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Introduction

Technological advances and increased calculation capacity have strengthened atmospheric models using key
variables as the basis for forecasting weather phenomena. Although current estimation models can provide information that
can be extracted from atmospheric images, there are limitations in integrally processing large amounts of data [1]. One of the
main challenges in forecasting is obtaining accurate baseline data especially when high spatial and temporal resolution is
required [2]. Traditional rain gauge networks have limited spatial coverage, resulting in incomplete and biased rainfall data
when used to represent large areas. Weather radar offers significant advantages. It provides high-resolution data over a large
area during rain events, but its accuracy can be affected by noise, bright banding, anomalous propagation, beam blocking, and
signal attenuation [3].

Rainfall estimation using radar data has played a significant role in improving the accuracy of rainfall measurements
[4]. The main use of radar-based rainfall estimation is widely used in large-scale distributed hydrological models [5].
Accurate rainfall data is needed to estimate river water flow, calculate water resources, and build flood warning systems.
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Information related to rainfall estimation produced by weather radar can meet the needs of high-resolution and up-to-date
data in many areas, especially where rain gauge networks are sparse [6].

The traditional method for estimating rainfall based on radar data can be done with an empirical relationship
between reflectivity value (Z) and rainfall rate (R). Marshall and Parmer introduced the R-Z relationship (Z = 200R*%)
which describes the empirical relationship between Z and R. The R-Z relationship is sensitive to the variability of the drop
size distribution which causes uncertainty in Quantitative Precipitation Estimation (QPE) [7]. The other alternative that is
now most widely researched is using machine learning methods. One of the biggest advantages of machine learning
algorithms is their applicability to non-linear relationships between dependent and independent variables [8].

A number of studies have been conducted in estimating rainfall utilizing machine learning (ML) technology based
on radar data. In the research of Liao and Barros (2023) This study proposes a technique to enhance the resolution of rainfall
data from dual-polarization weather radar imagery. The approach utilizes physics-guided Atrtificial Intelligence (PAI) and
multi-layer perceptron models to downscale the resolution from 1 kilometer to 250 meters. Rainfall measurements serve as
validation data to refine the creation of high-resolution Quantitative Precipitation Estimates (QPE) products [4]. In the
research of Shin et al. (2021), dual-polarization radar data variables were used as independent variables in a regression tree
and random forest model. These variables included differential reflectivity (ZDR), specific differential phase (KDP), cross
coefficient (pHV), reflectivity (ZH), along with additional data from two-dimensional video disdrometers that observed the
size distribution of raindrops [8]. Tian et al. (2020) collected radar data at an altitude of 1200 meters above the surface using
a 24 km x 24° beam matrix centered around the nearest grid point of the automatic rain gauge station[9]. esearch by Tan et al.
(2017) used radar data at four spatial heights of 1km x 1km at several vertical levels of 1000, 2000, 3000, and 4000 meters
[10]. In the research of Yo et al, (2021) using the maximum reflectivity value product to predict surface rainfall the model
used is Convolutional Neural Network (CNN) [10]. The results of all previous studies show that the use of ML in estimating
surface rainfall gives satisfactory results. The MultiLayer Perceptron Regressor (MLP Regressor) model is utilized in this
study, employing feature selection through windowing variation to modify the independent variables, thereby enhancing the
estimation performance.

2. Research Methodology

Figure 1 illustrates the research method's stages. The first stage is data preparation, where data is extracted and
compiled into a usable dataset for the model. Next comes model selection, followed by data preprocessing using the
windowing technique to select relevant independent variables. Finally, the model is trained and evaluated using a
performance matrix.

Radar and rainfall Radar data extraction masdmum value from
data collection with Python's Wiradlib a grid

(c i of reflectivity values and -
rainfall data)
Training data (null value, nor isasi, Testing data
L undersampling ) J
feature selection -
using windowing n-2_n-1, n
and without windowing Tﬂ";g;‘;dsoe'r MLE
Trained MLP
Regressor models with grid
search
Evaluation matrics RMSE,
MAE and R2

Figure. 1: Research stages

2.1 Data Preparation

The primary data source for this research is a single-polarization radar located at the Climatology Station D.I
Yogyakarta, situated at coordinates 7.73 S and 110.35 E in Indonesia. The weather radar operates by scanning the atmosphere
for a duration of 228.5 seconds to generate one volumetric raw data, as depicted in Figure 2. This raw data is subsequently
processed using the wradlib Python library for extraction[11].
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Figure 4. Data extraction results using
wradlib into RDBMS MySQL

Figure 3. Reflectivity data from

Figure 2. Sample of raw data
raw data at elevation 0

The volumetric radar data consists of nine elevations, containing reflectivity (Z) data. This data is stored in a
structured format called a dictionary array. The reflectivity values for each elevation have different grid sizes, as shown in
Figure 3. From these 9 elevations, the data will then be projected into latitude-longitude coordinates to form Constant
Altitude Plan Position Indicator (CAPPI) data, which displays radar reflectivity values at specific altitudes [12]. CAPPI
Product initially had a grid size of 800 x 800 with a 200 km range from the radar location. Then, a value retrieval was
performed in a smaller grid size. The data extraction process was taken for five layers at altitudes of 1000 meters, 1500
meters, 2000 meters, 2500 meters, and 3000 meters. Each layer of the maximum value of the 5 x 5 grid on the radar
represents a size of 2.5 km?2 on the Earth's surface. The extraction process has been adjusted to the latitude and longitude
coordinates of the automatic rain gauge. Then the data is stored in the Relational Database Management System MySQL
which can be seen in Figure 4. The rainfall measurement data on the surface has a measurement resolution of 0.2 millimeters
(mm). The radar and rain gauge extraction data have the same data retrieval interval which is set every 10 minutes. The data
acquisition period in this study has a span of 6 months during the rainy season from November 2022 to April 2023. There are
five test locations used in this study: Automatic Weather Station (AWS) Kulonprogo, Automatic Rain Gauge (ARG)
Kepuharjo, AWS Pakem, ARG SMPK Sleman, and AWS Geofisika Station Sleman. For more details, the data collection
process can be seen in Figure 5.

Extracting the maximum value from a grid using Wradlib in Python 1

Tocation [Ty [L000_meter_max(5x5][1500_meter_max{5s5)] 2000_meter_mas(5x5] | 2500_meter_max(5x5] | 3000_meter_max{sxs) | rain ratefenmm)

arg kepuharjo | 2022-11.0215:00:00 30,7934 w5212 291137 20,0122 28,4795 032
o | 2022102155000 23171 24,1577 24,8375 24,8584 22,1883 a0

o | 2022102180000 30,3658 28626 236088 20,6966 22,789 04

2022102181000 26,2229 22,8807 22,8865 23,0978 22,4082 00

o | 20221102162000 26,1623 25081 235313 221271 283678 a0
g kepuhacjo | 2023-11-0216:30.00 22672 18,766 18,0608 16,8007 173539 a0
arg_kepuharjo | 2022 1102 16:40:00 13,682 10,3088 815258 18,2502 19,5521 00
srg_kepuhario | 2022-11-0216:50:00 20,6133 18,3566 17,9367 19,8432 21,0093 00
arg kepuharjo | 2022-11-0217:00:00 30,8596 33,5151 31,8707 26,3402 258431 00

jo | 2022-11.0217:30:00 25,9154 21,9452 200875 16,6868 163313 L1

jo | 2022-11-0217:20:00 24,1801 15,4488 14,2168 14,4583 13,1724 02

2022:11-0217:30.00 323318 30,5162 31,3176 31,5083 37,0945 LE]

arg kepuharjo | 2022.110217.40.00 10671 40,478 42,0795 42,000 397971 15
A srg kepuhaio | 2022.110217.50.00 an7e17 318838 40,9827 42,3067 42,8968 12
e arg_kepuharjo | 2022-11-0218:00.00 39,539 34,6703 31,1853 30,6503 29,1926 32
L h arg kepuharjo | 2022-110218:10:00 18,0795 489947 610858 620221 58705 00
p arg kepuhario | 2022 110218.3000 21807 2armzs 350003 118858 15681 0o
i T 2 kepuhario | 2022 110218:30.00 azo783 388323 573782 109328 5508 00
2rg kepuhajo | 2022110218:40.00 932335 376708 103171 10,4352 108607 0o
»— T A arg kepuhario | 20221102 18:50:00 17,1741 687204 0,791894 2,64761 284133 a0
- arg_kepunarjo | 2022-11-0219:00:00 15,3488 344565 -4,79755 -7.36362 -9,84507 1]
= 1

Figure 5. Radar Data Collection Process

After both data are obtained, data adjustment is necessary when combining them. Data is sorted based on time criteria. Radar
raw data at 00:00 UTC (Universal Time Coordinated) estimates the accumulated rainfall from 00:00 UTC to 00:10 UTC
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measured by the rain gauge. In general, radar data and rainfall values have a linear relationship. The lower the radar
reflectivity value, the lower the rainfall intensity measurement. This is due to the direct relationship between radar reflectivity
and rainfall intensity. The higher the backscatter energy received by the radar, the higher the reflectivity value, which is
directly proportional to the higher rainfall intensity [13]. After collecting radar and rainfall data, preprocessing involves
checking for missing values, data cleaning, and normalization. The first step focuses on handling missing rainfall data
through value imputation using linear interpolation. This method estimates values for missing data points by assuming a
linear relationship between two known data points that flank the missing value [14].

M

Mo

2 X

Figure 6. Linear interpolation

The points (Xo, yo) and (x1, y1) represent the two points forming the straight line interpolation as shown in Figure 6. The
equation for linear interpolation between the values at points P (Xo, yo) and P2 (x1, yi) can be determined as shown in
Equation 1 below:

y=Y1—YO (x—x0)+ Vo oreen. 1)

X1—Xo

After interpolating the missing rows in the rainfall data, we remove the corresponding data from the radar reflectivity
data. This step is crucial because data representing no-rain events significantly outnumbers rain event data, creating an
imbalanced dataset. By undersampling, the number of samples from the majority class (i.e., non-rain events) is reduced to
achieve a balance between the two classes. It is important to note that many traditional machine learning methods assume that
the target classes have the same distribution. For example, in weather forecasting and disease diagnostics, class imbalance
often occurs because the majority of examples are labeled with one class while the number of examples of the other is smaller.
By undersampling, we can improve the balance of the dataset and ensure that the machine learning model can learn well from
both classes[15]. This class imbalance leads to a bias in the models, favoring the majority class and neglecting the minority
class. Consequently, model performance on the minority class suffers, even when overall accuracy appears high. This
phenomenon, known as the class imbalance problem, can be misleading. High overall accuracy doesn't guarantee the model
generalizes well to the minority class.[16]. After achieving a more balanced dataset through undersampling, data
normalization or standardization becomes even more important. Even a reduced majority class might have a wider value
range compared to the minority class. These large variations in feature value ranges can lead to some features having an
outsized influence on the model's learning process. Normalization or standardization helps mitigate this issue by ensuring all
features have similar ranges[17]. Standardization is a specific type of normalization technique performed on the data to
prevent features with large ranges from dominantly affecting the metrics used in machine learning models. Standardization
transforms the data to have a zero mean and unit standard deviation. This ensures all features are on a similar scale and
contribute equally during model training. MinMaxScaler is a commonly used approach for standardization, which scales the
data to a range between 0 and 1[18]. The last phase of the preprocessing stage is the division of data into training and test
data. It is important to separate the data that will be used to train the model (training data) and the data that will be used to
test the performance of the model (test data). By dividing this data, we can evaluate how well our model works in
generalizing patterns from previously unseen data.
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2.2 Feature selection using windowing variation

Weather radars acquire data by performing scans that produce rain reflectivity values and information about height
in the atmosphere. In contrast, rain gauges positioned at ground level directly measure the rainfall intensity reaching the
Earth's surface. Because rain must fall through the atmosphere, there is a time lag between the time taken by the radar to
measure the reflectivity of rain in the atmosphere and the time taken for rain to reach the rain gauges at ground level. As a
result, the gauges record rainfall at ground level with a delay compared to the time when the rain reflectivity is recorded by
the radar[19]. Several physical factors influence the relationship between measured radar reflectivity and surface rainfall,
including natural differences in raindrop size distribution (larger drops scatter radar waves more efficiently). The presence of
precipitation besides rain, such as melting hailstones, can also increase radar reflectivity due to the shape changes of melting
hailstones, which are more reflective than spherical raindrops. Finally, changes in low precipitation levels caused by
accretion (collision and merging of droplets) or evaporation can further complicate the relationship[20]. This research
proposes exploring several data matrices in the selection of time-adjusted independent variables using windowing techniques.
Windowing techniques involve dividing the data into smaller segments (windows) of a specific size to optimally determine
the past data that affects the current data point[21]. The various windowing techniques to be explored, such as those
visualized in Figure 7, can be used in this selection process.

fimestemp D500 L1000 NN DAL AD--18105000]__ALRI0N PBILIN]  HDALIBILN  A-L81130)
1000 meter_ max(5s) N7 %0 L1 | BB %378 25,007 505 I |
1500 meter_ max{5) 2564 25,6309 B 0589 Bl 2,565 | 2463 17654
200 meter_max{5) B 15506 5% W] B 15 B3| nsm] 159
2500 meter_max{5) 26060 29005 gL 0864 5,70 By B | B 17504
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Figure. 7 Windowing variation

In Figure 7, there are three variations of the first technique for selecting time-adjusted features using windowing:

1. No Window (1 x 5 matrix): This approach only uses the current data point (1 row) and the five original features (5
columns) as independent variables.

2. n-1 Windowing (2 x 5 matrix): This method uses a window size of 1. It combines the current data point (row 1) with data
from the previous time step (row 2) along with the 5 original features (5 columns) in each row. This createsa 2 x 5
matrix where each row represents a data point with previous data.

3. n-2 Windowing (3 x 5 matrix): This approach uses a window size of 2. It includes the current data point (row 1), data
from the previous time step (row 2), and data from the previous two time steps (row 3) along with the original 5 features
(5 columns) in each row. This results in a 3 x 5 matrix where each row captures the influence of the previous two data
points on the current value.

Features
selection

2.3 Multilayer Perceptron (MLP) Regressor

A Multilayer Perceptron (MLP) is a type of artificial neural network architecture characterized by feedforward
information flow. It consists of at least three layers of interconnected nodes: an input layer, one or more hidden layers, and an
output layer. Each neuron in the hidden layers utilizes an activation function to transform the received input from the
previous layer and generate an output that feeds into the next layer. This process iterates until the final output is produced.
During training, the network employs the backpropagation algorithm to adjust the weights and biases associated with each
neuron. This optimization aims to minimize the difference between the predicted and actual values, ultimately improving the
model's performance. Using a set of features and targets, this algorithm can learn non-linear function approximators for both
classification and regression tasks. This makes MLPs more versatile than logistic regression, as they can model complex,
non-linear relationships between the input features and the output. Unlike logistic regression, MLPs can have one or more
non-linear layers between the input and output layers, known as hidden layers (Figure 8). The layer on the left is the input
layer, consisting of neurons representing the input features (X1,X2,Xs.. X»). Each neuron in the hidden layer applies a weighted
linear summation (wiX:+wa2Xa...tWnX,) to the values from the previous layer, followed by a non-linear activation function like
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a hyperbolic tangent function. Additionally, a bias value is added within each neuron in the hidden layer before applying the
activation function. The final output layer, denoted by f(x), transforms the value from the last hidden layer into the network's
prediction. The public coefs_ represent the weights connecting the layers of the network, while intercepts contain the vector
of bias values added within each hidden layer neuron[22]. Hyperparameters in machine learning are parameters that govern
how machine learning algorithms work. They are determined before training begins and affect the performance of the model.
The grid search method is used to find the best hyperparameters by trying various combinations of hyperparameter values.
By adjusting the hyperparameters appropriately, it is possible to obtain a well-balanced and well-generalized model[23]. Grid
search is a concept used to search for hyperparameter combinations that result in the best model performance in
prediction[24]. The grid search technique in GridSearch involves experimenting with hyperparameter combinations in
testing. Hyperparameter optimization in grid search is a complex, time-consuming, and difficult to interpret process[25].
However, to optimize hyperparameters independent of windowing techniques, scikit-learn's Grid Search Cross Validation
(GridSearchCV) library is used. It simplifies the process by integrating with scikit-learn's standard estimator API.
GridSearchCV thoroughly evaluates all possible combinations of hyperparameter values defined in the param_grid
parameter. The resulting combination that yields the best model performance is then selected[26]. Table 1 shows the list of
hyperparameters used in grid search.

Table 1. List of hyperparameters in the MLP Regressor model

Param_grid
Hyperparameter parameter Description
values
_ (50,) (100,) Indicates the number and size_z of hidden Ia)_/ers in the neural network. For
hidden layer (50’ ’50) (10’0’ example, (50,) means one hidden layer with 50 neurons, and (100, 50)
sizes ' ' " means two hidden layers, the first with 100 neurons and the second with 50
50)

neurons.

Determines the activation function used for each neuron in the hidden
activation 'relu’, 'tanh’ layers. 'relu’ refers to Rectified Linear Unit, while 'tanh' refers to hyperbolic

tangent.

Determines the method used to optimize weights in the neural network.
solver ‘adam’, 'sgd’ ‘adam' and 'sgd' refer to optimization algorithms, namely Adam and

Stochastic Gradient Descent.
alpha 8'8201’ 0.001, These values control the impact of regularization or loss function.

2.4 Evaluation metrics

Model performance measures are evaluated by comparing estimated values to observed values using statistical
evaluation metrics like Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and coefficient of determination (R2).
RMSE and MAE values cannot stand independently. Output weights will then serve as evidence or support for one of the
metrics [27]. RMSE values are used to distinguish model performance during calibration and validation periods and to
compare performance between individual models and predictive models [28]. MAE exhibits lower sensitivity to outliers
compared to certain RMSE metrics. It computes the average absolute variance between and actual values, disregarding their
direction (positive or negative) [29]. For the value of R?, value, if the value is closer to 0, it means that the independent
variable has a very limited ability to explain the dependent variable. Conversely, a value close to 1 and far from 0 indicates
that the independent variable is able to provide more information needed to predict the dependent variable [30].

3. Results And Discussion

A simple data analysis, such as correlation analysis, examining the linear relationship between the altitude layers
(independent variables) and surface rainfall (dependent variable) suggests a linear trend. Figure 9 visualizes this relationship.
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Figure 9. Radar Reflectivity vs. Rain Rate

After combining the data sets, there might still be some gaps where data is missing. Linear interpolation is a method used
to estimate values for these missing data points. The following example shows how linear interpolation works to calculate
a value at a specific time (2022-11-02 17:40:00) when data is available for times before (17:30:00) and after (17:50:00).

_ (2022 - 11-0217:40:00 — 2022 — 11 — 02 17:30: 00)
Y = (2022 — 11— 02 17:50:00 — 2022 — 11 — 02 17: 30: 00)
y=05x(15-02)+ 0,2

(1,5-02)+ 0,2

y = 0,65+ 0,2
y =0,85
Table 2. Filling in blank data with linear interpolation
Time Rain rate (mm) before Rain rate (mm) after
Interpolation Interpolation

02/11/2022 17:10
02/11/2022 17:20
02/11/2022 17:30 0,2 0,2
02/11/2022 17:40 0,85
02/11/2022 17:50 15 1,5
02/11/2022 18:00 1,2 1,2
02/11/2022 18:10 3,2 3,2

Undersampling was used by taking 20 data points before and 20 after each data point where the rain rate value exceeded 0
(indicating rain). Data for events without rain falling outside this range were excluded. Table 3 shows the change in the
amount of data before and after undersampling. In this study, undersampling is employed with a radar data-based model to
balance the majority class (no rain) and the minority rain class in our dataset, aiming to improve the model's ability to
accurately predict rainfall intensity. The undersampling results show that the average amount of data before undersampling is
about 23,482, with a decrease of about 67% in the amount of data after the application of undersampling, to about 7,800. This
process was repeated for several different weather station locations, such as AWS Kulonprogo, Arg Kepuharjo, and others,
with the percentage of data reduction ranging from 0.59% to 0.74%.

64



EDUSJ, Vol, 33, No: 2, 2024 (58-71)

Table 3. Changes in the amount of data during preprocessing

Number of Data
NO Location Name Before
Undersampling

Percentage of data
reduction (%)

Number of Data
After Undersampling

1 AWS Kulonprogo 25070 0,74 6620
2 Arg Kepuharjo 24993 0,59 10323
3 Aws Pakem 21665 0,61 8358
4 Arg SMPK Sleman 22333 0,71 6530
5  AWS Stasiun Geofisika Sleman 23348 0,69 7167

Mean 23482 0,67 7800

Once the dataset is prepared, the next step is data normalization. This process involves the use of MinMaxScaler which
serves to simplify model training. The results of normalization can be seen in Table 4 as a sample example using the

Kepuharjo ARG location.

Table 4. Sample data after normalization

Location Time 1000_meter 1500_meter 2000_meter 2500_meter 3000_meter rain
max(5x5) max(5x5) max(5x5) max(5x5) max(5x5) rate(mm)

Arg_Kepuharjo 88{1(1)/2022 0,705423 0,711613 0,708176 0,713092 0,72076 4,6
Arg_Kepuharjo  gora0 2022 0,811123 0,741737 0,72504 0,725528 0,783023 6,6
Arg_Kepuharjo 88{;3’2022 0,801907 0,722978 0,736986 0,740026 0,782278 16,2

Following data pre-processing steps like normalization, data splitting is a common technique used to create training and
testing sets for model development. In this study, we adopt an 80/20 split, allocating 80% of the data for training the model
and 20% for testing its performance. Preserving the time series order throughout pre-processing is crucial for techniques like

windowing to function effectively, as they rely on the sequential nature of the data.
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Table 5. Best parameters and metrics evaluation results

Output: Best Parameters Using Grid Search

Evaluation Metrics

Mean Evaluation Metrics

Variant .
Windowing Location Hidden layer R-
Activation | Alpha en ‘aye Solver | RMSE | MAE | R-squared | RMSE | MAE
sizes squared
ARG Kepuharjo
o Relu 0.01 100,50 adam | 1,719 | 0,431 0,101
[
= ARG Smpk Sleman Tanh 0.01 50,50 adam | 0,846 | 0,278 0,182
ie]
£ Aws Kulonprogo Relu 0.01 100,50 adam | 0,851 | 0,267 0,053 1,012 | 0274 | 0,212
= Aws Pakem Relu 0.01 50,50 adam | 0,736 | 0,193 0,458
< Aws Stasiun Geofisika Relu 0.001 100,50 adam | 091 | 0,199 0,269
Sleman
“ ARG Kepuharjo Relu 0.0001 100,50 sgd 1,618 | 0,317 0,203
c ARG Smpk Sleman Relu 0.0001 50,50 sgd 0,845 | 0,281 0,183
[«)]
£ Aws Kulonprogo Relu 0.0001 100,50 adam | 0,843 | 0,254 0,071 0087 | 0263 | 0,242
IS Aws Pakem Relu 0.001 50,50 adam | 0,772 | 0,184 0,402
£ Aws Stasiun Geofisika
S iy Relu 0.0001 50,50 adam | 0,858 | 0,277 0,35
eman
~ ARG Kepuharjo Tanh 0.001 100,50 adam | 1,669 | 0,477 0,152
= ARG Smpk Sleman Tanh 0.01 50,50 adam 0,87 | 0,316 0,135
§ Aws Kulonprogo Relu 0.01 100,50 adam 0,847 | 0,265 0,062 1018 | 0,302 | 0,197
3 Aws Pakem Relu 0.0001 50,50 adam | 0,797 | 0,22 0,364
S g\évr?u ;t]as'““ Geofisika Relu 0.01 50,50 adam | 0,008 | 0,232 0,272
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Figure 10. Actual vs. estimated results for non-windowing, n-1 windowing, and n-2 windowing.

From the results in Table 5, the use of grid search in this study allows extensive parameter exploration to improve the
performance of MLP regression models in various variants, ranging from no windowing to using n-1 and n-2 windowing
techniques. The variant without windowing produces the best parameters, including ReLU activation, alpha 0.01, and Adam
solver. However, in the variant with n-1 windowing, it is seen that the use of the SGD solver becomes optimal for some
locations. This suggests that the sensitivity of the model to regularization increases when applying n-1 windowing, which is
reflected in the use of smaller alpha values. With a smaller alpha value, the model tends to focus on a tighter fit to the training
data, reducing its complexity and reducing the risk of overfitting.

While in the n-2 windowing variant, despite the variation in optimal parameters, the model performance generally
tends to be slightly lower compared to the other variants. This suggests that the use of n-2 windowing may introduce
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unnecessary complexity or reduce relevant information from the data. By using grid search, this study was able to adjust the
model appropriately according to the characteristics of each location or dataset. This results in a significant performance
improvement in surface rainfall estimation. These results significantly contribute to improving estimation accuracy,
considering the model's sensitivity to regularization within the n-1 windowing technique. In this study, the best results of
applying the windowing technique to the MLP Regressor model for surface rainfall estimation are detailed. From several
locations observed, it appears that the windowing technique with size n - 1 consistently provides the best performance. For
instance, at the Arg Kepuharjo site, the model employing n - 1 windowing demonstrated substantial enhancement, featuring a
reduced RMSE value of 1.618 and a significantly higher R-squared value of 0.203, compared to the other configurations. A
similar trend was seen at the Arg SMPK Sleman and AWS Kulonprogo sites, where the application of n - 1 windowing
resulted in a slight but consistent improvement in estimation performance. At the Pakem AWS site, although the model
without windowing has provided good results, the use of n - 1 windowing still shows high performance with the R-squared
value remaining high (0.402) despite a slight increase in RMSE. Similarly, at the AWS Geophysical Station location,
windowing n - 1 was able to achieve a balance between accuracy and model simplicity, which was reflected in the increased
R-squared value.

The overall trend shows that the application of n - 1 windowing consistently gives the best results across locations. The
n-1 windowing technique achieved lower average values for RMSE (0.987), MAE (0.263), and a higher R-squared (0.242),
indicating improved estimation compared to other experiments. This improvement comes without significantly increasing
model complexity. These findings suggest prioritizing the n-1 windowing technique for MLP regression models in similar
weather radar applications. By successfully capturing the temporal dynamics of surface rainfall patterns, the n-1 windowing
technique demonstrates its suitability. Further research to understand the reasons behind this success and explore alternative
window sizes or adaptive strategies can lead to even better model performance in future studies.

From the graphical analysis in Figure 10, the tendency of all experiments follows the pattern of actual values. However,
the model's response to estimate high rainfall tends to be underestimated. The need for more in exploration to improve the
estimation is a weakness of the model in estimating rainfall with high intensity. Research by M. Schleiss et al. found similar
results, indicating that rainfall estimation using radar data often underestimates values for predicting high rainfall [31].
Numerous factors bias the accuracy of research related to estimating rainfall using radar data. Rainfall can vary in intensity,
type, and distribution, impacting the accuracy of radar measurements due to differences in reflectivity and wave reflection
behavior [32].

4. Conclusion

Based on the analysis conducted, it can be concluded that the use of the n-1 windowing technique in the MLP
Regressor model provides the best results in estimating surface rainfall. This technique consistently produced significant
improvements in lower RMSE values and better R-squared values compared to other configurations. In addition, the use of n-1
windowing increases the sensitivity of the model to regularization, which is reflected in the use of smaller alpha values. This
helps reduce model complexity and the risk of overfitting by focusing on a tighter fit to the training data. However, there are
challenges in estimating high rainfall, where the model tends to underestimate the true value. This underestimation of high
rainfall events contributes to a bias in the overall accuracy of the model, highlighting a limitation in its ability to capture
extreme weather events. To address this bias and improve the accuracy of radar-based rainfall estimates, particularly for high-
intensity events, further exploration is needed. Understanding the factors influencing measurement accuracy, such as variations
in rainfall properties and wave reflection behavior, is crucial for future model development. These findings emphasize the
value of n-1 windowing for improving MLP Regressor models in surface rainfall prediction, particularly when combined with
further exploration to address the underestimation bias in high-intensity rainfall events. This conclusion paves the way for
further research on mitigating the underestimation bias, potentially through incorporating additional data sources or exploring
alternative model architectures alongside the effective n-1 windowing technique. Ultimately, this research contributes to the
ongoing effort to improve the accuracy and reliability of rainfall estimation models in the context of weather radar data
applications.
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