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1. Introduction

The conjugate gradient method is one of the best methods for solving large-scale unconstrained optimization
problems due to the iterative formula.CG methods were studied for two reasons:

First, solving systems of linear equations in high dimensions using these methods, is one of mathematics's oldest and
most well-known areas. Second nonlinear optimizing issues are amenable to these techniques[1]. The main motivation behind
deriving the spectral conjugate parameter in the conjugate gradient method lies in improving the algorithm's performance
concerning with rapid convergence towards the optimal solution. The conjugate gradient method is an effective technique for
solving large-dimensional optimization problems, especially those involving quadratic functions. An important family of
unconstrained optimization algorithms is known as CG methods. The main benefits of CG methods are their small memory
required, fast convergence, and quadratic termination property, which allows them to quickly find the minimum of
a quadratic function within a fixed number of iterations[2],[3]

The CG methods represent significant iterative approaches, serving as efficient and well-structured tools for addressing
unconstrained optimization problems, which include but are not limited to:

miniggize f(x) 1)

Where f:R" — R isareal-valued CG method generated { X, } as:
"X = X T dy " 2

The step length, denoted as ¢, , can be computed through a line search procedure.
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The direction, represented as d, , can be defined as follows:

_ )= Ok fork =0
dkﬂ_{_gkﬂ—'_ﬂkdk fork >1 3)

Where S, define in [4][5][6][7][8][9][10][11]

There is another type of direction of CG method, which is defined as

dis1 = —(1 + 0)ggs1 + Brdy 4)

Zhang [12] and others have introduced a modified FR method, referred to as the MFR method, the standard conjugate gradient
method is defined as follows :

dir1=—(1+ 0)gp4q + Bdy -
—pFR=Ngks1l?

Where BB = lgule

. gT di
And 6 defined as pfR kil

gr+1ll?

Mamat and Mohd in [13]defined a direction that a modification of QN direction and defining as
diyr = _ka_+11gk+1 —Agk+1, 0<A<K1 ©)

Where —V £} is the symmetric positive definite matrix. To ensure the convergence analysis of the Conjugate Gradient CG
method, the weak Wolfe conditions are typically employed:

f(x +a,dy) = f(x)<de, VE(x,) d, (7)
Vi (x +a,d,)"d, >oVE(x) d, (8)
Used the strong Wolfe conditions consisting of (6) and

‘g(xk +o dy) d| < -0 ged, " (9)

Where 0<d <o <1,[4]. «

1. A modified new scalar
We will derive a new parameter by equaling the direction of (4) and direction (6) as follows *
Vg1 = AGisr = —(1 4 0") gieq + 55y (10)
Multiplying both sides of (10) by sTVf

=Sk VIV Giar — ASEVf Gar = —(L + 0°)SEVS Gy + BHSsi VS sy

From QN condition (s Vf(x)), we get

—SkGir1 = Wi Grerr = —(L+ 0)YE Guwr + B SEVS s (11)

Using the Taylor expansion to second-order terms, f and g7, ,s, can be written as:

fe = firr = GhaSi + 5 SEVfienasic + 0Cllsell® ),
2fi = 2fisr = 2Gk415k * Sk VfieraSk + 0(llsell?),

Then we obtain
SkVfis1Sie = 2(fie = furr) + 294415k

~ SEVfirrSk = iV + 2(fe = fir) + Gir1Sk + GieSk (12)
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After we submit eqg. (12) in eg. (11), we obtain
=Sk Gir1 — AVk Gr+1 = — Vi Gre+1 — O Vi Giar + B (Skyie + 2(fi = fiesr) + Ghr15k + GiSi)
9*31[ Irk+1 = _}’IZ Gr+1 T Sggk+1 + Aylzgk+1 + pHS (Slfyk +2(fi = fis) + 91€+15k + glsk)

—Vi Gr+1 + Sk Gkar T AVE Grerr + B (SEvie + 2(fie = fiewr) + GhvaSk + 9iSk)

o —
9 - T
Gi+1 Vi
new _ _ (14 —VE Grr1tSE Ikt AVE Rt BHS (SEYR+2(Fk—fr+1)+h 415K+ GESK) gk+1J’k 13)
ko1 = —(1+( 9T, Vi ) Gr+1 Tyk Sk (13)
+1

2.1 The new algorithm
“Stepl: given xo € R™, Set k= 0.
Step2: let dy = —g,
Step3: Determine the positive step length, denoted as «a, that satisfies equations (7) and (9), and then set:
Xpp1 = X + apdy .
Step4: if || gxll < 1075, then stop
Step5: Otherwise, compute the new direction using (13)

Step6: if k= n, or Powell Resistant M > 0.2, [14] then go to step 2 else set k=k+1and go to step 3.”

+1ll2 T

a. Theorem [1]:
In the case of a uniformly convex function f, one can find a constant p such that:

fe = fir = —Gia1Sk +5 ||5k||2 (14)
where p is a small posmve constant ,0< u < 1 [15]

b. Theorem:
If the line search defined in equation (2) satisfies the strong Wolfe condition, then the newly defined direction in equation (13)
is shown to provide a sufficient descent condition.
Proof:

After multiplying both sides of eq (13) by = e Ikt1_ - \ye get:

+l?

diter i1 Vi Grs1 + Skgk+1 + AV Grer + B (siyi + 2(fic = furr) + Ghe1Sk + 9icSi)\ Giew1 i1
7 =~1- T 2
i+l Gier1 Vi il

Jh+1Vk ( Sk Jk+1 >

T 2
SV \Grall
T T T T T T
Aer19k+1 _ 141 — kI 5 g 2(fk—fk+1) _ k+15k _ 9kSk | Ik+1Vk <Sk9k+1) (15)
lgr+1ll2 PR sEyi sty sty sEve \llgrsall?

After, we multiple eq. (14) by -2 and submit in eg. (15) , we obtain

T T T T T T T
Ai19kt1 o _ SikGk+t _ A—1+ 20415k _ Plskl®  Gka1Sk  GkSk + Jket1Yk (Skgk+1> (16)
lgk+1ll2 = gF 19k sEyk SEyk stye  stvk o sive \llgk+all?

Since gl < Nl gr+1llllykll and from strong wolfe condition, we get

g1 9er1 sl 3 gy 2gk+1sk wlsll® _ gicra Sk _ 9k ||gk+1||||yk||(s£gk+1) 17)

lgrs1lZ = lgreallllygl SEVk SEVK sty shwk SEVk gk 112

from strong Wolfe condition, we get
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Since st grs1 < —0Sk gk

A1 9ks1 o __(=05k9k) 14+ 2(-osfgi) _ wlsel?  (-osfgr)  gksk n ||gk+1||||yk||<—as,?gk) (18)
lgr+1l2 = Ngreallllyil sEyk sEyk sEyk sEyk sEyk Ngpsll?

T. _ T T
SikVk = Sk9k+1 — Sk Ik
T T

< —0SkGk — SkIk
T T
SV < —(0+ )sigr

—Sk Yk
(c+1)

—siye = (0 + Dspge = sigr <

—STy
- sTg. s 2 (19)

Now, we submit eq. (19) in eq.(18) and we get the following

d1€+19k+1 - _ (0'515371() -1+ 2(0515371() _ skl _ (O-SIZ.VR) + s"k vk
lgisall> = (0 + Dllgisallllyll O+ Dsgye sy 0+ Dsgye (0 + Dsgyy
||gk+1||||Yk||< OSk Yk )
Sk Vi (0 + Dllgr+1ll?
dir1Gierr _ (osiyd 5 20 plsdl® o 1 [yl ( a )
lgr+1ll? = (0 + Dllgrsllllyll (c+1)  siye (0+1) (6+1) llgrsall\(@+1)
d£+1gk+1 20 1 [yl o 1 ( Iyl )
ZkH1dk41 L g < + + < ): 20+1+——0 |=C
| gr+1ll? (c+1) (6+1) llgksll\(c+1) o+1 lgr+1ll
d£+1gk+1 < -1 -0llgrs1ll* . 0<C<1 (20)

3.1 Assumption ”

e The set S, defined as S = {x: f(x) < f(x,)}, is bounded, implying the existence of a positive scalar b > 0 such that
[IX|| <b,Vx €s.

e In aneighborhood N of S, function f is continuously differentiable, and its gradient satisfies the Lipschitz condition, as
given by

lgx) —gI <Lllx—-yll, Vxy€N (21)

Under these assumptions on f, we can conclude that there exists a positive constant y > 0 such that
y<IVfll <y (22)
Furthermore, the inequality

(9 —g) =) = fllx - ylIZvx,y €S,u> 0 (239)

holds, where I is a positive constant. [15]
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3.2 Lemma:
Assuming that assumption (3.1) is met and considering any conjugate gradient method where d, ., is a descent direction and
also a; satisfies conditions (7) and (9), if: "

1

dy,

Then
Lim (inf|gy[) =0"... [16] (25)
k—o0

3.3 Theorem:

If we assume that assumption (3.1) is fulfilled and the direction d,., defined by equation (13) qualifies as a descent direction,
with a;, being computed using equations (7) and (9), then:

Lim (inf|gy[) =0. =
k—o

Proof
By taking the absolute value of pHS , we get

|gk+1 Ykl W
| S| < == Sk = fills|l?

T
SpkYk
Since |gi+1Yil < lgr+11lllykll and from eq. (23) , we obtain
| gresa Myl
S| < =2 = —
P =g
o ﬁHS| < @1
167 = |_J’II Gr+1 + Sk g1 + AVE Grevr + BY (siye + 2(fi = fiwr) + GiraSk + GkSi)
gl:+1 Yk
sk sk —2(—f, + I .s Ts
16" <1+ l;gk+1 +/1+<p1[ Tkyk +| ( {k fier1) N 9715+1 k gk k ]
1 Vi e Vel | G v Ire Vel 1981 i

Since y, = gr+1 — g and from wolfe condition, and Lipchitz condition y, < L||s]|,
and sfy, = L||s.l|> we have

T
-0k Sk

9r1(Grer1 — i)

N

"] <1+ + A

Ll[skll?
gl:+1(gk+1 )

2(gksihllsell?)

gl:+1(gk+1 - 9x)

JkSk
gl:+1(gk+1 )

-GGk Sk
gl€+1(gk+1 )

|

0 <14 109k
lgr+111? — |91€+1gk|
[ [LIIsill?] |—2g5 sk ullsell? l-ogi skl
"greall2 =198 19k)  Ngisal2 = 19Ec 195! Ngrsall2 = 19519k)  Ngisrl? — 1gE 419kl
+ |91€5k|

lgr+1112 — |g;+19k|

From Powell restart and since d;, = —gy, and we get s, = a,dy
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aollggll?
0" <1+ + A
O < L gl = 02l g enal?
+o [ L||sll? 20| gill? wlsill®
! lgr+111?2 = 021l gr+1 11> Ngr+1ll? = 0.21[gx+111?2 * llGr+11? — 0.2/ gre+1I?
allgill® 0l gill? ]
lgr+1l1? = 0.21lGk+1 117~ Nl Gi+1ll? — 0.2]|gpe4111?
16 <1+ ayollgill® Fite [ L|[sll? 201 gi |l plsell? ollgell? —ollgrll? ]
- 0.8]|gr+1l? 10.8llgk+1lIZ 08l gksall> 08l gksall> 08l gksall? 0.8l gksall?
a0 2 L+ wlsell? 20 2
6] < 1+ “gk”2+/1+(p1 [( wll k|2| llgell 2] — 0,
0.8[lgk+1l 0.8]lgk+1l 0.8]|gk+1ll

By taking the absolute value of eq (13), we get
ldes1ll < (1 + (Pz)”9k+1||2 +@illsell> <y

Z 1 - 1 Z 1
> =0
k21 | i1l XY

k21

]lijgollgk+1ll =0

4. Numerical results and comparisons

We present numerical experiments aimed at comparing our new algorithm with the HS method on a common set of
unconstrained optimization test functions[17], known for providing efficient solutions to such problems.

Both our new and HS CG algorithms are implemented with cubic line search. The comparison is primarily based on
three factors: the number of iterations (NOI), the number of function evaluations (NOF), and computational time. Our
algorithms achieve convergence promptly, typically within a short time frame || g, ||, < 1075. For larger problem dimensions n,
we employ the Powell restart technique by using the Dolan-More performance profile.

Figures (1,2) in this study illustrate our technique's performance through the Dolan-More graph[18], a key metric
assessed by NOF, particularly for problem dimensions around 100,1000.

In Figures (3,4), a similar pattern is observed as in the figures below , demonstrating the performance of our method in
comparison to the baseline methods, with a focus on the number of iterations (NOI) for problem dimensions around 100, 1000.

able(1
Comparison between new algorithm and s(ta)ndard HS CG algorithm with (n=100)
No. Dim. New Algorithm HS Algorithm

NOF NOI CPU NOF NOI CPU

1 100 26 14 10 29 15 19
2 100 12 7 5 14 8 8
3 100 78 35 30 72 31 29
4 100 15 6 6 40 24 20
5 100 20 11 8 13 6 6
6 100 9 4 4 5 2 2
7 100 86 35 34 29 18 10
8 100 19 10 8 19 18 0
9 100 5 2 2 5 2 2
10 100 81 17 16 17 10 6
11 100 100 49 46 53 27 21
12 100 9 4 4 14 28 30
13 100 195 75 60 170 78 79
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No. Dim. New Algorithm HS Algorithm
14 100 80 37 32 70 30 20
15 100 19 4 3 84 53 28
16 100 84 50 30 506 390 177
17 100 20 18 0 120 55 47
18 100 120 60 43 13 7 7
19 100 149 50 51 35 13 12
20 100 50 28 20 4 2 2
1177 516 412 1312 817 525

Table(2
Comparison between new algorithm and stgn)dard HS CG algorithm with (n=1000)
No. Dim. New Algorithm HS Algorithm
NOF NOI CPU NOF NOI CPU
1 1000 30 17 12 37 18 16
2 1000 79 30 24 88 39 34
3 1000 60 30 28 78 34 29
4 1000 18 8 6 28 10 10
5 1000 87 50 20 90 53 34
6 1000 30 10 8 34 13 12
7 1000 50 26 23 60 30 28
8 1000 46 30 15 61 37 25
9 1000 12 9 5 30 16 12
10 1000 20 17 10 30 15 13
11 1000 21 10 6 56 25 23
12 1000 59 18 18 34 17 15
13 1000 14 6 6 19 8 9
14 1000 50 28 20 51 29 18
15 1000 32 17 14 25 12 11
16 1000 5 2 2 5 2 2
17 1000 9 4 4 9 4 4
18 1000 7 4 3 8 4 3
19 1000 88 50 27 39 25 10
20 1000 90 30 32 87 36 30
807 396 283 869 427 338
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5. Conclusion

Regarding the theoretical aspects of our new algorithm, we have ensured both sufficient descent and global

convergence under certain assumptions. The numerical results presented in the figures above depict the effectiveness of our
algorithm as we make a direct comparison with the standard HS CG method.
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Appendix
The Test Function For Unconstrained Optimization

No. The Test Function
1 ARWHEAD
2 Beale
3 Broyden Tridiagonal
4 Diagonal 1
5 Diagonal 2
6 Diagonal 3
7 Diagonal 4
8 Diagonal 5
9 DIXMAANE
10 DIXMAANI
11 DIXMAANJ
12 Dixmaan K
13 DQDRTIC
14 Extended BD1
15 Extended CIiff
16 Extended Powell
17 Extended Himmelblau
18 Extended Hiebert
19 Extended PSC1
20 Extended Three Expo Terms

Aial) 8 Cppenill Bapaa (38 3 dalia A Ga (381 jall gz al) A8y ke 5y 000
Zami &g Ansad 3} CIopa daal) 2

31l o sl o sl Anals eclnialy i) 5 oslal) o sle G clpuialy Sl a2+

Al

Slo IV Had) A Gl il ol A S5 kil e dauly de sane B Gl ol el AU
38 il uhall & x5kl Baaa 4y jla Liedd A all o8 (8 cJivin s (it Lga 381 Al Al 45 Hhall Ll dpddal) daleall
Cany b aladinly dglad pe A o adiad Gl 5 i) e el JSLEe Jad 380 jiall & il 43 jlal s ol e Uleas
) Shse Wl (yanzay ¢ rnnd adlad) o) o) ol 138 Cpaay ¥ Badae Aelpa 8 5 uas Bl o Lgaae g
3¢ (NOF) Jisall axe e laldie) ¢ 4l (CG) by L jlie ie 4l 5 ¢ 4 Gl ¥ IS5 daaal) Uy jlai 4 a8, Liha s
Dty yelai sl Wiy )k (& Dolan - More 12 <y 23 Cale aladins Leasi g ¢ (CUP) <l 5« (NOI) <l ) Sal aae
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