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 Engineering and physics applications are described mathematically as a system of Volterra 

integral equations (SVIEs). Although many numerical techniques have been considered to 

solve SVIEs, developing more stable, and efficient algorithms is still challenging. In this 

work, an algorithm for solving linear and nonlinear systems of Volterra integral equations 

of the second kind is proposed. The Invasive Weed Optimization (IWO) algorithm is 

combined with Padé approximant expansion. Since the solution is represented as functions 

of different forms, Padé approximation which is fractional expansion is used to obtain 

results of high accuracy. SVIEs are transformed into an unconstrained optimization 

problem. Thereafter, the discrete least squares weighted function was estimated to minimize 

the value of the fitness function. This algorithm is applied to solve a variety of linear and 

nonlinear examples and compare their solutions to the exact solutions. The performance of 

the algorithm provides accurate results in terms of convergence and stability. 
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1. Introduction:  

Integral Equations is one of the interesting topics in Mathematics, which is one of the most important mathematical 

tools in both pure and applied mathematics courses. The integral equation comes naturally in solving the initial and boundary 

value problems that can be protracted into finding some phenomenon of physical significance, [1]. These integral equations 

are common in history-dependent cases, including chemical reactions, damped vibrations, fluid motion, population systems, 

seismology, viscoelasticity, heat transmission, and diffusion, [2]. The Volterra System of Integral Equations (SVIEs) is a set 

of equations in which the required function appears within the integral. Many applications of these equations lead researchers 

to encounter different ways to solve them, [3].  

Various analytical techniques have been designed to find a solution to a system of Volterra integral equations, 

including the Adomian decomposition method, [4], the direct calculation method[5], and the Laplace transform method, [6]. 

Moreover, numerical methods can be used to solve a "system of Volterra integral equations" when it is difficult to obtain their 

analytical solution. Some of these numerical methods are the rationalized Haar functions, [7], Implicit Trapezoidal, [8], 

Monte-Carlo Method, [9], and Spline Functions, [10].  

Researchers then used optimization algorithms as a new method to find approximate solutions to this type of equation. 

The most vital algorithms are those based on artificial intelligence,  [11]. Artificial intelligence algorithms are algorithms 

inspired by nature and the behavior of living organisms. For example, particle swarm optimizations (PSO),  [12], Genetic 

Algorithms (GA), [13], and Invasive Weed Optimization (IWO), [14]. One of the researchers, Daniel, combined the genetic 

algorithm with Taylor expansion to solve differential equations, [15]. The particle swarm optimizations algorithm (PSO) has 

been used with a Padé approximation to solve an ordinary differential equation, [16], The use of the genetic algorithm with 
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Padé approximation and the least squares weight function in solving a system of a differential equation, [17] and Solving 

Fredholm Integral Equation Based On Padé Approximants Using Particle Swarm Optimization,[18]. 

Using the Padé approximation with optimization algorithms to solve differential equations leads to more accurate 

results than Fourier and Taylor expansions. This is because the Padé approximation is a fractional expansion that provides 

highly accurate results using a small number of variables. In addition, the search field can be defined in the interval [-1,1] in 

the Padé expansion,[16]. The IWO algorithm is a population-based algorithm that simulates the process of weed colonization 

and competition to find the best solution to a given problem, [19]. An Invasive Weed Optimization Algorithm with Padé 

approximation is proposed to solve the System of Volterra Integral Equations (SVIEs). In this algorithm, The Discrete Least 

Squares Weighted Function(DLSWF) is used to reduce the fitness function value in each iteration, and so the process is 

repeated until the iterations end or the algorithm stops according to the stopping criterion. In the end, The exact solution is 

compared to the approximate solution to determine the accuracy of the results. Additionally, the errors that arise from the 

approximate solution are shown, and its stability. 

This study consists of five sections. The first section is the introduction, where an introduction to integral equations is 

presented, with some analytical and numerical methods for solving them. The second section presents some basic concepts of 

the research. The third section explains the methodology used to solve the system of Volterra integral equations. The fourth 

section includes the numerical results obtained from applying the proposed algorithm to a variety of linear and nonlinear 

examples. The fifth section includes the most important conclusions reached in this study. 

 

1. Preliminary 

This section presented the second-order Systems Volterra integral equations.  In addition, the foundations of the 

Invasive Weed Optimization Algorithm are explained. 

1.1. System Volterra Integral Equations of the Second Kind (SVIEs) 

The system of Volterra integral equations of the second kind can be defined as follows: 

Ƞ1(ţ) = ƒ1(ţ) + ∫(ķ1(ţ, ş)Ƞ1(ş) + ķ`1(ţ, ş)Ƞ2(ş) + ⋯)𝑑ş

ţ

0

 

Ƞ2(ţ) = ƒ2(ţ) + ∫(ķ2(ţ, ş)Ƞ1(ş) + ķ`2(ţ, ş)Ƞ2(ş) +⋯)𝑑ş  

ţ

0

 

Ƞ𝑖(ţ) = ƒ𝑖(ţ) + ∫(ķ𝑖(ţ, ş)Ƞ𝑗(ş) + ķ`𝑖(ţ, ş)Ƞ𝑗+1(ş) +⋯)𝑑ş

ţ

0

    , 𝑖, 𝑗 = 1,… , 𝑛                        (1) 

The unknown functions, Ƞ1(ţ), Ƞ2(ţ), . . . , Ƞ𝑖  (ţ) will be calculated inside and outside the integral sign. A kernels 

ķ𝑖(ţ, š) and ķ`𝑖(ţ, š), and the function ƒ𝑖(ţ) are real-valued functions,  [20]. 

 

2.2. Invasive Weed Optimization Algorithm (IWO) 

The Invasive Weed Optimization Algorithm is based on the growth of weeds within the area. Initially, weeds are 

distributed randomly throughout the area. As weeds grow, they produce seeds in proportion to the fitness function value. The 

lowest and highest number of seeds are fixed arbitrarily, with the least fit weed producing the fewest seeds and the most fit 

weed producing the highest number of seeds. The number of seeds produced by each weed varies directly with the fitness 

function value. The seeds produce copies of the parent weed and then the weeds randomly change their locations with a normal 

distribution with zero mean but with a variable variance parameter that decreases as the number of iterations increases. The 

total number is kept constant after reaching the maximum plant colony size by removing the weakest weeds, [21].  

2.2.1. Basic Concepts of Invasive Weed Algorithm 

Mehrabian and Lucas (2006) introduced the Invasive Weed Optimization Algorithm, a simple numerical optimization 

approach based on colonized weeds. This approach is basic but successful in convergence. Optimize weed colony solutions by 

considering basic factors like seeding, growth, and competition. To run the IWO algorithm, we follow the steps below . 

1. Initialization: The number of initial weeds W =(w1 , w2,... , wm),  representing the empirical solution of the optimization 

problem, and is distributed randomly over the search space of dimension d, and the fitness function value is calculated for 

each weed.  

2. Reproduction: Each seed grows into a blooming plant, which produces seeds according to its suitability. The amount of 

grass grains decreases linearly from Smax to Smin, as shown below. 
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𝑠𝑒𝑒𝑑𝑖 = 𝑆𝑚𝑖𝑛 + 𝑓𝑙𝑜𝑜𝑟 ((𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛) ×
𝑓𝑖 − 𝑓𝑚𝑖𝑛
𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

)      (2) 

         

Where 𝑓𝑖  is the fitness of the ith weed, 𝑓𝑙𝑜𝑜𝑟 Shows that the seeds have been rounded to the closest whole number, 

𝑆𝑚𝑖𝑛, and 𝑆𝑚𝑎𝑥  denoted the maximum and minimum number of seeds, and 𝑓𝑚𝑖𝑛  is the min values of the fitness function's min, 
𝑓𝑚𝑎𝑥  is the max value of fitness functions.  Equation (2) shows the correlation between function value and number of weed 

seeds. Increasing the fitness function value causes the quantity of seeds to fluctuate between the maximum and minimum 

values.  
 

3. Spatial distribution: The generated seeds were dispersed randomly in a d-dimensional search area using a natural 

distribution of random integers utilizing mean zero and coefficients of variance that decreased with the number of 

repetitions. The seeds produced are formed far away but close to the mother plant, which leads to the healthiest plants 

being grouped, and unsuitable plants being eliminated on time. The random deviation (σ) of the random function is 

generated by minimizing it from a predetermined initial value (σinitial) to the final value (σfinal) in unit iterations, computed 

using Eq. at every time step. 

 

𝜎𝑡 =
(𝑇 − 𝑡)𝑛

𝑇𝑛
 (𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜎𝑓𝑖𝑛𝑎𝑙) + 𝜎𝑓𝑖𝑛𝑎𝑙         (3) 

       

where n is the nonlinear modulation index, which is typically set to 2, and T is the most iterations that can be made, 

where the standard deviation at the current time step is denoted by σt. 

To calculate the location of the new seeds, we apply the subsequent formula: 

 

𝑥𝑠𝑜𝑛 = 𝑥𝑝𝑎𝑟𝑒𝑛𝑡 + 𝑟𝑎𝑛𝑑𝑛(0,1) ∗ 𝜎𝑡          (4)      

Where 𝑥𝑝𝑎𝑟𝑒𝑛𝑡  symbolizes the parents' site, 𝑥𝑠𝑜𝑛 denotes the location of the sons, and  𝑟𝑎𝑛𝑑𝑛 generates random 

numbers using the normal distribution (0,1). 

 

4. Competitive exclusion: Due to rapid reproduction, after several iterations the number of plants produced in the colony 

reaches a maximum (𝑃𝑚𝑎𝑥). In this step, a competitive mechanism is activated to eliminate unwanted plants with poor 

fitness function value and allow plants with better fitness to reproduce more seeds. This process continues until the 

maximum number of iterations is reached or other stopping criteria are met, and the plant with the best fitness function 

value is chosen as the optimal solution.  

 

            Implementing the IWO algorithm involves the following procedures, taking into account the aforementioned important 

phases. 

1. Randomly initialize the weeds in the search space. 

2. Calculate the fitness of each individual in the population. 

3.  Each member of the population creates seeds, as some members of the population with better fitness create more seeds 

(i.e., reproduction). 

4. The seeds generated in the search area with random numbers are distributed normally with a mean equal to zero and 

with different variances (i.e. spatial dispersion). 

5. We use competitive exclusion when the quantity of weeds approaches its limit. 

6. Check stopping criteria. [22][23][24][25] 

 

3. Methodology 

A method for determining the approximate solution of SVIEs is offered. The work starts by defining the expansion's 

function. Additionally, SVIEs are transformed into unrestricted optimization issues. Furthermore, the discrete least squares 

weighted function and the fitness function are presented. Finally, the approximation algorithm for the SVIEs solution is 

introduced. 

 

 

3.1. The Padé Expansion Approximation 

Padé approximants are frequently used in the solution of mathematical problems. The approximate solution of the 

SVIEs can be represented using the expansion of Padé, [26].  
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     Ƞ(ţ) ≅  Ƞ𝑎𝑝𝑝𝑟(ţ) =
𝛹(ţ)

𝛷(ţ)
=
∑ 𝛼𝑚ţ

𝑚𝑁
𝑚=0

∑ 𝛽𝑚ţ𝑚
𝑀
𝑚=0

             (5) 

                     

In this case,ţ ∈  𝐼 = [ţ0, ţ𝑛];  𝑁 +𝑀 = 𝑛𝑉𝑎𝑟; and 𝛼𝑚 , 𝛽𝑚 are real coefficients that are part of the search space 
[ 𝑉𝑎𝑟 𝑚𝑖𝑛, 𝑉𝑎𝑟 𝑚𝑎𝑥].Ƞ𝑎𝑝𝑝𝑟  (ţ) is the approximate solution, Ƞ(ţ) is the exact solution, 𝛷(ţ) ≠ 0 ∀ ţ ∈ 𝐼.  

 
3.2. Convert SVIEs into an Unconstrained Optimization Problem 

Suppose that Ƞ1(ţ), Ƞ2(ţ), . . . , Ƞ𝑖  (ţ) are approximate solutions of ( SVIEs ) and substitute into Eq. (6) into as an 

unconstrained optimization problem: 

 

𝐹(ţ) = |Ƞ1 (ţ) − ƒ1(ţ) − ∫ (ķ1(ţ, ş)Ƞ1(ş) + ķ`1(ţ, ş)Ƞ2(ş) +⋯)𝑑ş
ţ

0

|

+ |Ƞ2(ţ) − ƒ2(ţ) − ∫ (ķ2(ţ, ş)Ƞ1(ş) + ķ`2(ţ, ş)Ƞ2(ş) +⋯)𝑑ş
ţ

0

| + ⋯          (6) 

                               

F(ţ) is called the error function, and the optimal solution to the system of Volterra equations can be obtained when 

𝐹(ţ)approaches zero. To minimize the value of 𝐹(ţ), a quantitative criterion is used, which is called the efficiency function, 

represented here by the discrete least squares weight function, [18]. 

 

3.2.1. The Discrete Least Squares Weighted Function (DLSWF) 

 The DLSWF is obtained using the approach below: Divide the interval into 𝑁 points: ţ0  =  𝑎, ţ1, … . , ţ𝑛  =  𝑏, with 

 ţ𝑘  =  ţ0  +  ℎ𝑘,ꓯ 𝑘 = 1, … . 𝑛, and ℎ >  0, 𝑎𝑛𝑑, [27][28] 

 

𝐷𝐿𝑆𝑊𝐹 = √
∑ (𝐹(ţ𝑘)

2𝑁
𝑘=1

𝑁
          (7) 

                                   

3.3. SVIEs-IWO Algorithm 

This section presents the steps within the algorithm for solving SVIEs suggested, as described below: 

1. Use the Padé expansion approximation to represent the approximate solution of the systems of Volterra integral 

equations as in Equation (5). 

2. Convert the SVIEs to the implicit form using Eq. (6). 

3. The FF is obtained as shown :   

              

𝐹𝐹 = 𝐷𝐿𝑆𝑊𝐹              (8)   
                                                                                                               

4. Set up the IWO parameters to calculate Padé expansion coefficients. 

5. Use the IWO algorithm to minimize the fitness function. 

6. Repeat step 5 until 𝐹𝐹 < 𝑇𝑂𝐿 or the maximum number of repetitions is achieved. 

It is the procedure that may be evaluated by computing the Mean Absolute Error (𝑀𝐴𝐸) for both the approximate solution 

Ƞ𝑎𝑝𝑝𝑟(ţ) and the precise solution Ƞ(ţ). 

 

𝑀𝐴𝐸 =
∑ |Ƞ(ţ𝑘) − Ƞ𝑎𝑝𝑝𝑟(ţ𝑘)|
𝑁
𝑘=1

𝑁
            (9) 

 

4. Numerical Results 

In this part, we provide an approximate solution to SVIEs utilizing IWO and the padé approximant. Moreover, the 

convergence and stability of the algorithm are demonstrated. 

 

4.1. Numerical Examples  
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Table 1. The table displays different examples of the Volterra integral equations system both linear and nonlinear, along 

with their precise solutions. The linear and nonlinear Volterra integral equations are respectively referred to as LSVIEs 

and NLSVIEs, [6][10][29][30]. 

Examples SVIEs Exact Solutions 

 
 
 

LSVIEs1 

Ƞ1(ţ) = ţ
2 −

1

12
ţ5 +∫((ţ − ş)2Ƞ1(ş) + (ţ − ş)Ƞ2(ş))𝑑ş

ţ

0

 

Ƞ2(ţ) = ţ
3 −

1

30
ţ6 +∫((ţ − ş)3Ƞ1(ş) + (ţ − ş)

2Ƞ2(ş))𝑑ş

ţ

0

 

 
Ƞ1(ţ) = ţ

2 
 

Ƞ2(ţ) = ţ
3 

 
 

            
LSVIEs2 

Ƞ1(ţ) = cos ţ + 2 sin ţ − 1 +∫ (cos(ţ − ş)Ƞ1(ş) + sin(ţ − ş) Ƞ2(ş))𝑑ş

ţ

0

 

Ƞ2(ţ) = ţ cos ţ + sin ţ − 1 +∫(cos(ţ − ş)Ƞ2(ş) + sin(ţ − ş)Ƞ1(ş))𝑑ş

ţ

0

 

 
Ƞ1(ţ) = ţ + sin ţ 

 
Ƞ2(ţ) = ţ − cos ţ 

 
 
 
 
 

LSVIEs3 

     Ƞ1(ţ) = ţ cos ţ − ţ sin ţ − sin ţ + 1 +∫(ţ Ƞ1(ş) + (ş − 1)Ƞ2(ş))𝑑ş

ţ

0

 

 Ƞ2(ţ) =  ţ
2cos ţ − ţ sin ţ − ţ2 sin ţ + ţ + ∫(ş Ƞ2(ş) + ţş Ƞ3(ş))𝑑ş

ţ

0

 

Ƞ3(ţ) = −5cos ţ − 5ţ sin ţ + ţ + 6 + ∫(5ş Ƞ1(ş) + (ş − ţ)Ƞ3(ş))𝑑ş

ţ

0

 

 
Ƞ1(ţ) = cos ţ 
 
Ƞ2(ţ) = sin ţ 
 
Ƞ3(ţ) = sin ţ + cos ţ 

 

 

 

NLSVIEs4 

Ƞ1(ţ) = ţ
2−

1

2
−
2

3
ţ4 +

cos ţ2

2
+∫( ş sin(Ƞ1(ş)) + 2ţş Ƞ2(ş))𝑑ş

ţ

0

 

Ƞ2(ţ) = ţ − ţ sin ţ −
ţ2 sin ţ2

2
+∫(ţ2ş cos(Ƞ1(ş)) + ţ  cos(Ƞ2(ş))) 𝑑ş

ţ

0

 

 

Ƞ1(ţ) = ţ
2 

 
Ƞ2(ţ) = ţ 

 

 

 

NLSVIEs5 

Ƞ1(ţ) = 1 + ţ
2 − ţ3—

1

3
ţ7 +∫(ţş (Ƞ1(ş))

2 + ţş (Ƞ2(ş))
2)𝑑ş

ţ

0

 

Ƞ2(ţ) = 1 − ţ
2 −

1

3
ţ4 + ∫((ţ − ş)(Ƞ1(ş))

2 − (ţ − ş) (Ƞ2(ş))
2)𝑑ş

ţ

0

 

 

Ƞ1(ţ) = 1 + ţ
2 

Ƞ1(ţ) = 1 − ţ
2 

 

 

 

NLSVIEs6 

Ƞ1(ţ) = tan
−1 ţ + ∫( 

((Ƞ2(ş))
2 + (Ƞ3(ş))

2
)

1 + (Ƞ1(ş))
2

)𝑑ş

ţ

0

 

Ƞ2(ţ) = ţ cos ţ − ln(1 + ţ
2) + √2∫

(

  
√(Ƞ1(ş))2 + (Ƞ2(ş))2 + (Ƞ3(ş))

2

1 + (Ƞ2(ş))2 + (Ƞ3(ş))2

)

 𝑑ş

ţ

0

 

Ƞ3(ţ) = 1 + cos ţ(
ţ2

3
− 1) +

1

3
∫(Ƞ2(ş) + Ƞ1(ş) Ƞ3(ş))𝑑ş

ţ

0

 

 

Ƞ1(ţ) = ţ 
  

 Ƞ2(ţ) = ţ cos ţ 
 
Ƞ3(ţ) = ţ sin ţ 
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Table 2. The parameter values used in all examples 

Parameter 𝑆𝑚𝑖𝑛 𝑆𝑚𝑎𝑥  𝜎𝑓𝑖𝑛𝑎𝑙 𝑇𝑂𝐿 𝑀𝑎𝑥𝑖𝑡 𝑛𝑝𝑜𝑝 

Value 0 5 0.0001 1e-10 200 100 

 

Table (2) shows the parameters and inputs for all of the examples. The algorithm is tested 16 times to ensure its 

reliability. The Matlab R2023a software package is used to implement the technique. The device is an HP laptop with an Intel(R) 

Core (TM) i7-6820HQ CPU @ 2.70GHz, 16.00GB of RAM, and the Windows 10 Pro 64-bit operating system. 

 

4.2. SVIEs Solution 

Tables 3 and 4 show the coefficients of approximate SVIEs solutions for all examples produced using the IWO 

algorithm. 

Table 3. The values of variables of SVIEs of two unknown functions obtained by the SVIEs-IWO algorithm Where 

 (𝑛𝑉𝑎𝑟 = 20), [𝑉𝑎𝑟𝑀𝑖𝑛 , 𝑉𝑎𝑟𝑀𝑎𝑥] = [−1,1] 

SVIEs coff m = 0 𝑚 = 1 m = 2 m = 3 𝑚 = 4 

 

LSVIEs1 

𝛼𝑚1 0.001944 -0.051314 -0.83238 -0.46608 -0.124237 

𝛽𝑚1 -0.93610 -0.73244 0.49346 -0.08061 -0.225139 

𝛼𝑚2 -0.000067 -0.03489 0.32039 0.335059 0.770305 

𝛽𝑚2 0.978330 0.87917 -0.61302 -0.55448 0.701726 

 

LSVIEs2 

𝛼𝑚1 0.002338 0.887847 0.86779 0.79758 0.37921 

𝛽𝑚1 0.46458 0.358819 0.579419 0.037832 0.155505 

𝛼𝑚2 -0.971106 0.09886 0.779934 0.701432 0.642769 

𝛽𝑚2 0.971081 0.97026 0.00575 0.89648 -0.06604 

 

NLSVIEs4 

𝛼𝑚1 0.002184 -0.02291 0.97369 0.72919 0.92228 

𝛽𝑚1 0.964129 0.96412 0.43591 0.912358 -0.457434 

𝛼𝑚2 -0.00179 0.928919 0.415341 0.92059 -0.190629 

𝛽𝑚2 0.823746 0.968289 0.108159 0.024336 0.156110 

 

NLSVIEs5 

 

 

 

𝛼𝑚1 0.994389 0.871444 0.825308 0.47022 0.701765 

𝛽𝑚1 0.999732 0.717618 0.452125 -0.94596 0.714807 

𝛼𝑚2 -0.99942 -0.94545 0.63607 0.530088 0.778195 

𝛽𝑚2 -0.99941 -0.91701 -0.73761 0.678148 -0.60698 

 

Table 4.   The values of variables of SVIEs of tree unknown functions obtained by SVIEs- IWO algorithm Where 

 (𝑛𝑉𝑎𝑟 = 24), [𝑉𝑎𝑟𝑀𝑖𝑛 , 𝑉𝑎𝑟𝑀𝑎𝑥] = [−1,1] 

SVIEs coff m = 0 𝑚 = 1 m = 2 m = 3 

 

 

LSVIEs3 

𝛼𝑚1 -1 -0.98202 -0.09897 0.898738 

𝛽𝑚1 -1 -0.95823 -0.747478 0.522604 

𝛼𝑚2 -0.01459 -0.769123 -0.824254 0.339015 

𝛽𝑚2 -0.999526 -0.064728 -0.692811 0.247356 

𝛼𝑚3 0.856706 0.4760759 0.655320 0.289834 

𝛽𝑚3 0.8526845 -0.253517 0.7734329 0.2588448 

 

 

NLSVIEs6 

𝛼𝑚1 -0.000037 -0.896159 0.3822662 -0.99110 

𝛽𝑚1 -0.85366 0.1293778 -0.565614 -0.216348 

𝛼𝑚2 -0.005513 -0.805460 -0.938811 0.991414 

𝛽𝑚2 -0.920776 -0.40863 -0.373068 0.296172 

𝛼𝑚3 -0.004765 0.007122 -0.576201 -0.984296 

𝛽𝑚3 -0.88265 -0.173732 -0.487331 -0.324409 
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Table 5.  It displays the mean absolute error (MAE) between the exact solution and the approximate solution and the time 

taken to reach the optimal solution for systems of linear and nonlinear Volterra integral equations of the second kind resulting 

from the proposed algorithm . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SVIEs MAE Time(s) 

LSVIEs1 
MAE1 0.001928 

169.7472 
MAE2 0.0021 

LSVIEs2 
MAE1 0.00177 169.8697 

 MAE2 0.00286 

LSVIEs3 

MAE1 0.00217 
197.3125 

 
MAE2 0.00330 

MAE3 0.00290 

NLSVIEs4 
MAE1 0.00083 167.0785 

 MAE2 0.00225 

NLSVIEs5 
MAE1 0.003611 

189.1598 
MAE2 0.001263 

NLSVIEs6 

MAE1 0.00136 
267.0285 

 
MAE2 0.0010 

MAE3 0.00442 
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Figure 1. A comparison of exact and approximate solutions. 

By looking at the diagram above, we can conclude that the algorithm SVIEs- IWO is capable of finding approximate 

solutions that closely resemble the exact solution. 

(a) 𝐋𝐒𝐕𝐈𝐄𝐬𝟏                                                                                            (b) 𝐋𝐒𝐕𝐈𝐄𝐬𝟐                                                                                   

(c)𝐍𝐋𝐒𝐕𝐈𝐄𝐬𝟒                                                                                       (d)𝐍𝐋𝐒𝐕𝐈𝐄𝐬𝟓                                                                                       

(e)𝐋𝐒𝐕𝐈𝐄𝐬𝟑                                                                                       (f)𝐍𝐋𝐒𝐕𝐈𝐄𝐬𝟔                                                                                       
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Figure 2. Mean Absolute Error 

(a)𝐋𝐒𝐕𝐈𝐄𝐬𝟏                                                                                       (b)𝐋𝐒𝐕𝐈𝐄𝐬𝟐                                                                                       

(c)𝐍𝐋𝐒𝐕𝐈𝐄𝐬𝟒                                                                                       (d)𝐍𝐋𝐒𝐕𝐈𝐄𝐬𝟓                                                                                       

(e)𝐋𝐒𝐕𝐈𝐄𝐬𝟑 (f)𝐍𝐋𝐒𝐕𝐈𝐄𝐬𝟔                                                                                       
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Figure 3.  It is shown that SVIEs-IWO converges quickly over 200 iterations for all samples. We observed that the solution 

stabilizes at 150 iterations in most examples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. SVIEs-IWO converges 

 

5. CONCLUSIONS 

            A combination of the Invasive Weed Optimization Algorithm with Padé expansion approximation is applied to solve 

systems of Volterra integral equations. The system is converted into an unconstrained optimization problem. This study reveals 

that the SVIEs-IWO algorithm is effective in solving systems of Volterra integral equations of the second kind. Moreover, the 

convergence and stability of the algorithm is also confirmed. Furthermore, it is recommended that this approach can be utilized 

to solve systems of Volterra integral-differential equations. 
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 التكاملية استخدام خوارزمية تحسين الأعشاب الغازية مع تقريب بادي لحل نظام من معادلات فولتيرا 
 

  (2)عزام صلاح الدين يونس العدول ، *(1) محمد جمال حسن المولى

 

 قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة الموصل، الموصل، العراق (1,2)

 

 المستخلص 
ل معادلات فولتيرا  توصف تطبيقات الهندسة والفيزياء رياضيًا كنظام من معادلات فولتيرا التكاملية . وعلى الرغم من وجود العديد من التقنيات العددية  لح 

عمل، تم اقتراح خوارزمية لحل نظام معادلات فولتيرا  التكاملية، إلا أن تطوير خوارزميات التي تكون أكثر استقرارًا وكفاءة لا يزال يمثل تحديًا امام الباحثين. ان في هذا ال
مع التوسع التقريبي لبادي. و نظرًا لأن الحل يتم تمثيله   (IWO)التكاملية الخطية وغير الخطية من النوع الثاني. و قد تم دمج خوارزمية تحسين الأعشاب الضارة  

كتوسيع كسري و الذي بدوره يمثل حل نظام من معادلات فولتيرا التكاملية و يعطي نتائج عالية الدقة. كدوال ذات انواع مختلفة، يتم استخدام تقريب بادي والذي يعرف  
لتقليل قيمة دالة اللياقة. حيث  و من ثم يتم تحويل معادلات فولتيرا التكاملية  إلى مشكلة تحسين غير مقيدة. بعد ذلك، يتم تقدير دالة وزن المربعات الصغرة المتقطعة  

فاءة  و يحقق نتائج  ق هذه الخوارزمية لحل مجموعة متنوعة من الأمثلة الخطية وغير الخطية ومقارنة حلولها بالحلول الدقيقة.  يكون أداء الخوارزمية اكثر كيتم تطبي
 دقيقة من حيث التقارب والاستقرار. 


