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 Accurate rainfall information is crucial for various applications, including river flow 

estimation, water resource management, and flood warning system development. 

Traditional rain gauge networks, however, suffer from limited spatial coverage, leading to 

incomplete and biased data for large areas. This study proposes a novel approach for 

surface rainfall estimation using weather radar data and a MultiLayer Perceptron (MLP) 

Regressor machine learning model. Grid search was employed to explore model 

performance across different windowing configurations: no windowing, n-1 windowing, 

and n-2 windowing. The results demonstrate that n-1 windowing outperforms other 

configurations, achieving an average RMSE of 0.987, MAE of 0.263, and R-squared of 

0.242 across five locations. This suggests that n-1 windowing effectively captures the 

temporal dynamics of rainfall patterns while improving the model's sensitivity to 

regularization. However, a tendency for underestimating high-intensity rainfall events 

remains. This research highlights the effectiveness of n-1 windowing with MLP 

Regressors for enhanced surface rainfall estimation using weather radar data. Further 

investigation is needed to address the underestimation bias, particularly for high rainfall 

events. 
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1. Introduction 

 Technological advances and increased calculation capacity have strengthened atmospheric models using key 

variables as the basis for forecasting weather phenomena. Although current estimation models can provide information that 

can be extracted from atmospheric images, there are limitations in integrally processing large amounts of data [1]. One of the 

main challenges in forecasting is obtaining accurate baseline data especially when high spatial and temporal resolution is 

required [2]. Traditional rain gauge networks have limited spatial coverage, resulting in incomplete and biased rainfall data 

when used to represent large areas. Weather radar offers significant advantages. It provides high-resolution data over a large 

area during rain events, but its accuracy can be affected by noise, bright banding, anomalous propagation, beam blocking, and 

signal attenuation [3]. 

Rainfall estimation using radar data has played a significant role in improving the accuracy of rainfall measurements 

[4]. The main use of radar-based rainfall estimation is widely used in large-scale distributed hydrological models [5]. 

Accurate rainfall data is needed to estimate river water flow, calculate water resources, and build flood warning systems. 
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Information related to rainfall estimation produced by weather radar can meet the needs of high-resolution and up-to-date 

data in many areas, especially where rain gauge networks are sparse [6].  

The traditional method for estimating rainfall based on radar data can be done with an empirical relationship 

between reflectivity value (Z) and rainfall rate (R). Marshall and Parmer introduced the R-Z relationship (𝑍 = 200𝑅1.6) 

which describes the empirical relationship between Z and R. The R-Z relationship is sensitive to the variability of the drop 

size distribution which causes uncertainty in Quantitative Precipitation Estimation (QPE) [7]. The other alternative that is 

now most widely researched is using machine learning methods. One of the biggest advantages of machine learning 

algorithms is their applicability to non-linear relationships between dependent and independent variables [8].  

A number of studies have been conducted in estimating rainfall utilizing machine learning (ML) technology based 

on radar data. In the research of Liao and Barros (2023) This study proposes a technique to enhance the resolution of rainfall 

data from dual-polarization weather radar imagery. The approach utilizes physics-guided Artificial Intelligence (PAI) and 

multi-layer perceptron models to downscale the resolution from 1 kilometer to 250 meters. Rainfall measurements serve as 

validation data to refine the creation of high-resolution Quantitative Precipitation Estimates (QPE) products [4]. In the 

research of Shin et al. (2021), dual-polarization radar data variables were used as independent variables in a regression tree 

and random forest model. These variables included differential reflectivity (ZDR), specific differential phase (KDP), cross 

coefficient (ρHV), reflectivity (ZH), along with additional data from two-dimensional video disdrometers that observed the 

size distribution of raindrops [8]. Tian et al. (2020) collected radar data at an altitude of 1200 meters above the surface using 

a 24 km × 24° beam matrix centered around the nearest grid point of the automatic rain gauge station[9]. esearch by Tan et al. 

(2017) used radar data at four spatial heights of 1km x 1km at several vertical levels of 1000, 2000, 3000, and 4000 meters  

[10]. In the research of Yo et al, (2021) using the maximum reflectivity value product to predict surface rainfall the model 

used is Convolutional Neural Network (CNN) [10]. The results of all previous studies show that the use of ML in estimating 

surface rainfall gives satisfactory results. The MultiLayer Perceptron Regressor (MLP Regressor) model is utilized in this 

study, employing feature selection through windowing variation to modify the independent variables, thereby enhancing the 

estimation performance. 

2. Research Methodology 

Figure 1 illustrates the research method's stages. The first stage is data preparation, where data is extracted and 

compiled into a usable dataset for the model. Next comes model selection, followed by data preprocessing using the 

windowing technique to select relevant independent variables. Finally, the model is trained and evaluated using a 

performance matrix. 

 

 

 

2.1 Data Preparation  

 The primary data source for this research is a single-polarization radar located at the Climatology Station D.I 

Yogyakarta, situated at coordinates 7.73 S and 110.35 E in Indonesia. The weather radar operates by scanning the atmosphere 

for a duration of 228.5 seconds to generate one volumetric raw data, as depicted in Figure 2. This raw data is subsequently 

processed using the wradlib Python library for extraction[11]. 

Figure. 1 : Research stages 
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Figure 2. Sample of raw data Figure 3. Reflectivity data from 

raw data at elevation 0 

Figure 4. Data extraction results using 

wradlib into RDBMS MySQL 

The volumetric radar data consists of nine elevations, containing reflectivity (Z) data. This data is stored in a 

structured format called a dictionary array. The reflectivity values for each elevation have different grid sizes, as shown in 

Figure 3. From these 9 elevations, the data will then be projected into latitude-longitude coordinates to form Constant 

Altitude Plan Position Indicator (CAPPI) data, which displays radar reflectivity values at specific altitudes [12]. CAPPI 

Product initially had a grid size of 800 x 800 with a 200 km range from the radar location. Then, a value retrieval was 

performed in a smaller grid size. The data extraction process was taken for five layers at altitudes of 1000 meters, 1500 

meters, 2000 meters, 2500 meters, and 3000 meters. Each layer of the maximum value of the 5 x 5 grid on the radar 

represents a size of 2.5 km² on the Earth's surface. The extraction process has been adjusted to the latitude and longitude 

coordinates of the automatic rain gauge. Then the data is stored in the Relational Database Management System MySQL 

which can be seen in Figure 4. The rainfall measurement data on the surface has a measurement resolution of 0.2 millimeters 

(mm). The radar and rain gauge extraction data have the same data retrieval interval which is set every 10 minutes. The data 

acquisition period in this study has a span of 6 months during the rainy season from November 2022 to April 2023. There are 

five test locations used in this study: Automatic Weather Station (AWS) Kulonprogo, Automatic Rain Gauge (ARG) 

Kepuharjo, AWS Pakem, ARG SMPK Sleman, and AWS Geofisika Station Sleman. For more details, the data collection 

process can be seen in Figure 5. 

 

 

Figure 5. Radar Data Collection Process 

After both data are obtained, data adjustment is necessary when combining them. Data is sorted based on time criteria. Radar 

raw data at 00:00 UTC (Universal Time Coordinated) estimates the accumulated rainfall from 00:00 UTC to 00:10 UTC 
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measured by the rain gauge. In general, radar data and rainfall values have a linear relationship. The lower the radar 

reflectivity value, the lower the rainfall intensity measurement. This is due to the direct relationship between radar reflectivity 

and rainfall intensity. The higher the backscatter energy received by the radar, the higher the reflectivity value, which is 

directly proportional to the higher rainfall intensity [13]. After collecting radar and rainfall data, preprocessing involves 

checking for missing values, data cleaning, and normalization. The first step focuses on handling missing rainfall data 

through value imputation using linear interpolation. This method estimates values for missing data points by assuming a 

linear relationship between two known data points that flank the missing value [14]. 

 

Figure 6. Linear interpolation 

The points (x₀, y₀) and (x₁, y₁) represent the two points forming the straight line interpolation as shown in Figure 6. The 

equation for linear interpolation between the values at points P₁ (x₀, y₀) and P₂ (x₁, y₁) can be determined as shown in 

Equation 1 below: 

𝑦 =
𝑦1−𝑦0

𝑥1−𝑥0
(𝑥 − 𝑥0) +  𝑦0    ........ 1) 

After interpolating the missing rows in the rainfall data, we remove the corresponding data from the radar reflectivity 

data. This step is crucial because data representing no-rain events significantly outnumbers rain event data, creating an 

imbalanced dataset. By undersampling, the number of samples from the majority class (i.e., non-rain events) is reduced to 

achieve a balance between the two classes. It is important to note that many traditional machine learning methods assume that 

the target classes have the same distribution. For example, in weather forecasting and disease diagnostics, class imbalance 

often occurs because the majority of examples are labeled with one class while the number of examples of the other is smaller. 

By undersampling, we can improve the balance of the dataset and ensure that the machine learning model can learn well from 

both classes[15]. This class imbalance leads to a bias in the models, favoring the majority class and neglecting the minority 

class. Consequently, model performance on the minority class suffers, even when overall accuracy appears high. This 

phenomenon, known as the class imbalance problem, can be misleading. High overall accuracy doesn't guarantee the model 

generalizes well to the minority class.[16]. After achieving a more balanced dataset through undersampling, data 

normalization or standardization becomes even more important. Even a reduced majority class might have a wider value 

range compared to the minority class. These large variations in feature value ranges can lead to some features having an 

outsized influence on the model's learning process. Normalization or standardization helps mitigate this issue by ensuring all 

features have similar ranges[17]. Standardization is a specific type of normalization technique performed on the data to 

prevent features with large ranges from dominantly affecting the metrics used in machine learning models. Standardization 

transforms the data to have a zero mean and unit standard deviation. This ensures all features are on a similar scale and 

contribute equally during model training. MinMaxScaler is a commonly used approach for standardization, which scales the 

data to a range between 0 and 1[18]. The last phase of the preprocessing stage is the division of data into training and test 

data. It is important to separate the data that will be used to train the model (training data) and the data that will be used to 

test the performance of the model (test data). By dividing this data, we can evaluate how well our model works in 

generalizing patterns from previously unseen data. 
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2.2 Feature selection using windowing variation 

Weather radars acquire data by performing scans that produce rain reflectivity values and information about height 

in the atmosphere. In contrast, rain gauges positioned at ground level directly measure the rainfall intensity reaching the 

Earth's surface. Because rain must fall through the atmosphere, there is a time lag between the time taken by the radar to 

measure the reflectivity of rain in the atmosphere and the time taken for rain to reach the rain gauges at ground level. As a 

result, the gauges record rainfall at ground level with a delay compared to the time when the rain reflectivity is recorded by 

the radar[19]. Several physical factors influence the relationship between measured radar reflectivity and surface rainfall, 

including natural differences in raindrop size distribution (larger drops scatter radar waves more efficiently). The presence of 

precipitation besides rain, such as melting hailstones, can also increase radar reflectivity due to the shape changes of melting 

hailstones, which are more reflective than spherical raindrops. Finally, changes in low precipitation levels caused by 

accretion (collision and merging of droplets) or evaporation can further complicate the relationship[20]. This research 

proposes exploring several data matrices in the selection of time-adjusted independent variables using windowing techniques. 

Windowing techniques involve dividing the data into smaller segments (windows) of a specific size to optimally determine 

the past data that affects the current data point[21]. The various windowing techniques to be explored, such as those 

visualized in Figure 7, can be used in this selection process. 

 

In Figure 7, there are three variations of the first technique for selecting time-adjusted features using windowing: 

1. No Window (1 x 5 matrix): This approach only uses the current data point (1 row) and the five original features (5 

columns) as independent variables. 

2. n-1 Windowing (2 x 5 matrix): This method uses a window size of 1. It combines the current data point (row 1) with data 

from the previous time step (row 2) along with the 5 original features (5 columns) in each row. This creates a 2 x 5 

matrix where each row represents a data point with previous data. 

3. n-2 Windowing (3 x 5 matrix): This approach uses a window size of 2. It includes the current data point (row 1), data 

from the previous time step (row 2), and data from the previous two time steps (row 3) along with the original 5 features 

(5 columns) in each row. This results in a 3 x 5 matrix where each row captures the influence of the previous two data 

points on the current value. 

 

2.3 Multilayer Perceptron (MLP) Regressor 

 A Multilayer Perceptron (MLP) is a type of artificial neural network architecture characterized by feedforward 

information flow. It consists of at least three layers of interconnected nodes: an input layer, one or more hidden layers, and an 

output layer. Each neuron in the hidden layers utilizes an activation function to transform the received input from the 

previous layer and generate an output that feeds into the next layer. This process iterates until the final output is produced. 

During training, the network employs the backpropagation algorithm to adjust the weights and biases associated with each 

neuron. This optimization aims to minimize the difference between the predicted and actual values, ultimately improving the 

model's performance. Using a set of features and targets, this algorithm can learn non-linear function approximators for both 

classification and regression tasks. This makes MLPs more versatile than logistic regression, as they can model complex, 

non-linear relationships between the input features and the output. Unlike logistic regression, MLPs can have one or more 

non-linear layers between the input and output layers, known as hidden layers (Figure 8). The layer on the left is the input 

layer, consisting of neurons representing the input features (x₁,x₂,x₃.. xₙ). Each neuron in the hidden layer applies a weighted 

linear summation (w₁x₁+w₂x₂...+wₙxₙ) to the values from the previous layer, followed by a non-linear activation function like 

Figure. 7 Windowing variation 
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a hyperbolic tangent function. Additionally, a bias value is added within each neuron in the hidden layer before applying the 

activation function. The final output layer, denoted by f(x), transforms the value from the last hidden layer into the network's 

prediction. The public coefs_ represent the weights connecting the layers of the network, while intercepts contain the vector 

of bias values added within each hidden layer neuron[22]. Hyperparameters in machine learning are parameters that govern 

how machine learning algorithms work. They are determined before training begins and affect the performance of the model. 

The grid search method is used to find the best hyperparameters by trying various combinations of hyperparameter values. 

By adjusting the hyperparameters appropriately, it is possible to obtain a well-balanced and well-generalized model[23]. Grid 

search is a concept used to search for hyperparameter combinations that result in the best model performance in 

prediction[24]. The grid search technique in GridSearch involves experimenting with hyperparameter combinations in 

testing. Hyperparameter optimization in grid search is a complex, time-consuming, and difficult to interpret process[25]. 

However, to optimize hyperparameters independent of windowing techniques, scikit-learn's Grid Search Cross Validation 

(GridSearchCV) library is used. It simplifies the process by integrating with scikit-learn's standard estimator API. 

GridSearchCV thoroughly evaluates all possible combinations of hyperparameter values defined in the param_grid 

parameter. The resulting combination that yields the best model performance is then selected[26]. Table 1 shows the list of 

hyperparameters used in grid search. 

 

Table 1. List of hyperparameters in the MLP Regressor model 

Hyperparameter 

Param_grid 

parameter 

values 

Description 

hidden layer 

sizes 

(50,), (100,), 

(50, 50), (100, 

50) 

Indicates the number and size of hidden layers in the neural network. For 

example, (50,) means one hidden layer with 50 neurons, and (100, 50) 

means two hidden layers, the first with 100 neurons and the second with 50 

neurons. 

activation 'relu', 'tanh' 

Determines the activation function used for each neuron in the hidden 

layers. 'relu' refers to Rectified Linear Unit, while 'tanh' refers to hyperbolic 

tangent. 

solver 'adam', 'sgd' 

Determines the method used to optimize weights in the neural network. 

'adam' and 'sgd' refer to optimization algorithms, namely Adam and 

Stochastic Gradient Descent. 

alpha 
0.0001, 0.001, 

0.01 
These values control the impact of regularization or loss function. 

 

2.4 Evaluation metrics 

 Model performance measures are evaluated by comparing estimated values to observed values using statistical 

evaluation metrics like Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and coefficient of determination (R²). 

RMSE and MAE values cannot stand independently. Output weights will then serve as evidence or support for one of the 

metrics [27].  RMSE values are used to distinguish model performance during calibration and validation periods and to 

compare performance between individual models and predictive models [28]. MAE exhibits lower sensitivity to outliers 

compared to certain RMSE metrics. It computes the average absolute variance between and actual values, disregarding their 

direction (positive or negative) [29]. For the value of 𝑅2, value, if the value is closer to 0, it means that the independent 

variable has a very limited ability to explain the dependent variable. Conversely, a value close to 1 and far from 0 indicates 

that the independent variable is able to provide more information needed to predict the dependent variable [30]. 

 

3. Results And Discussion  

 A simple data analysis, such as correlation analysis, examining the linear relationship between the altitude layers 

(independent variables) and surface rainfall (dependent variable) suggests a linear trend. Figure 9 visualizes this relationship. 
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Figure 9. Radar Reflectivity vs. Rain Rate 

 

After combining the data sets, there might still be some gaps where data is missing. Linear interpolation is a method used 

to estimate values for these missing data points. The following example shows how linear interpolation works to calculate 

a value at a specific time (2022-11-02 17:40:00) when data is available for times before (17:30:00) and after (17:50:00). 

 

𝑦 =
( 2022 − 11 − 02 17: 40: 00 −  2022 − 11 − 02 17: 30: 00)

(2022 − 11 − 02 17: 50: 00 −  2022 − 11 − 02 17: 30: 00)
(1,5 − 0,2) +  0,2 

𝑦 = 0,5 𝑥 (1,5 − 0,2) +  0,2 

𝑦 = 0,65 +  0,2 

𝑦 = 0,85 

Table 2. Filling in blank data with linear interpolation 

Time 
Rain rate (mm) before 

Interpolation 

Rain rate (mm) after 

Interpolation 

02/11/2022 17:10 0 0 

02/11/2022 17:20 0 0 

02/11/2022 17:30 0,2 0,2 

02/11/2022 17:40   0,85 

02/11/2022 17:50 1,5 1,5 

02/11/2022 18:00 1,2 1,2 

02/11/2022 18:10 3,2 3,2 

Undersampling was used by taking 20 data points before and 20 after each data point where the rain rate value exceeded 0 

(indicating rain). Data for events without rain falling outside this range were excluded. Table 3 shows the change in the 

amount of data before and after undersampling. In this study, undersampling is employed with a radar data-based model to 

balance the majority class (no rain) and the minority rain class in our dataset, aiming to improve the model's ability to 

accurately predict rainfall intensity. The undersampling results show that the average amount of data before undersampling is 

about 23,482, with a decrease of about 67% in the amount of data after the application of undersampling, to about 7,800. This 

process was repeated for several different weather station locations, such as AWS Kulonprogo, Arg Kepuharjo, and others, 

with the percentage of data reduction ranging from 0.59% to 0.74%. 
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Table 3. Changes in the amount of data during preprocessing 

NO Location Name 

Number of Data 

Before 

Undersampling  

Percentage of data 

reduction (%) 

Number of Data 

After Undersampling  

1 AWS Kulonprogo 25070 0,74 6620 

2 Arg Kepuharjo 24993 0,59 10323 

3 Aws Pakem 21665 0,61 8358 

4 Arg SMPK Sleman 22333 0,71 6530 

5 AWS Stasiun Geofisika Sleman 23348 0,69 7167 

Mean 23482 0,67 7800 

Once the dataset is prepared, the next step is data normalization. This process involves the use of MinMaxScaler which 

serves to simplify model training. The results of normalization can be seen in Table 4 as a sample example using the 

Kepuharjo ARG location. 

 

Table 4. Sample data after normalization 

Location Time 
1000_meter 

max(5x5) 

1500_meter 

max(5x5) 

2000_meter 

max(5x5) 

2500_meter 

max(5x5) 

3000_meter 

max(5x5) 

rain 

rate(mm) 

 

Arg_Kepuharjo 
06/11/2022 

09:10 
0,705423 0,711613 0,708176 0,713092 0,72076 4,6  

Arg_Kepuharjo 
06/11/2022 

09:20 
0,811123 0,741737 0,72504 0,725528 0,783023 6,6  

Arg_Kepuharjo 
06/11/2022 

09:30 
0,801907 0,722978 0,736986 0,740026 0,782278 16,2  

Following data pre-processing steps like normalization, data splitting is a common technique used to create training and 

testing sets for model development. In this study, we adopt an 80/20 split, allocating 80% of the data for training the model 

and 20% for testing its performance. Preserving the time series order throughout pre-processing is crucial for techniques like 

windowing to function effectively, as they rely on the sequential nature of the data. 
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Table 5. Best parameters and metrics evaluation results 

Variant 

Windowing 
Location  

Output: Best Parameters Using Grid Search Evaluation Metrics Mean Evaluation Metrics 

Activation Alpha 
Hidden layer 

sizes 
Solver RMSE MAE R-squared RMSE MAE 

R-

squared 

N
o
n

 w
in

d
o
w

in
g
 ARG Kepuharjo 

Relu 0.01 100,50 adam 1,719 0,431 0,101 

1,012 0,274 0,212 

ARG Smpk Sleman Tanh 0.01 50,50 adam 0,846 0,278 0,182 

Aws Kulonprogo Relu 0.01 100,50 adam 0,851 0,267 0,053 

Aws Pakem Relu 0.01 50,50 adam 0,736 0,193 0,458 

Aws Stasiun Geofisika 

Sleman  
Relu 0.001 100,50 adam 0,91 0,199 0,269 

 w
in

d
o
w

in
g
 n

 -
 1

 ARG Kepuharjo Relu 0.0001 100,50 sgd 1,618 0,317 0,203 

0,987 0,263 0,242 

ARG Smpk Sleman Relu 0.0001 50,50 sgd 0,845 0,281 0,183 

Aws Kulonprogo Relu 0.0001 100,50 adam 0,843 0,254 0,071 

Aws Pakem Relu 0.001 50,50 adam 0,772 0,184 0,402 

Aws Stasiun Geofisika 

Sleman 
Relu 0.0001 50,50 adam 0,858 0,277 0,35 

w
in

d
o

w
in

g
 n

 -
 2

 ARG Kepuharjo Tanh 0.001 100,50 adam 1,669 0,477 0,152 

1,018 0,302 0,197 

ARG Smpk Sleman Tanh 0.01 50,50 adam 0,87 0,316 0,135 

Aws Kulonprogo Relu 0.01 100,50 adam 0,847 0,265 0,062 

Aws Pakem Relu 0.0001 50,50 adam 0,797 0,22 0,364 

Aws Stasiun Geofisika 

Sleman 
Relu 0.01 50,50 adam 0,908 0,232 0,272 
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Figure 10. Actual vs. estimated results for non-windowing, n-1 windowing, and n-2 windowing. 

 

From the results in Table 5, the use of grid search in this study allows extensive parameter exploration to improve the 

performance of MLP regression models in various variants, ranging from no windowing to using n-1 and n-2 windowing 

techniques. The variant without windowing produces the best parameters, including ReLU activation, alpha 0.01, and Adam 

solver. However, in the variant with n-1 windowing, it is seen that the use of the SGD solver becomes optimal for some 

locations. This suggests that the sensitivity of the model to regularization increases when applying n-1 windowing, which is 

reflected in the use of smaller alpha values. With a smaller alpha value, the model tends to focus on a tighter fit to the training 

data, reducing its complexity and reducing the risk of overfitting. 

While in the n-2 windowing variant, despite the variation in optimal parameters, the model performance generally 

tends to be slightly lower compared to the other variants. This suggests that the use of n-2 windowing may introduce 
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unnecessary complexity or reduce relevant information from the data. By using grid search, this study was able to adjust the 

model appropriately according to the characteristics of each location or dataset. This results in a significant performance 

improvement in surface rainfall estimation. These results significantly contribute to improving estimation accuracy, 

considering the model's sensitivity to regularization within the n-1 windowing technique. In this study, the best results of 

applying the windowing technique to the MLP Regressor model for surface rainfall estimation are detailed. From several 

locations observed, it appears that the windowing technique with size n - 1 consistently provides the best performance. For 

instance, at the Arg Kepuharjo site, the model employing n - 1 windowing demonstrated substantial enhancement, featuring a 

reduced RMSE value of 1.618 and a significantly higher R-squared value of 0.203, compared to the other configurations. A 

similar trend was seen at the Arg SMPK Sleman and AWS Kulonprogo sites, where the application of n - 1 windowing 

resulted in a slight but consistent improvement in estimation performance. At the Pakem AWS site, although the model 

without windowing has provided good results, the use of n - 1 windowing still shows high performance with the R-squared 

value remaining high (0.402) despite a slight increase in RMSE. Similarly, at the AWS Geophysical Station location, 

windowing n - 1 was able to achieve a balance between accuracy and model simplicity, which was reflected in the increased 

R-squared value.  

The overall trend shows that the application of n - 1 windowing consistently gives the best results across locations. The 

n-1 windowing technique achieved lower average values for RMSE (0.987), MAE (0.263), and a higher R-squared (0.242), 

indicating improved estimation compared to other experiments. This improvement comes without significantly increasing 

model complexity. These findings suggest prioritizing the n-1 windowing technique for MLP regression models in similar 

weather radar applications. By successfully capturing the temporal dynamics of surface rainfall patterns, the n-1 windowing 

technique demonstrates its suitability. Further research to understand the reasons behind this success and explore alternative 

window sizes or adaptive strategies can lead to even better model performance in future studies. 

From the graphical analysis in Figure 10, the tendency of all experiments follows the pattern of actual values. However, 

the model's response to estimate high rainfall tends to be underestimated. The need for more in exploration to improve the 

estimation is a weakness of the model in estimating rainfall with high intensity. Research by M. Schleiss et al. found similar 

results, indicating that rainfall estimation using radar data often underestimates values for predicting high rainfall [31]. 

Numerous factors bias the accuracy of research related to estimating rainfall using radar data. Rainfall can vary in intensity, 

type, and distribution, impacting the accuracy of radar measurements due to differences in reflectivity and wave reflection 

behavior [32]. 

4. Conclusion 

 Based on the analysis conducted, it can be concluded that the use of the n-1 windowing technique in the MLP 

Regressor model provides the best results in estimating surface rainfall. This technique consistently produced significant 

improvements in lower RMSE values and better R-squared values compared to other configurations. In addition, the use of n-1 

windowing increases the sensitivity of the model to regularization, which is reflected in the use of smaller alpha values. This 

helps reduce model complexity and the risk of overfitting by focusing on a tighter fit to the training data. However, there are 

challenges in estimating high rainfall, where the model tends to underestimate the true value. This underestimation of high 

rainfall events contributes to a bias in the overall accuracy of the model, highlighting a limitation in its ability to capture 

extreme weather events. To address this bias and improve the accuracy of radar-based rainfall estimates, particularly for high-

intensity events, further exploration is needed. Understanding the factors influencing measurement accuracy, such as variations 

in rainfall properties and wave reflection behavior, is crucial for future model development. These findings emphasize the 

value of n-1 windowing for improving MLP Regressor models in surface rainfall prediction, particularly when combined with 

further exploration to address the underestimation bias in high-intensity rainfall events. This conclusion paves the way for 

further research on mitigating the underestimation bias, potentially through incorporating additional data sources or exploring 

alternative model architectures alongside the effective n-1 windowing technique. Ultimately, this research contributes to the 

ongoing effort to improve the accuracy and reliability of rainfall estimation models in the context of weather radar data 

applications. 
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 انحدار مستقبلي متعدد الطبقات ومتغير الرياح لتقدير هطول الأمطار استنادًا إلى بيانات رادار الطقس

 4عارف برامودوياتموكو  ،3دوني أفيانتو  ،2عريف هيرماوان  ،1*فرديناندوس إدوين إدوين بينالون 

  وكالة الأرصاد الجوية لعلم المناخ والجيوفيزياء، إندونيسيا 1*
  ماجستير في تكنولوجيا المعلومات، جامعة يوغياكارتا للتكنولوجيا في إندونيسيا 3،4، 2،2، 1*

 الخلاصة 

لكن  .لمبكر بالفيضاناتمعلومات هطول الأمطار أمر بالغ الأهمية لتطبيقات عديدة، بما في ذلك تقدير جريان النهر وإدارة موارد المياه وتطوير أنظمة الإنذار اقة  د

تقترح هذه الدراسة نهجًا  .واسعةشبكات مقاييس المطر التقليدية تعاني من محدودية التغطية المكانية، مما يؤدي إلى بيانات غير مكتملة وغير دقيقة بالنسبة للمساحات ال

تم استخدام البحث الشبكي لاستكشاف  .للتعلم الآلي (MLP)جديداً لتقدير هطول الأمطار السطحية باستخدام بيانات رادار الطقس ونموذج الانحدار متعدد الطبقات  

على التكوينات الأخرى، حيث حققت   n-1أظهرت النتائج تفوق استراتيجية النافذة   .n-2، ونافذتين  n-1بدون نافذة، ونافذة   :أداء النموذج عبر تكوينات نوافذ مختلفة

يشير   .عبر خمسة مواقع 0.242 (R-squared)ومعامل التحديد   0.263 (MAE)ومتوسط الخطأ المطلق   0.987 (RMSE)متوسط جذر خطأ التربيع المتوسط  

ومع ذلك، لا يزال هناك اتجاه   .تلتقط الديناميكيات الزمنية لأنماط هطول الأمطار بشكل فعال مع تحسين حساسية النموذج للانتظام n-1هذا إلى أن استراتيجية النافذة  

لتحسين تقدير  مع نموذج الانحدار متعدد الطبقات   n-1يسلط هذا البحث الضوء على فعالية استراتيجية النافذة   .نحو التقليل من شأن أحداث هطول الأمطار الغزيرة

 .هناك حاجة إلى مزيد من التحقيق لمعالجة تحيز التقليل، خاصة بالنسبة لأحداث هطول الأمطار الغزيرة .هطول الأمطار السطحية باستخدام بيانات رادار الطقس

 


