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Abstract:

A new and effective direct method to determine the numerical
solution of non- linear Fredholm-Fredholm integral equations is
proposed.

The method is based on a series solution for the unknown quantity
by Adomian's method. We obtained very good results compared with
classic Adomian's method Some numerical examples are provided to
illustrate accuracy and computational efficiency of the method.

1. Introduction

Over several decades, numerical method in electromagnetic have
been the subject of extensive researches. many problems in
electromagnetic can be modeled by integral and integro-differential
equation for example, electric field integral equation (EFIE) and magnetic
field integral equation (MFIE)[3]. Some papers studied the problem of
existence and uniqueness of solution of non-linear Volterra-Fredholm
integral equations see [1,6,7]. Some authors use Adomian's method for
solving this equations[4] .

In this article we present Adomian's method solution solving non-
linear integral equation of Fredholm-Fredholm type:-
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b b
#(x) = f(X)+fk1(x,t) g1 (¢(t))dt +J.k2(x,t)gz(¢ ®)dt xtef[ahb] --eeee (1.1)

91(4 (x))=¢" (%)

where : are non-linear function of ¢,
g2(4 (0)=9"2 ()

Py # P, =2 are positive integers , ki(x,t) and ko(x,t) are referred to

as the kernel and f(x) a given function, g,k and f are non

functions.

2. Analysis:
In this section, we first describe the algorithm of Adomian's
method as it applies to a general non-linear equation of the form[2]:

d=F+N(B) 2.1)
or
S-N(H)=F (2.2)

where N is a non-linear operator on a Hilbert space H and f is a
known element of H. we assume that for a given f .

It is well known that (AM) considers ¢ (x) as an infinite sum of
components ¢ , (x) defined by:

¢(X):Z¢n(X)=¢o+¢1+¢2+¢3+---- ....................... (2.3)
n=0

and the non-linear operator N can be decomposed into

A0(¢o) + AEL(¢0’¢1) + A2(¢o'¢l’¢2) + A3(¢o’¢1'¢2’¢3) RACERERPERPS ---(2-4)

that is :

N@) = D An(fo. Bl 82, Bn)  woooeeeeeeeee, (2.5)
n=0

where A, are the so-called Adomian polynomial's.
Substituting (2.3) and (2.5) into the functional equation (2.2) yields:

iqﬁn(x)—iAn S e (2.6)
n=0 n=0

If the series in (2.6) is convergent, then (2.6) holds upon setting:
$o =T
¢ = Ao (¢o)
¢2 — A1(¢0’¢l) ................................ (2.7)

$n = Ana1(do, 1,02, #n-1)
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e8]
Thus, one can recursively determine every term of the series Z¢n . The

Nn=0
convergence of this series has been established. The two hypotheses
necessary for proving convergence of the Adomian's method as given in
[5] are as follows.

Condition 2.1: The non- linear function equation (2.2) has a series

solution Z¢n such that i(1+€)n¢n<°°' Where e>0 may be very

n=0 n=0
small.

Condition (2.2): The non-linear operator N(¢) can be developed in

series N(¢)=Zan o

n=0

These hypotheses, for proving convergence, are generally satisfied
in physical problems [5].

The modified Adomian method [4] may be roughly described as a
reassignment of the initial approximates ¢, and ¢ 4. In particular, if
f is split into two functions, say, f =fl+ f2, then we may rewrite
(2.7) as:

9o = f1
¢ =12+ Ag(do)
G = A (o, B1) e (2.8)

Pn = An1(do. 1. 02, #n-1)

The choice of how to assign ¢, and ¢ is experimental, yet it
leads to less computational and does accelerate the convergence.

To compute Adomian polynomials we as a new method mentioned
in [4]. Consider the equation (1.1), to solve (1.1) by AM, we write

e}

¢(X):Z¢n(x) ..................................................... (2.9)

n=0
and

n=0
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and substituted the series (2.3) , (2.9) and (2.10 ) in to (1.1) giving

0 b
> (= 100+ [ KDY An (o O 01t (O) i+
o N (2.11)

b

If the series is convergent, then we can determined each term of the series

Z¢n (x) recursively:

n=0
g0 = (X
b b
#1= [Ka(x D) Ay (o) dt+ [ Ko (x D) Ay (45) clt

b b
b2 = [KiOGO Aldo 1) dt+ [ Ko (1) Ar(dy 1)

The algorithm in (2.13) determines the ¢,'s and hence the solution
¢ can be determined by (2.3). we will also apply the modified
decomposition by writing f = fl1+ f2 with appropriate choice for
¢o and ¢ 1.

Then the Adomian polynomial A, depends up on ¢, with order O,
A, depends up on ¢, and ¢ 1 with order 1 and so forth, see[4], we will
have Apas follows:
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Ao = 9(do)
A =01 99 (4)

Ao ¢29(1)(¢)+¢l 0@ (gy)

1 2 ¢13 3
Ag = ¢ag“(¢o>+¢l¢zg“(¢o)+ 99 (d)

1 2 ¢2 2 ¢12 3
Ay = ¢4g“(¢o)+¢l¢3g“(¢o)+ g“<¢0)+ ¢zg“(¢o)

As =5 9D (do) + A dn 919 (go) + b 43 g(2>(¢o)+%2@g(3>(¢o)
+2 % 40 (%)

P =05 90 (ho) + A 59D (ho) + 820 9P (d) + 02 301 (4)
+¢372g(2>(¢o)+%2¢4g<3’(¢0)+§g(3>(¢o)

= d7 99 (do) + 1059 P () + hois 92 )(¢o>+¢3¢4g(2>(¢0)+¢3 49 (4y)

s ¢sg(3>(¢o)+¢2 $:99 (d)

Go on this course, we will get A,

3. Numerical Examples:
Here we list the results of approximating some problems solved by
Adomian's method and modified Adomian's method.

Example 1: we apply the standard Adomian's method

1 1
()= 1(x)+ j Ke(x B g1 (@ (B) dt + j Ko(x)g2(p®)dt  x,te[0]

0 0
where
f(x) = x% —0.023809 x —0.14 #(X) = x°
Ky(x,t)=0.7 g1 (#(x)) = 92 (x)
Ky (x,t)=x/6 92 (#(X)) = ¢>(x)
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and solved by two methods Adomian's and modification method, and the
results will be compared.

A) classic Adomian's method
In this example, the non-linear termis g4 (4(x)) and g» (4(x)) using the

algorithm ¢ , (x) = f (x) = x> —0.023809 x —0.14, then

1 1
b 1(x) = j (0.7) g2 (1) dt + j (x/6) go3(t)
0

0

1 1
y z(x)=j(o.7)2¢o ®) A dt+j(x/6)3¢o2(t> A (0) dt
0 0

1 1
$3(x) = j (0.7)[2¢5 (1) ¢2 (1) +#2 (O)]dt + j (X/6)[3d62 (1) ¢ (1) + 3¢, (1) 12 (O] dt
0 0

1
4 (X) = j (0.7)[20 (1) d3(t)+ 211 o ()]t +
0

1
j (X/6)[3dho” (1) B3(t)+ 6y 1 (1) fa (1) + #1°] dit
0

L
¢5(x)= I(0-7) 26 (1) ¢a(®)+ 241 (1) 3 (®) + 42”1t +
0

1
j (x16)[36° (t) ¢ (t) + 65 (1) 41(1) $3() + 3 (1) B2 (1) +3 41 (t) o (D)1t
0

1
¢ 6(X) = j(0-7)[2¢0 (1) @5 (1) + 25 (1) g3 (1) + 241 (1) @4 (1) JAE+
0

1
I(X/6) [3¢ho” (1) 5 (1) + 6 b (1) 2 (D)3 (1) + B by (1) 1 () (1) +
0

3 412 (1) g3 (1) + 3622 (1) (D]t
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1
¢ 7(X) = I(0-7)[2¢0 (1) 6 (1) + 25 (1) ha (1) + 21 (1) 5 (1) + 537 (1) 1t +
0

1
J‘(X/6) [3¢° (t) 5 (1) + 6 (1) B2 (V)b (1) + 6.6 (1) 1 (1) 5 (1) +
0

3 o (1) #3° (1) + B A (1) $2 (1) $3(1) + 31 (1) 4 (1) + ° (1)1t

1
¢ g(x) = j(0-7)[2 9o (1) 7 (D) + 21(1) g6 (1) + 22 (1) #5(1) + 23(1) g (1) ]It +
0

1
I(X/6) [3¢0° (t) 7 (€) + 6. (1) A1) h () + 6.0 (1) B2 (1) 5 (1) + 6. (1) 3 (1) B (1) +
0

3 A1) ga” (1) + 3% (£) 45 (1) + 32 (1) g3 (t)]clt

¢(x) is approximated by using eight terms of Adomian's method

P(X) =P (X) + LX)+ P2 (X) H e, (2.16)

Figure (1.1 ) shows the approximate solution, it is obvious from
that the approximation is good.

Figure (1.1)
1 L
D8+
0B
0.4+
0.2+
@ Euxact
0 — AAdomi ||
0.2 L 1 1 1
0 (e 0.4 06 08 1

Figure (1.1) comparison of convergence rate for classic Adomian's method
and exact solution X>
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B) modified Adomian's method
assume that f = f1+ f2

then

f1(x) = x2 —0.023809 x f2(x) =-0.14
let

do(X)= f1=x%—-0.023809 x  then

1 1
B (x)= 2+ j(o.7)¢02 (t)dt + I (X1 6)¢y° (t)dt
0 0

1 1
b2 (x) = j (0.7)2 4o M)y (Ot + j (x/ )32 (D) (1)cl
0 0

We can see also from Figure (1.2) that this modified is very good.

Figure (1.2

'] L
08+
DB}
0.4+
02F

T Exact
— B modif

{1
_Dz 1 1 1 1

0 0.2 0.4 0k 08 1

Figure (1.2): comparison of convergence rate for modify Adomian's method
and exact solution X2.This method was applied at the 6™ iteration.

A comparison of the approximate solution between classic and the

modified Adomian's method with the exact solution ¢(x):x2 of the
integral equation at x=0,1/6,2/6 ,3/6 ,4/6 ,5/6 and 1 yield the
errors displayed in table (1.1).
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Table(L.1)

X 0 0.16667 [0.33333 0.5 0.66667 | 0.83333 1

Error by classic | 0.0067 0.0069 | 0.0072 0.0074 0.0077 0.0079 0.0082
Error by MA |4.468e-4 | 4.634e-4 | 4.8 e-4 | 4.966 e-4 | 5.132 e-4 [5.298 e-4|5.464 e-4

Example 2:

We apply the standard Adomian's method

1 1

$(x) = f(x)+jK1(x,t)gl(¢(t>)dt +sz(x,t)gz(¢<t>)dt x < [0.]

where

0

0

f(x) = x3 — 0.076923 x — 0.00909

K1(x,t) =0.1t

91(#(X)) = 4>(x)

A) classic Adomian's method

¢o (X) = x3 —0.076923 x — 0.00909

() = x>
Ko (X,t) =X

92 (4()) = ¢ (%)

1 1
$1(x) = j (0.11) go3(t) dt + j X dot (1) dt

0 0

1 1

4 2(x) = j (0.1)3¢g2(t) 41(t) dit + j X4do3(t) A1 (1) dt
0 0
Figure (1.3)
1.2 T T T
r A
S
08 / i
/!
06 Q)/
e
04l e
&
ozt -
- '—f@/ O Exact
op— — —— — — —  Aclass
_Dlzﬂ D.I1 D.IE D.I3 D.Iil D.I5 D.IE D.I?' D.IB D.I9 1

Figure (1.3): classic Adomian's method versus exact solution for ¢(x) = x>
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B) modified Adomian's method
assume that

f=f1+f2
then fl= X3 —0.076923 x f2=-0.00909
Let
do = F1=x° —0.076923 x
1 1
HO)= T2+ J.(O.lt)¢o3(t)dt ' 'f X do (t)dt
0 0
1 1
#2(X) = j (011) 3 do2 (1) (el +j X 4 g3 O (t)dt
0 0

Figure (1.4)

0 02 0.4 06 08 1
Figure (1.4): classic modify Adomian's method versus exact solution for ¢(x) = x*

A comparison of the approximate solution between classic and the
modified Adomian's method with the exact solution ¢(x)=x° of the
integral equation at x=0,1/6 ,2/6 ,3/6 ,4/6 ,5/6 and 1 vyield the
errors displayed in table (1.2).

Table (1.2)

X 0 0.16667 | 0.33333 0.5 0.66667 | 0.83333 1

Error by classic | 0.0001 | 0.0003 | 0.0005 | 0.0006 | 0.0008 | 0.0010 | 0.0012

Error by AM |5.74e-4 | 2.059e-4 | 3.545e-4 | 5.031e-4 | 6.517e-4 | 8.003e-4 | 9.48%¢-4
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Example :3
Consider the problem

1 1

p)= (0 + j K1 (xt) g1(4(1)) dt + j Ko(x)g2(@®)dt  xte[0d]
0 0

f(x) = x% —0.047619 x — 0.071429 #(x) = x4

Kq(x,t) =t Ko (x,t) =x2

91(#(%)) = #>(x) 92 ($(x) = ¢° (%)

A) by classic Adomian's method

do (X) = X% — 0.047619x — 0.071429
1

1
$1(x) = j t go3(t) dit + j x2 g5 (1) dt
0

0
1

1
$2(x) = f t3go2(t) A1 () dit + j x25404(t) g1(t) ot
0 0

Figure (1.5)

_Dz | |
] 0.1 0.2 03 04 o5 08 07 og 049 1

Figure(1.5) comparison of convergence rate for modify Adomian's method
and exact solution g(X) = x*.
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B) by modification method
assume that :

f=fl+f2
then  fl=x*—0.047619 x f2=-0.071429
let ¢, = f1=x*-0.047619 x
then

1

1
H(x)=f2+ j t ¢, 2()dt + j x2 ¢.°(t)dt
0 0
1

1
#00= 13 g°OA WM+ [ X° 5 4 O Oct
0

0

Figure (1.8)
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0.4F

02r

< Exact
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0.1 0z 03 04 0s 068 07 g 09 1

Figure (1.6): comparison of convergence rate for modify Adomian's method
and exact solution ¢(X) = x* . This method was applied at the 6" iteration.

A comparison of the approximate solution between classic and the
modified Adomian's method with the exact solution @(x)=x* of the
integral equation at x=0,1/6,2/6 ,3/6 ,4/6 ,5/6 and 1 yield the
errors displayed in table (1.3).

Table (1.3)
X 0 0.16667 | 0.33333 0.5 |0.66667|0.83333 1
Error by classic 0.003 0.0031 | 0.0033 | 0.0038 | 0.0045 | 0.0035 | 0.0064
Error by AM | 3.656e-4 | 3.744e-4 | 4.010e-4 |4.453e-4|5.073e-4| 5.87e-4 | 6.845e-4
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4. Conclusion:

The Adomian's and modified Adomian's method are applied to

solve the Fredholm-Fredholm integral equations. The method is based
upon changing the non- linear operator in to finite series. Hence this
Development for Adomian's is much faster than classic Adomian's
method and keeping the accuracy of the solution. The numerical
examples support this claim.
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