

(1988), immature sediments are indicated by an ICV value higher than 1, and mature sediments 

are indicated by an ICV value less than 1. This formula shows that alteration products like 

muscovite, kaolinite, and illite have ICV values are less than 1 (<1), while rock forming 

minerals such as olivine, pyroxenes, feldspars, and amphiboles have ICV values more than 1 

(>1) (Cullers and Podkovyrov, 2000). The Injana sandstone's ICV values range from 3.49 to 

20.64 with an average of 9.88 (Table 1) indicating that they are linked to alteration products 

such as feldspars, amphiboles, and pyroxenes. So, according to Ivanova et al. (2018), the ICV 

values of the examined sandstones indicate evidence of poor weathering in the source location 

conditions. ICV values >1 is typically present in the studied samples of the Injana Formation 

indicating a high impact of short-distance transportation and low weathering of sediment under 

arid to semi-arid conditions. The results of the paleoweathering conditions are similar to the 

results of the Kettanah et al. (2022) study of the Injana Formation in the Hemrin South 

Mountain area. 

Scandium and thorium are not separated chemically during the sedimentary process 

because they are chemically stable (Hou et al., 2018). The enrichment of zircon during the 

sedimentary cycle causes the ratio of Zr/Sc to rise, whilst the ratio of Th/Sc practically remains 

the same (Roddaz et al., 2005; Qadrouh et al., 2021). Consequently, sedimentary recycling can 

be assessed using the plot of Zr/Sc versus Th/Sc. Injana samples' Zr/Sc ratios are precisely 

proportional to their Th/Sc ratios as seen in Figure (12) far away from the trend line of 

compositional variations. 

 

Fig. 12.  Th/Sc versus Zr/Sc plot of the Injana sandstone samples after McLennan et al. (1993). 
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Conclusions 

The elemental ratios of the major, trace and REEs of the examined sandstone samples of 

Injana Formation from northern Iraq show that these samples are derived from intermediate-

mafic source rocks. These samples have a low ratio of LREE/HREE, as well as a greater 

(Gd/Yb) CN ratio. These sandstones also display negative Eu/Eu* anomalies, which are 

indicative of the influence of mafic igneous processes. These ratios also suggest that the source 

area had a predominance of low to moderate chemical weathering processes, mostly occurring 

within an arid to semi-arid climate.  
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