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ABSTRACT

In this paper, a new adapted optimal step-size is designed to improve
the efficiency of pair conjugate method. At each linear search an acceptable
step- size is estimated during quadratic interpolation and this estimate is
used as an initial trial step-size. The technique needs only additional gradient
evaluation at each search direction. Also we have improved Armijo line
search technique to be used together with the new optimal stepsize.

The numerical results are more efficient than the results of the same
method using the classical scheme for the linear search technique.
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1. Introduction:
The problem to be considered is that of finding a local minimum of a
function f(x) of n variables x=(x,...,x

The gradient of f will be denoted by gi(x), and the matrix of second
derivatives by Gj;. The function assumed to be differentiable so that g=0 at
the minimum can be used. Methods will be discussed in this paper are all
iterative and Xy,X,... will be used to denote successive approximations to the
minimum. Namely, all the methods are based or the iteration

X1 =% +ﬂ’|di (1)

The parameter A, is usually chosen to minimize f(x +A4d ) to make

f.,<f. But if 4 minimizes f in this particular direction on obvious

advantage of this approach is that each step process to converge faster see
All-Baali(1985). The procedure for determining such A sometimes called a

step-length algorithms, so as to minimize

¢(ﬂ):f(xi+ﬂ’|di)’ (2)

is referred to as a line search procedure.

A number of numerical techniques for carrying out such line searches
have been developed. Quadratic interpolation has been used eg. Gill and
Murray(1974); and Scales,(1985), Raydan(1997),the technique needs
function evaluations only and also cubic interpolation. Dixon(1972) which
needs function and gradient evaluations. In the later category is the method
of Davidon(1959) which is described in (Bunday, 1984) and has been used
in the new programs for implementation the standard air conjugate
algorithms in this paper.

In this paper, we present a new adaptive optimal step-size technique to
improve the efficiency of the standard pair conjugate method, and replacing
the standard cubic line search. The numerical results show that the new
scheme is more efficient than the cubic search when using both with two
pair conjugate methods to find the optimal step-size for solving several
unconstrained test problems.

2. Implementation:
Before presenting the new technique, we shall derive the optimal step-
size formula which is a given by:

where A is exact step-length used usually with the conjugate Gradient
methods, See Bazaraa, (2000).
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2.1 The derivation of the New £ :
Let f(x) be positive definite quadratic  function as:

f(x):%xTGx—bTx+c where G is symmetric positive definite matrix. The

gradient of f(x) can be expressed in the ith iteration: g, =Gx, —b, the
required minimum point along the line is x,,=x +Ad. , where d, is the
search direction. Now, from the exact search property the following
condition d'g =0or-g'g, =0 (since d; =—g;) must hold (g* is the
gradient at x*).
We have:
g =Gx -b
=G(x, +4,d,)-b
=Gx,-b+1d'G
=g,+4d'G
The minimum will be attained when
91 gi =0
=0=-g{ g; - 49{ Gd;
_9iG
gi Gd,
This is the optimal step-size parameter for the cases that ELS and descent
conditions are satisfy.

jﬂ,i =

3. Pair Conjugate Method:

Stewart (1977) introduced a generalization of the notion of conjugancy,
leading to a variety of finitely terminating iterations for solving systems of
linear equations. An adaptation of Steward's ideas to minimization problems
confirms not only the above-mentioned suspicion, but establishes a method
with an even wider scope of generality.

We note that the definition of conjugancy can also be phrased as
follows: If the vectors u,,u,,..,u_, are the columns of an nxn matrixV,

then u,,u,,..,u,_, are A-conjugate if U"AU is a diagonal (and of course

nonsingular). The generalization is achieved by introducing a second set of
vectors v,,v,,...,V

1 Vg

Definition 3.1
let A, U, and V be non singular nxn matrices. Then (U,V) is a pair G-
conjugate if L=UTAV is lower triangular.
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The generalized algorithm for solving the equations
Gx+b=0

gk-1 =GCX 1 +b

Hig =—V{10i 1 /v 1GU; 4

Xig = Xjig + HigUig

Where i=12,...,n, and where

U=[uy,..u,,]and V =|v,,...v,].

Stewart (1977) developed an algorithm for constructing a pair G-
conjugate pair (U\V) as follows. Given nonsingular matrices V,Gand P, the
vector u, Is determined as a linear combination of p_,,p;,... P,
i=01,.,n—1, such that U and V are G-conjugate. The resulting algorithm is
as follows:

Uy = do Po s
u, = dl[’[ P, _(Vngl / V(IGUO)JO

LE%): dk [’[ P — (Vngk /VgGuo)‘Jo - (VlTka /V1TGU1)‘11 T (Vl—lek /VI—IGuk—l)jk—l
The constant d, are chosen to give u, some predetermined scaling.

We will now formulate the analogous generalized conjugate-direction
method for the minimization of a function f(x).
Suppose that U and V form a pair conjugate set.

Xo = arbitrary, go=0(Xo)
For i=0,1,..., compute

X = X + AUy, (6a)
Where 4. minimizes f(x + Au.) as a function of 4,
Bi=—4 [ViTgi /uiT (gi+1 - gi)]
(6b)
X1 =X + B4,

(see VanWyk, 1977).

4. Standard pair Conjugate Algorithm:

Step (1): Set i=1.

Step (2): Compute , u;=-g; line search along d; to get x_, =x + fSu,.

Step (3): If at x;+; the stopping criterion | g;4[[<1x10® is satisfied, then

terminate.
Step (4): Check for restarting criterion if i=n then go to step (1). Else go to

step (5).
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Step (5): Compute u,, =—g,,, + Su, where g = -4, {T\’l—g-}
yi (gi+1 - g|)

Step(6): Set i=i+1.

Step (7): If i > 1000, stop. Else go to step 2.

(see VanWyk, 1977).

5. A New adaptive Minimization Procedure:

In this section we present a new adaptive optimal step size
minimization scheme designed to improve the efficiency of the conjugate
pair method. The technique gives only the trail step-size will be tested at
each search, and needs only one additional gradient evaluation at each
search. In eq.(3), the optimal step-size, A4 is given by:

2= giTgi
T
9; Gd;

Provided g Gd, >0. However it requires knowledge of the Hessian G
for a quadratic, which is undesirable. For more details see (Vrahatis et al
1996).

( 'Bherefore, we derive a formula without the need for the Hessian or its
estimate.

We note that with a small value of & >0, we can define for a quadratic,
the vector f(x +¢&d,)— f(x)=g(x +&d,)—g(x)=&Gd,

Now, we can avoid computation of second derivatives by replacing the
vector Gd; in eq.(3) from the above, i.e. substituting

Gd, = g(xi +‘9iii)_ g(xi) )
we get |
A = £9i 9 (8)

9 (9(x; +&id;)—g(x; ))T

We shall use this formula to compute an optimal step-size estimation
when the function f is not necessarily quadratic. We can now present the
complete algorithm, which includes determining the step-size within the pair
conjugate method.

6. New proposed algorithm (New1l)

6.1 Outline of the proposed pair Conjugate Algorithm:

Step (0): Set i=0, select an initial point x ., =1e*,4=0.5, and compute g;,
set u, =—-g.,& =¢.
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Step (1): Set i=i+1, for i<1, check that the ¢ is a suitable value, satisfying:
lled. [I<#]] g, ||, then compute x =x +¢Au., and go to step (2)
else, set ¢ =&/ 2, and re-check.

Step (2): Compute the optimal step-size:

2o &9
" gl -9)
where_ -
g, = g(xi)

Step (3): compute the new estimate minimum point:
x; =% + A u; where Ais the minimization of the function f (found
by using cubic fitting technique)fully described in Bunday (1984).
Step (4): Use the following algorithm to find the new search direction:

ui+l = _gi*+1 + ﬂiui
T
where g =A(V'TAJ
Yi Vi
Step (5): Check that the new direction satisfies the descent property as
u'g; <0, and if so, go to step (6); otherwise go to step (0).

Step (6): check if || g ||<1x10™°, Stop; otherwise, set x, =x  and go to step

D).

7. An alternative new procedure for calculating the minimizer A

in step(3) of the above new proposed algorithm.

Armij rule Armijo(1966) is as follows
Give B€ (0,1) ,p € (0,0.5), >0 there exists the least non-negative integer
m, such that

f (%)~ f O +8"7d) 2 —ppMz gy dy ©)

In order to gurantee the objective function decreases sufficiently we will
introduce a parameter a such that

f (X +adi) < f (%) + pay g dy (10)
and
f (X +ady) > f(x)+ Q- p) agrdy (1)

where 0<p<0.5
Armijo proved that the above algorithm has superlinear conjugate , where

oy =maxfp ], j=01,2, ) (12)

Equation (10) is called Armijo liner search procedure. This equation can be
modified further by the following steps.
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Aimijo

f (% +aydy) = (X)) < pey 9 di (13)
Modified Armijo(1)

F (g + @ dy) = ) < paar dy — pla|dy | (14)
Modified Armijo(2)

f (X + i) = (%) < poyc gy dy —Pzzakugk ||2 (15)

p1, P2 >0 constant
Note:- step(3) of algorithm (6.1) may be written again when the minimizer
A can be found by adaptive line —search procedures using (13),(14) or (15).

8. Conclusions and Numerical Results:

Several standard test functions were minimized to compare the new
algorithm with standard Pair Conjugate algorithm. The same line search
was employed in each of algorithms, namely the cubic interpolation
procedure. We tabulate for all the algorithms the number of functions
evaluations (NOF), the number of iterations (NOI). Overall totals are also
given for NOF and NO1 with each algorithm.

Table (1) gives the comparison between the standard pair Conjugate
algorithm and the new algorithm, this table indicate that the new algorithm is
better than the standard pair Conjugate algorithm.

Namely; talking the standard pair CG-method as 100% NOI and NOF
we will get 75% NOI and 75% NOF. This means that there are 25%
improved in both NOI and NOF.

Table (1): Comparative Performance of the Two Algorithms for Group of
Test Function

The proposed

- Standared pair conjugate -
Test function algorithm
‘ I oorhm NOT(™OP | not vor)

100 (218) 97 (199)
120 (300) 101 (200)
215 (452) 100 (350)
223 (340) 210 (323)
451 (502) 368 (430)
50 (104) 27 (72)
73 (159) 55 (48)
53 (120) 29 (76)
60 (144) 48 (112)
40 (105) 17 (49)
58 (122) 28 (99)
70 (145) 59 (87)
1513 (2711) 1139 (2045)
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The New Method:-

In order to find the point which minimizes a given functions. In this
paper we have proposed a new conditions, and we are compared them with
the Armijo's condition with respect to the maximum objective function. The
new proposed conditions are follows:-

1. f(x -t VF(x, ))—max{f(xk_j)}S—cltk||gk||2 (19)
2. f(x,—t VF(x,))—mex max {f(x, ) |<o,t.s] g, (20)
3. flx,—t, VF(x,))- {f<xk_1)} t,lls, IF (21)
4. fx,~t,VF(x,))-ma {f(xk_])}< Gltk||gk|| +o,t, 57 g, (22)
5. f(x, —t, VF(x,))- max{f(xk_,)}_ o, t 19, IF +o,t lIs, [P (23)
6. f(x -t VF(x,))- { j<

7. f(x -t VF(x,))- { f<

axif(x,) j<o,t s, g +o,t lIs, I (24)

ax f(x, ) <1+2+3 (25)

0<J<

Numerical Applications

The algorithm described in section () has been implemented using the
new FORTRAN program was tasted a Pentium (I1l) with random problems
of varying dimensions. Our experience is that the algorithm behaved
predictably and reliably and the results were quite satisfactory. Som typical
computational results are given below. For the following problems, the
reported parameters are:-
e ndimensions,
e X =(X.,X,,...,X,) starting point,
e X =(X,x,...x") approximate local minimum computed within an

accuracy of £=107,

NOI the total number of iteration
NOF the total number of function

In table (1) we compare the numerical results obtained for various
starting points, by applying other methods (Armijo's method, New
proposedl, New proposed2, New proposed3, 4, 5, N6) including the classic
conic method, with the corresponding numerical results of the method
presented in this paper.

This table indicates the classical starting point. We used for all methods
an accuracy of &, =107 and an initial step 10. We also used ¢, =g, =107,

For our method we set the size of the line search record to be M=n. Our
new propositional are better than the old method.
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Table (2): Comparative performance between the standard conic method and
new proposed method

Test New New New
function roposed 1 roposed 2 roosed 3

30 (118) 28 (115) 20 (115) 19 (108)
49 (200) 49 (195) 50 (190) 30 (180)
33 (208) 20 (155) 21 (155) 18 (145)
97 (410) 40 (101) 41 (105) 30 (101)
39 (100) 31 (73) 32 (75) 28 (70)
300 (257) I 220 (200) 220 (200) 199 (180)
20 (30) 14 (27) 12 (25) 9 (15)
40 (101) 30 (71) 30 (71) 20 (60)
51 (97) 35 (81) 30 (71) 25 (61)
104 (332) [I 100 (310) 160 (99) 25 (30)
111 (320) 111 (320) 112 (322) 90 (270)
160 (501) [I 160 (501) 155 (500) 100 (403)
1034
(2674) 838 (2149) 823 (1928) 593 (1623)
9. Appendix:
1- Generalized Powell Function:
f= Z[(mes —10x T 2) +5( Xyi )2 +(X4i—2 2 4i—1) +1O( Xyig — 4i)4]’

i=1

x, =(3-101;--)".

2- Generalized Wood Function:
f:n/ﬁloo[ Xy, %) ] (1=%a ) +90x, =32 F+(t-x* f
i=1

+10(x, , —1) + (¢, ~ 1 |+ 19.8(x,,, ~ 1) (x,, ~1),
X, =(~3-1-3-1;---) .

3- Generalized Sum of Quadratics Function:

=3 (x -1),

i=1

X, =(2;) .

4- Generalized Dixon Function:

[ FTEEES

i=1

X, =(=1;-) .

i=1

b -x. |
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5- Generalized Rosenbrock Function:

n/2

f= 21: [100(x2i —x2 Fa(t-x,,y ]
X, =(-121;---)".

6- Generalized Cubic Function:

n/2

f= Z [100(X2i - in,l )2 + (1 — X1 )2 ]’

i=1

X, =(-121;---)".
7- Generalized Tri Function:
f= Zn:(ixiz )2 ,
i=1
X, =(=1;--)".
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