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 الملخص

المترافقات  خوارزمية كفاءة لزيادة جديدة في هذا البحث تم استخدام خطوة مثمى ملائمة      
ففي خط البحث تم استخدام مقبولة من خلال الاستكمال التربيعي كخطوة بدائية  .المزدوجة القياسية

تم  ،قة واحدة في كل خطوة تكراريةالجديدة لحساب مشت التقنية عمى حاجة التأكيدلهذا الاستكمال مع 
النتائج العددية اثبت كفاءة الطريقة . واستخدامها مع التقنية الجديدة Armijoتطوير خوارزمية  ااً أيض

. بأستخدام التقنية المقترحة
 

ABSTRACT 
In this paper, a new adapted optimal step-size is designed to improve 

the efficiency of pair conjugate method. At each linear search an acceptable 

step- size is estimated during quadratic interpolation and this estimate is 

used as an initial trial step-size. The technique needs only additional gradient 

evaluation at each search direction. Also we have improved Armijo line 

search technique to be used together with  the new optimal stepsize. 

The numerical results are more efficient than the results of the same 

method using the classical scheme for the linear search technique. 
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1.  Introduction: 
The problem to be considered is that of finding a local minimum of a 

function  f(x)  of  n  variables )x  ,. . . ,(xx
n1

 . 

The gradient of f will be denoted by gi(x), and the matrix of second 

derivatives by Gij. The function assumed to be differentiable so that g=0 at 

the minimum can be used. Methods will be discussed in this paper are all 

iterative and x1,x2... will be used to denote successive approximations to the 

minimum. Namely, all the methods are based or the iteration 

 
iii1i

dxx 


                                                                                        (1) 

The parameter 
i
  is usually chosen to minimize )dx(f

iii
   to make 

i1i
ff 


. But if 

i
  minimizes f  in this particular direction on obvious 

advantage of this approach is that each step process to converge faster see 

All-Baali(1985). The procedure for determining such 
i
  sometimes called a 

step-length algorithms, so as to minimize   

)dx(f)(
iii

  ,                                                                               (2)    

is referred to as a line search procedure. 

A number of numerical techniques for carrying out such line searches 

have been developed. Quadratic interpolation has been used eg. Gill and 

Murray(1974); and Scales,(1985), Raydan(1997),the technique needs 

function evaluations only and also cubic interpolation. Dixon(1972) which 

needs function and gradient evaluations. In the later category is the method 

of Davidon(1959) which is described in (Bunday, 1984) and  has been used 

in the new programs for implementation the standard air conjugate 

algorithms in this paper. 

In this paper, we present a new adaptive optimal step-size  technique to 

improve the efficiency of the standard pair conjugate method, and replacing 

the standard cubic line search. The numerical results show that the new 

scheme is more efficient than the cubic search when using both with two 

pair conjugate  methods  to find the optimal step-size for solving several 

unconstrained test problems. 

 

2.  Implementation: 
Before presenting the new technique, we shall derive the optimal step-

size formula which is a given by: 

i

T

i

i

T

i

i
Gdg

gg
                                                                 (3) 

where i
  is exact step-length used usually with the conjugate Gradient 

methods, See Bazaraa, (2000). 



Muna M. Mohammed Ali  &  Maha S. Y. Al-Salih  &  Abbas Y. Al-Bayati 

81 

2.1 The derivation of the New 
i
 : 

Let f(x) be positive definite quadratic function as: 

cxbGxx
2

1
)x(f TT   where G is symmetric positive definite matrix. The 

gradient of )x(f  can be expressed in the ith iteration: bGxg
ii
 , the 

required minimum point along the line is 
iii1i

dxx 


 , where 
i

d  is the 

search direction. Now, from the exact search property the following 

condition 0ggor0gd *

i

T

i

*T

i
  (since ii gd  ) must hold (g* is the 

gradient at x*). 
 We have: 

 

Gdg

GdbGx

bdxG

bGxg

T

iii

T

iii

iii

**















 

The minimum will be attained when 

i
T
i

i
T
i

i

i
T
iii

T
i

i
T
i

Gdg

gg

Gdggg

gg









0

0*

 

This is the optimal step-size parameter for the cases that ELS and descent 

conditions are satisfy. 

 
3.  Pair Conjugate  Method: 

Stewart (1977) introduced a generalization of the notion of conjugancy, 
leading to a variety of finitely terminating iterations for solving systems of 

linear equations. An adaptation of Steward's ideas to minimization problems 

confirms not only the above-mentioned suspicion, but establishes a method 

with an even wider scope of generality. 
We note that the definition of conjugancy can also be phrased as 

follows: If the vectors 
1n10

u,...,u,u


 are the columns of an nn  matrixV , 

then 1n10
u,...,u,u

  are A-conjugate if AUU T is a diagonal (and of course 

nonsingular). The generalization is achieved by introducing a second set of 

vectors 1n10
v,...,v,v

 . 

 

Definition 3.1 

let A, U, and V be non singular nn  matrices. Then (U,V) is a pair G-

conjugate if  AVUL T is lower triangular. 
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The generalized algorithm for solving the equations 

1111

11111

11

/

0















iiii

i
T
ii

T
ii

ik

uxx

Guvgv

bGxg

bGx




 

Where n,...,2,1i  , and where 

 
1n0

u,...,uU


  and  
1n0

v,...,vV


 . 

Stewart (1977) developed an algorithm for constructing a pair G-

conjugate pair  V)(U, as follows. Given nonsingular matrices G V, and P , the 

vector 
k

u  is determined as a linear combination of 
kio

p..., ,p,p , 

1n,...,1,0i  , such that U and V are G-conjugate. The resulting algorithm is 

as follows: 

 

     
1k1k

T

1kk

T

1k11

T

1k

T

100

T

0k

T

0kkk

00

T

01

T

0111

000

uGuv/GpvuGuv/GpvuGuv/Gpvp[,du

uGuv/Gpvp[,du

,pdu












 .

.(5) 

The constant 
k

d  are chosen to give 
k

u  some predetermined scaling. 

We will now formulate the analogous generalized conjugate-direction 
method for the minimization of a function )x(f . 

Suppose that U and V form a pair conjugate  set. 
x0 = arbitrary,   g0=g(x0) 

For i= 0,1,..., compute 

iii1i
uxx 


,                                                                   (6a) 

Where 
i
  minimizes )ux(f

iii
  as a function of 

i
 , 

  
iii1i

i1i

T

ii

T

iii

uxx

ggu/gv











                                                        (6b) 

(see VanWyk, 1977). 

 
4. Standard pair Conjugate Algorithm: 
Step (1): Set i=1. 
Step (2): Compute , ui=-gi  line search along di to get iii1i

uxx 
 . 

Step (3): If at xi+1 the stopping criterion -5
1i 101||g||   is satisfied, then 

terminate. 
Step (4): Check for restarting criterion if i=n then go to step (1). Else go to 
step (5). 
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Step (5): Compute 
ii1i1i

ugu 


 where 
 










 i1i

T

i

i

T

i

ii
ggy

gv
  

Step(6): Set i=i+1.                              
Step (7): If i > 1000, stop. Else go to step 2. 
(see VanWyk, 1977). 

 
5.  A New adaptive Minimization Procedure: 

In this section we present a new adaptive optimal step size 
minimization scheme designed to improve the efficiency of the conjugate 

pair method. The technique gives only the trail step-size will be tested at 
each search, and needs only one additional gradient evaluation at each 

search. In eq.(3), the optimal step-size, 
i
  is given by: 

i
T
i

i
T
i

i
Gdg

gg
  

Provided 0i
T
i Gdg . However it requires knowledge of the Hessian G 

for a quadratic, which is undesirable. For more details see (Vrahatis et al 
(1996). 

Therefore, we derive a formula without the need for the Hessian or its 
estimate. 

We note that with a small value of 0
i
 , we can define for a quadratic, 

the vector        
iiiiiiiiii

Gdxgdxgxfdxf    

Now, we can avoid computation of second derivatives by replacing the 
vector Gdi in eq.(3) from the above, i.e. substituting 

   

i

iiii

i

xgdxg
Gd



 
                                                   (7) 

we get 

    Tiiii
T
i

i
T
ii

i
xgdxgg

gg







                                                (8) 

 

We shall use this formula to compute an optimal step-size estimation 
when the function f is not necessarily quadratic. We can now present the 

complete algorithm, which includes determining the step-size within the pair 
conjugate  method. 

 
6. New proposed algorithm (New1) 
6.1  Outline of the proposed pair Conjugate Algorithm: 

Step (0): Set i=0, select an initial point 5.0,e.1,x 1

ii
   , and compute gi,                      

set  
iii

,gu .  
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Step (1): Set i=i+1, for i<1, check that the 
i
  is a suitable value, satisfying: 

||g||||d||
iii

  , then compute 
iiiii

uxx  , and go to step (2)                      

else, set 2/
i

  , and re-check. 

Step (2): Compute the optimal step-size: 

 
ii

T

i

i

T

ii

i
ggg

gg





  

where 

 
ii

xgg   

Step (3): compute the new estimate minimum point: 

       iiii uxx ^*    where λi^is the minimization of the function f (found 

by using cubic fitting  technique)fully described in Bunday (1984).  
Step (4): Use the following algorithm to find the new search direction: 

       
ii

*

1i1i
ugu 


 

       where 









i

T

i

*

i

T

i

ii
yy

gv
  

Step (5): Check that the new direction satisfies the descent property as 

0gu *

i

T

i
 , and if so,  go to step (6); otherwise go to step (0).  

Step (6): check if 5* 101||||  xg , Stop; otherwise, set *

ii
xx   and go to step 

(1). 

 
7.  An alternative new procedure for calculating the minimizer  λi 

in step(3) of the above new proposed algorithm. 
     Armij rule Armijo(1966) is as follows 
Give  βЄ (0,1) ,ρ Є (0,0.5), τ>0 there exists  the least non-negative integer 
mk such that  

                                                    k
T
k

m
k

n
kk dg d xfxf   )()(    (9) 

In order to gurantee the objective function decreases sufficiently we will 

introduce a parameter α such that  

                                    dg xfdxf

and

                                              dgxfdxf

k
T
kkkkkk

k
T
kkkkkk

)11()1()()(

)10()()(









 

where  0<ρ<0.5 
Armijo proved that the above algorithm has superlinear conjugate , where  

 )12(,max                                             ...0,1,2,....j               j
k    

Equation (10) is called Armijo liner search procedure. This equation can be 
modified further by the following steps. 
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Aimijo 

(13)                                                     dgxfdxf k
T
kkkkkk   )()(  

Modified Armijo(1) 

(14)                              ddgxfdxf kk
2
1k

T
kkkkkk

2
)()(    

Modified Armijo(2) 

constant      

(15)                              gdgxfdxf kk
2

k
T
kkkkkk

0,

)()(

21

2

2








 

Note:-  step(3) of algorithm (6.1) may be written again when the minimizer  
λ^ can be found by adaptive line –search procedures using (13),(14) or (15). 

 
8. Conclusions and Numerical Results: 

Several standard test functions were minimized to compare the new 
algorithm with standard Pair Conjugate algorithm. The same line search 
was employed in each of algorithms, namely the cubic interpolation 
procedure. We tabulate for all the algorithms the number of functions 
evaluations (NOF), the number of iterations (NOI). Overall totals are also 
given for NOF and N01 with each algorithm. 

Table (1) gives the comparison between the standard  pair Conjugate  
algorithm and the new algorithm, this table indicate that the new algorithm is 
better than the standard pair Conjugate  algorithm. 

Namely; talking the standard pair CG-method as 100% NOI and NOF 
we will get 75% NOI and 75% NOF. This means that there are 25% 
improved in both NOI  and NOF. 

 
Table (1): Comparative Performance of the Two Algorithms for Group of 

Test Function 

Test function N 
Standared pair conjugate 

algorithm NOI (NOF) 

The proposed 
algorithm 

NOI (NOF) 

Powell 
4 
100 
1000 

100 (218) 
120 (300) 
215 (452) 

97 (199) 
101 (200) 
100 (350) 

Wood 
4 
100 

223 (340) 
451 (502) 

210 (323) 
368 (430) 

Sum 100 50 (104) 27 (72) 

Dixon 100 73 (159) 55 (48) 

Rosen 
100 
1000 

53 (120) 
60 (144) 

29 (76) 
48 (112) 

Cubic 
100 
1000 

40 (105) 
58 (122) 

17 (49) 
28 (99) 

Tri 100 70 (145) 59 (87) 
Total  1513 (2711) 1139 (2045) 
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The New Method:- 

In order to find the point which minimizes a given functions. In this 

paper we have proposed a new conditions, and we are compared them with 

the Armijo's condition with respect to the maximum objective function. The 

new proposed conditions are follows:- 

1.     2

kk1jk
mj0

kkk
||g||t)x(fmax)x(ftxf 




                             (19) 

2.    
k

T

kk2jk
mj0

kkk
gst)x(fmax)x(ftxf 




                     (20) 

3.     2

kk3jk
mj0

kkk
||s||t)x(fmax)x(ftxf 




                               (21) 

4.    
k

T

kk2

2

kk1jk
mj0

kkk
gst||g||t)x(fmax)x(ftxf 




          (22) 

5.     2

kk3

2

kk1jk
mj0

kkk
||s||t||g||t)x(fmax)x(ftxf 




        (23) 

6.     2

kk3k

T

kk2jk
mj0

kkk
||s||tgst)x(fmax)x(ftxf 




            (24) 

7.     321)x(fmax)x(ftxf
jk

mj0
kkk





                                    (25) 

 

Numerical Applications 

The algorithm described in section ( ) has been implemented using the 

new FORTRAN program was tasted a Pentium (III) with random problems 

of varying dimensions. Our experience is that the algorithm behaved 

predictably and reliably and the results were quite satisfactory. Som typical 

computational results are given below. For the following problems, the 

reported parameters are:- 

 n dimensions, 

  )x,...,x,(x x
n21

 starting point, 

  )x,...,x,(x x ****

n21
 approximate local minimum computed within an 

accuracy of 410 , 
 

NOI the total number of iteration 

NOF the total number of function 

In table (1) we compare the numerical results obtained for various 

starting points, by applying other methods (Armijo's method, New 

proposed1, New proposed2, New proposed3, 4, 5, N6) including the classic 

conic method, with the corresponding numerical results of the method 

presented in this paper. 

This table indicates the classical starting point. We used for all methods 

an accuracy of 8

1
10  and an initial step 10. We also used 15

43
10 . 

For our method we set the size of the line search record to be M=n. Our 

new propositional are better than the old method. 
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Table (2): Comparative performance between the standard conic method and 
new proposed method 

 

Test 
function 

N Arm 
New 

proposed 1 
New 

proposed 2 
New 

proposed 3 

Rosen 
20 
80 

30 (118) 
49 (200) 

28 (115) 
49 (195) 

20 (115) 
50 (190) 

19 (108) 
30 (180) 

Powell 
4 

100 
33 (208) 
97 (410) 

20 (155) 
40 (101) 

21 (155) 
41 (105) 

18 (145) 
30 (101) 

Wood 
4 

40 
39 (100) 

300 (257) 
31 (73) 

220 (200) 
32 (75) 

220 (200) 
28 (70) 

199 (180) 

Wolf 
4 

20 
20 (30) 
40 (101) 

14 (27) 
30 (71) 

12 (25) 
30 (71) 

9 (15) 
20 (60) 

Dixon 
10 
200 

51 (97) 
104 (332) 

35 (81) 
100 (310) 

30 (71) 
160 (99) 

25 (61) 
25 (30) 

Cubic 
20 
60 

111 (320) 
160 (501) 

111 (320) 
160 (501) 

112 (322) 
155 (500) 

90 (270) 
100 (403) 

Total 
1034 

(2674) 
838 (2149) 823 (1928) 593 (1623) 

 
9. Appendix:  
1- Generalized Powell Function: 

        

  .;1,0,1,3x

,xx10x2xxx5x10xf

T

0

4/n

1i

4

i43i4

4

1i42i4

2

i41i4

2

2i43i4







 

 

2- Generalized Wood Function: 

        

        

  .;1,3,1,3x

,1x1x8.191x1x1.10

x1xx9x1xx100f

T

0

i4

2

2i4

2

i4

2

2i4

2222

i4

2

3i4

4/n

1i

22

2i4 1i41i43i4













 


 

 

3- Generalized Sum of Quadratics Function: 

     
 

  .;2x

,1xf

T

0

n

1i

4

i




  

 

4- Generalized Dixon Function:  

     
     

  .;1x

,xxx1x1f

T

0

n

1i

1n

1i

2

1i

2

i

2

n

2

i









 







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5- Generalized Rosenbrock Function: 

       
    

  .;1,2,1x

,x1xx100f

T

0

2/n

1i

2

1i2

22

i2 1i2






  

 

6- Generalized Cubic Function: 

     
    

  .;1,2,1x

,x1xx100f

T

0

2/n

1i

2

1i2

23

i2 1i2






  

 

7- Generalized Tri Function: 

     
 

  .;1x

,ixf

T

0

n

1i

22

i




  
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