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1. Introduction:

Integral Equations is one of the interesting topics in Mathematics, which is one of the most important mathematical
tools in both pure and applied mathematics courses. The integral equation comes naturally in solving the initial and boundary
value problems that can be protracted into finding some phenomenon of physical significance, [1]. These integral equations
are common in history-dependent cases, including chemical reactions, damped vibrations, fluid motion, population systems,
seismology, viscoelasticity, heat transmission, and diffusion, [2]. The Volterra System of Integral Equations (SVIES) is a set
of equations in which the required function appears within the integral. Many applications of these equations lead researchers
to encounter different ways to solve them, [3].

Various analytical techniques have been designed to find a solution to a system of Volterra integral equations,
including the Adomian decomposition method, [4], the direct calculation method[5], and the Laplace transform method, [6].
Moreover, numerical methods can be used to solve a "system of Volterra integral equations" when it is difficult to obtain their
analytical solution. Some of these numerical methods are the rationalized Haar functions, [7], Implicit Trapezoidal, [8],
Monte-Carlo Method, [9], and Spline Functions, [10].

Researchers then used optimization algorithms as a new method to find approximate solutions to this type of equation.
The most vital algorithms are those based on artificial intelligence, [11]. Artificial intelligence algorithms are algorithms
inspired by nature and the behavior of living organisms. For example, particle swarm optimizations (PSO), [12], Genetic
Algorithms (GA), [13], and Invasive Weed Optimization (IWO), [14]. One of the researchers, Daniel, combined the genetic
algorithm with Taylor expansion to solve differential equations, [15]. The particle swarm optimizations algorithm (PSQO) has
been used with a Padé approximation to solve an ordinary differential equation, [16], The use of the genetic algorithm with
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Padé approximation and the least squares weight function in solving a system of a differential equation, [17] and Solving
Fredholm Integral Equation Based On Padé Approximants Using Particle Swarm Optimization,[18].

Using the Padé approximation with optimization algorithms to solve differential equations leads to more accurate
results than Fourier and Taylor expansions. This is because the Padé approximation is a fractional expansion that provides
highly accurate results using a small number of variables. In addition, the search field can be defined in the interval [-1,1] in
the Padé expansion,[16]. The IWO algorithm is a population-based algorithm that simulates the process of weed colonization
and competition to find the best solution to a given problem, [19]. An Invasive Weed Optimization Algorithm with Padé
approximation is proposed to solve the System of Volterra Integral Equations (SVIES). In this algorithm, The Discrete Least
Squares Weighted Function(DLSWF) is used to reduce the fitness function value in each iteration, and so the process is
repeated until the iterations end or the algorithm stops according to the stopping criterion. In the end, The exact solution is
compared to the approximate solution to determine the accuracy of the results. Additionally, the errors that arise from the
approximate solution are shown, and its stability.

This study consists of five sections. The first section is the introduction, where an introduction to integral equations is
presented, with some analytical and numerical methods for solving them. The second section presents some basic concepts of
the research. The third section explains the methodology used to solve the system of Volterra integral equations. The fourth
section includes the numerical results obtained from applying the proposed algorithm to a variety of linear and nonlinear
examples. The fifth section includes the most important conclusions reached in this study.

1. Preliminary
This section presented the second-order Systems Volterra integral equations. In addition, the foundations of the
Invasive Weed Optimization Algorithm are explained.
1.1. System Volterra Integral Equations of the Second Kind (SVIES)

The system of Volterra integral equations of the second kind can be defined as follows:
§

IHOESHORS f(lsl(t. N1 () + K1 (59N () + -+ )ds

0

t
() = fo(5) + j (o (6 )N (5) + K26 )M (s) + - )ds
0

- t
UHOESHORS J(ki(t, ;) + KON )+ )ds ij=1,...,n M

0
The unknown functions, I, ($), N, (%),..., 1; (t) will be calculated inside and outside the integral sign. A kernels
k; (t,8) and k'; (¢, ), and the function f;(t) are real-valued functions, [20].

2.2. Invasive Weed Optimization Algorithm (IWO)

The Invasive Weed Optimization Algorithm is based on the growth of weeds within the area. Initially, weeds are
distributed randomly throughout the area. As weeds grow, they produce seeds in proportion to the fitness function value. The
lowest and highest number of seeds are fixed arbitrarily, with the least fit weed producing the fewest seeds and the most fit
weed producing the highest number of seeds. The number of seeds produced by each weed varies directly with the fitness
function value. The seeds produce copies of the parent weed and then the weeds randomly change their locations with a normal
distribution with zero mean but with a variable variance parameter that decreases as the number of iterations increases. The
total number is kept constant after reaching the maximum plant colony size by removing the weakest weeds, [21].

2.2.1. Basic Concepts of Invasive Weed Algorithm

Mehrabian and Lucas (2006) introduced the Invasive Weed Optimization Algorithm, a simple numerical optimization
approach based on colonized weeds. This approach is basic but successful in convergence. Optimize weed colony solutions by
considering basic factors like seeding, growth, and competition. To run the IWO algorithm, we follow the steps below.

1. Initialization: The number of initial weeds W =(w1, Wo,..., Wm), representing the empirical solution of the optimization
problem, and is distributed randomly over the search space of dimension d, and the fitness function value is calculated for
each weed.

2. Reproduction: Each seed grows into a blooming plant, which produces seeds according to its suitability. The amount of
grass grains decreases linearly from Smaxt0 Sium, as shown below.

17



EDUSJ, Vol, 33, No: 4, 2024 (16-27)

seed; = Syin + floor ((Smax — Smin) X %) @)

Where f; is the fitness of the ith weed, floor Shows that the seeds have been rounded to the closest whole number,
Smin, and Sy, .. denoted the maximum and minimum number of seeds, and f,,,;, is the min values of the fitness function's min,
fmax 1S the max value of fitness functions. Equation (2) shows the correlation between function value and number of weed
seeds. Increasing the fitness function value causes the quantity of seeds to fluctuate between the maximum and minimum
values.

3. Spatial distribution: The generated seeds were dispersed randomly in a d-dimensional search area using a natural
distribution of random integers utilizing mean zero and coefficients of variance that decreased with the number of
repetitions. The seeds produced are formed far away but close to the mother plant, which leads to the healthiest plants
being grouped, and unsuitable plants being eliminated on time. The random deviation (o) of the random function is
generated by minimizing it from a predetermined initial value (Ginitiai) to the final value (ofina) in UNit iterations, computed
using Eq. at every time step.

(T —t)"
O =""pm (Ginitiar — Ofina) + Opinar~ (3)
where n is the nonlinear modulation index, which is typically set to 2, and T is the most iterations that can be made,
where the standard deviation at the current time step is denoted by o.
To calculate the location of the new seeds, we apply the subsequent formula:

Xson = Xparent + randn(0,1) * o; 4)
Where xp,q,ene Symbolizes the parents' site, x,, denotes the location of the sons, and randn generates random
numbers using the normal distribution (0,1).

4. Competitive exclusion: Due to rapid reproduction, after several iterations the number of plants produced in the colony
reaches a maximum (B,,,,)- In this step, a competitive mechanism is activated to eliminate unwanted plants with poor
fitness function value and allow plants with better fitness to reproduce more seeds. This process continues until the
maximum number of iterations is reached or other stopping criteria are met, and the plant with the best fitness function
value is chosen as the optimal solution.

Implementing the IWO algorithm involves the following procedures, taking into account the aforementioned important
phases.

1. Randomly initialize the weeds in the search space.

2. Calculate the fitness of each individual in the population.

3. Each member of the population creates seeds, as some members of the population with better fitness create more seeds
(i.e., reproduction).

4. The seeds generated in the search area with random numbers are distributed normally with a mean equal to zero and
with different variances (i.e. spatial dispersion).

5. We use competitive exclusion when the quantity of weeds approaches its limit.

6. Check stopping criteria. [22][23][24][25]

3. Methodology

A method for determining the approximate solution of SVIEs is offered. The work starts by defining the expansion's
function. Additionally, SVIEs are transformed into unrestricted optimization issues. Furthermore, the discrete least squares
weighted function and the fitness function are presented. Finally, the approximation algorithm for the SVIEs solution is
introduced.

3.1. The Padé Expansion Approximation
Padé approximants are frequently used in the solution of mathematical problems. The approximate solution of the
SVIEs can be represented using the expansion of Padé, [26].
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In this case,t € I = [to,$,]; N + M = nVar; and a,,, 8, are real coefficients that are part of the search space
[ Var min,Var max].Ngppy (1) is the approximate solution, I(t) is the exact solution, @ () # 0V € I.

3.2. Convert SVIEs into an Unconstrained Optimization Problem

Suppose that 1T, (£), N2 (1), ..., N; (t) are approximate solutions of ( SVIEs ) and substitute into Eg. (6) into as an
unconstrained optimization problem:

F@) =

5
N; () —fl(t)—f(kl(t.s)fll@ + K105 9N (5) +---)d$|
0

t
+ |rlz(t) - £ — f (k2 (1,911 (5) + K2 (9N () + ---)ds| + (6)
0

F(t) is called the error function, and the optimal solution to the system of Volterra equations can be obtained when
F(t)approaches zero. To minimize the value of F (), a quantitative criterion is used, which is called the efficiency function,
represented here by the discrete least squares weight function, [18].

3.2.1. The Discrete Least Squares Weighted Function (DLSWF)
The DLSWEF is obtained using the approach below: Divide the interval into N points:t, = a,t4,....,1, = b, with
te =t + b, Vk =1,....n,and h > 0,and, [27][28]

DLSWF = ’—I’Xﬂg@")z )

3.3. SVIEs-IWO Algorithm
This section presents the steps within the algorithm for solving SVIEs suggested, as described below:
1. Use the Padé expansion approximation to represent the approximate solution of the systems of Volterra integral
equations as in Equation (5).
2. Convert the SVIEs to the implicit form using Eqg. (6).
3. The FF is obtained as shown :

FF = DLSWF (8)

4. Set up the IWO parameters to calculate Padé expansion coefficients.

5. Use the IWO algorithm to minimize the fitness function.

6. Repeat step 5 until FF < TOL or the maximum number of repetitions is achieved.
It is the procedure that may be evaluated by computing the Mean Absolute Error (MAE) for both the approximate solution
Nappr (1) and the precise solution 1(%).

ZII¥=1 | n(tf—k) - nappr (t/—k) |
N

MAE = 9)

4. Numerical Results
In this part, we provide an approximate solution to SVIEs utilizing IWO and the padé approximant. Moreover, the

convergence and stability of the algorithm are demonstrated.

4.1. Numerical Examples
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Table 1. The table displays different examples of the Volterra integral equations system both linear and nonlinear, along
with their precise solutions. The linear and nonlinear Volterra integral equations are respectively referred to as LSVIEs
and NLSVIEs, [6][10][29][30].

Examples SVIEs Exact Solutions
I3
1
M) =1~ 587 + f((t =) (5) + (¢ = )N2())ds L@ =1
LSVIEs1 % () =¢°

1
1. = P = 551+ [ (6= 97T + (- M55
0

t
N:(t) = cost+2sint—1+ f (cos(t —$) 11 (s) +sin(t —5) N, (s))ds N:(4) =t+sint

LSVIEs2 y N,(t) =t —cost

NL() = fcost +sinf— 1 + f (cos(t — $) Tla(s) + sin(t — $) Ty (8))ds
0

N,(t) =tcost—tsinf—sing+1+ f(t N, (s) + (s — DN,(5)ds N; (%) = cost
’ Na(t) = sing
M) = tPcost—gsing — {2 sing +§ + f(s Na(s) + ts 15 (5))ds |
LSVIEs3 ; N3() = sing + cost
Na(§) = —Scost — Sgsing+§+ 6 + f (55 Ti(s) + (5 — DIy (5)ds
1 2 )
1) = =2 — 2yt + 2 f (ssin(1 () + 255 N, (5))ds ) =
NLSVIEs4 e M=t
Mo = §—psing —SnE 4 f (s cos(1()) +§ cos(T(s))) ds
0
t
1
M@ =1+ - —21"+ f (5 (M1()* + 85 (N2(5))*)ds M@ =1+
0 N =1-¢
NLSVIEs5 1 t
1, = 1§ — 51+ [ (= DAL = G- 9 ML6))ds
; ((1(’)1 )% + (1))
2$ 3§ _
= -1 rh( ) =
NLSVIEs6 N.(t) = tcost

L 7 /\/(Hl(s))z + (M2()% + (Na() \d |
N,(#) =tcost—In(1+1%) + f\ T LG T (LG)) / $ | Ns(t) =tsint

2
() = 1+ cos s — 1) +5 f (M) + N1(3) M)
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Table 2. The parameter values used in all examples
Ofinal TOL Maxit npop
0.0001  1le-10 200 100

Parameter Smin  Smax
Value 0 5

Table (2) shows the parameters and inputs for all of the examples. The algorithm is tested 16 times to ensure its
reliability. The Matlab R2023a software package is used to implement the technique. The device is an HP laptop with an Intel(R)

Core (TM) i7-6820HQ CPU @ 2.70GHz, 16.00GB of RAM, and the Windows 10 Pro 64-bit operating system.

4.2. SVIEs Solution

Tables 3 and 4 show the coefficients of approximate SVIEs solutions for all examples produced using the IWO

algorithm.

Table 3. The values of variables of SVIEs of two unknown functions obtained by the SVIEs-IWO algorithm Where

(nVar = 20), [VarMin,VarMax] = [-1,1]

SVIEs coff m=20 m=1 m=2 m=3 m=4
L 0.001944 -0.051314 -0.83238 -0.46608 -0.124237
Bon1 -0.93610 -0.73244 0.49346 -0.08061 -0.225139

LSVIEs1 Uy -0.000067 -0.03489 0.32039 0.335059 0.770305
Bonz 0.978330 0.87917 -0.61302 -0.55448 0.701726

s 0.002338 0.887847 0.86779 0.79758 0.37921

Bins 0.46458 0.358819 0.579419 0.037832 0.155505

LSVIEs2 Uz -0.971106 0.09886 0.779934 0.701432 0.642769
Brnz 0.971081 0.97026 0.00575 0.89648 -0.06604

A 0.002184 -0.02291 0.97369 0.72919 0.92228
Bon1 0.964129 0.96412 0.43591 0.912358 -0.457434
NLSVIEs4 Az -0.00179 0.928919 0.415341 0.92059 -0.190629
Bonz 0.823746 0.968289 0.108159 0.024336 0.156110

Ay 0.994389 0.871444 0.825308 0.47022 0.701765

NLSVIEs5 Bn1 0.999732 0.717618 0.452125 -0.94596 0.714807
Uy -0.99942 -0.94545 0.63607 0.530088 0.778195

Bonz -0.99941 -0.91701 -0.73761 0.678148 -0.60698

Table 4. The values of variables of SVIEs of tree unknown functions obtained by SVIEs- IWO algorithm Where
(nVar = 24), [VarMin,VarMax] = [-1,1]

SVIEs coff m=20 m=1 m=2 m=3
Uy -1 -0.98202 -0.09897 0.898738
Bm1 -1 -0.95823 -0.747478 0.522604
Ay -0.01459 -0.769123 -0.824254 0.339015
LSVIES3 Bz -0.999526 -0.064728 -0.692811 0.247356
s 0.856706 0.4760759 0.655320 0.289834
Binz 0.8526845 -0.253517 0.7734329 0.2588448
s -0.000037 -0.896159 0.3822662 -0.99110
Bm1 -0.85366 0.1293778 -0.565614 -0.216348
Uz -0.005513 -0.805460 -0.938811 0.991414
NLSVIEs6 Bunz -0.920776 -0.40863 -0.373068 0.296172
s -0.004765 0.007122 -0.576201 -0.984296
Binz -0.88265 -0.173732 -0.487331 -0.324409
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Table 5. It displays the mean absolute error (MAE) between the exact solution and the approximate solution and the time
taken to reach the optimal solution for systems of linear and nonlinear Volterra integral equations of the second kind resulting
from the proposed algorithm.

SVIEs MAE Time(s)
MAE1 | 0.001928
LSVIEs1 MAE2 | 00021 169.7472

MAE1 | 0.00177 | 169.8697
MAE2 | 0.00286
MAE1 | 0.00217
LSVIEs3 | MAE2 | 0.00330
MAE3 | 0.00290
MAE1 | 0.00083 | 167.0785
MAE2 | 0.00225
MAE1 | 0.003611
NLSVIEs5 MAE2 | 0.001263 189.1598
MAE1 | 0.00136
NLSVIEs6 | MAE2 | 0.0010
MAE3 | 0.00442

LSVIEs2

197.3125

NLSVIEs4

267.0285
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Figure 1. A comparison of exact and approximate solutions.

By looking at the diagram above, we can conclude that the algorithm SVIEs- IWO is capable of finding approximate

solutions that closely resemble the exact solution.
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Figure 2. Mean Absolute Error
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Figure 3. It is shown that SVIEs-IWO converges quickly over 200 iterations for all samples. We observed that the solution
stabilizes at 150 iterations in most examples.
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Figure 3. SVIEs-IWO converges

CONCLUSIONS

A combination of the Invasive Weed Optimization Algorithm with Padé expansion approximation is applied to solve

systems of Volterra integral equations. The system is converted into an unconstrained optimization problem. This study reveals
that the SVIEs-IWO algorithm is effective in solving systems of Volterra integral equations of the second kind. Moreover, the
convergence and stability of the algorithm is also confirmed. Furthermore, it is recommended that this approach can be utilized
to solve systems of Volterra integral-differential equations.
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