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1. Introduction
Early-type galaxies (ETGs), which include both elliptical (E) and lenticular (SO) galaxies, are found to follow a

tight correlation in the three-dimensional parameter space defined by their effective or half-light radii (R,), central velocity
dispersion (g,) and mean effective surface brightness (u,) within R,. These parameters are confined to a plane called the
Fundamental Plane (FP) defined by R, o o%{u,)?, where a and § are constants [1,2]. This relation can be derived from the
virial theorem, according to which, the mass-to-light (M /L) ratio may be given in terms of the effective radius, the central
velocity dispersion, and the mean effective surface brightness. The deviation of the observed FP from the virial theorem
causes a "tilt" whose origin may be variations in M / L ratio with mass or structural variations with mass [3]. The small scatter
in the edge-on projection of the FP reflects the high degree of regularity in the formation process of these early-type galaxies
[4]. The reason for this scatter may be variations in the M /L ratio as a result of metallicity or age effects in stellar populations
[5]. A number of studies showed that E galaxies and bulges of SO galaxies are located in the same FP (see, e.g. [6]). However,
a slight difference between them has been revealed in a separate study [4].

One of the projections of the FP is the Faber-Jackson relation (FJR) [7], in which the luminosity (L) of elliptical galaxies
varies directly with o', where n is the Sérsic index, being 4 for bright Es and nearly 2 for faint Es [8]. It is found that bulges
of SOs follow a very similar relation to bright Es [9].
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Another projection of the FP is the Kormendy relation (KR) [10] which relates the mean effective surface brightness of
early-type galaxies to their effective radii. A number of studies [11,12] showed that E galaxies and bulges of SO galaxies obey
the same KR. Yet, according to another study, this is true only for bright SO galaxies [13].

2. Sample and Data

Our sample consists of 140 early-type bright galaxies (70 elliptical galaxies plus 70 lenticular galaxies), with absolute
magnitudes My < —18, selected from the extensive catalogue of early-type galaxies [14]. The effective radii of these galaxies
and their central velocity dispersions are taken from this catalogue. The mean effective surface brightnesses and the B-band
absolute magnitudes (corrected for galactic extinction, internal extinction, and K-correction) are extracted from Hyperleda
database [15]. Table 1 displays some of these sample galaxies.

Table 1. Some sample galaxies with their required data

No. Galaxy Morph. type MB [mag] oo [km/s] Re [pc] <pe> [mag/arcsecond?]
1 NGCO0315 E -22.48 351.6 17023.6 22.01
2 NGC1600 E -22.42 320.6 12709.0 22.53
3 NGC0410 E -22.27 305.1 9986.2 22.11
4 NGC3842 E -22.21 147.0 3968.3 21.74
5 NGC7728 E -22.18 362.2 13379.6 22.12
6 NGCO0777 E -22.11 348.3 8526.2 22.17
7 NGC7619 E -21.96 337.3 8375.7 21.44
8  NGC5322 E -21.48 246.0 5811.1 21.07
9  NGC7626 E -21.44 233.9 9117.9 21.64
10 NGC7562 E -21.41 256.3 6353.7 21.51
11  NGC0420 SO -21.34 179.5 5514.2 21.10
12 NGC3816 SO -21.33 204.6 3518.0 21.57
13 NGC0379 SO -21.16 239.7 10291.3 21.68
14 NGC0687 SO -21.15 244.2 4949.0 21.59
15 NGC2563 SO -20.99 287.3 7330.8 21.89
16  NGC0431 S0 -20.97 162.2 6207.6 21.55
17 NGC0528 SO -20.95 287.3 9471.9 22.83
18 NGC5353 SO -20.90 267.3 3105.0 20.49
19 NGC0712 SO -20.86 266.2 16518.6 22.87
20 NGC3665 SO -20.84 147.6 3358.3 21.74

3. Results and discussion

3.1. The fundamental plane (FP) in log(R.), (i), log(e,) space
The FP can be written as [16]

log(R,) = alog(ay) + b{ue) + ¢ wov v cve e e (1)
where a, b represent slopes and vary with the passband used. The constant ¢ represents the intercept of the fundamental plane.
The physical basis of this relationship was mentioned in Section 1. Figures 1 and 2 show the edge-on view of the FP for our E
and SO samples, respectively. Our results for both samples are outlined in Table 2. The values of a and b, shown in the table,
are obtained by multiplying the slope in each graph by the value on x-axis (1.203logag, + 0.352(u,)). The value of c
represents the y-intercept in each graph. As we see, from the root-mean-square (rms) values given in the table, elliptical
galaxies show more tight relationship than lenticular galaxies. This tightness implies mutual relationships between galaxy
properties and star formation activity [17]. In general, the results show a close similarity between the corresponding
coefficients for both Es and SOs, in agreement with Ref. [18]. Therefore, we can say that E and SO galaxies are located nearly
in the same FP, with a somewhat smaller rms deviation for Es. These differences in rms deviations indicate differences in
stellar ages and, hence, star formation activity in both types of galaxies.
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Figure 2. The FP for SO galaxies

Table 2. The FP coefficients of E and SO galaxies

Type a b c rms
E 0.840 + 0.040 0.246 £ 0.040 -6.566 + 0.406 0.140
S0s 0.715 + 0.062 0.209 + 0.062 -5.537 £ 0.630 0.172

3.2 The fundamental plane (FP) in k-space

Another expression of the FP is given in x-space, suggested by Bender et al. [19], using a simple orthogonal coordinate
transformation. This coordinate system is found to be very significant and easy to recall. The axes of this space are related to
galaxy photometric and kinematic parameters. They are given by

logo¢ + logR,

K4 7 .. (2)
logo¢ + 2logl, —logR,
logaZ —logl, —logR
ey = 870 \%e Bl (B
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where (logl, = —0.4({u,) — 27). In this parameter space, k; < logM, k, « log(M /L) I3, and x; « log(M/L). The edge-on
view of the FP in this space is represented by x; and k5. This is illustrated in Figure 3 for our E and SO samples. It is obvious
from this figure that the two types lie nearly on the same FP, with Es being less scattered (rms = 0.119) than SOs (rms =
0.148). According to Bender et al. [19], these deviations from the average are caused by differences in M/L ratios of galaxies,
which indicate differences in their stellar ages.
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Figure 3. The FP in k space
3.2. The Faber-Jackson relation (FIR)
This relation can be written as
logoy, = —0.1Mp + const. ... ... ... ... ... (5)
where My is the B-band absolute magnitude. Figures 4 and 5 show the FJR for our E and SO samples, respectively. These
results are outlined in Table 3. The results show a similar FJR for both Es and SOs, although Es are clearly less deviated (rms
=0.101) from the relation than SOs (rms = 0.873). As we mentioned earlier, this similarity is found only for bright Es [9].
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Figure 4. The FJR of E galaxies
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Figure 5. The FJR of SO galaxies
Table 3. FJR slope and y-intercept for E and SO galaxies
Type slope y-intercept rms
E -0.109 £ 0.011 0.053 +0.220 0.101
SO -0.125 + 0.022 -0.283 £ 0.433 0.873

3.3. The Kormendy relation (KR)

This relation can be written as [20]
(Ue) = alog(R,) +b e vee e o (6)
where a is the slope and b is the zero point. Figures 6 and 7 show the KR for our elliptical and lenticular samples, respectively.
These results are outlined in Table 4. We see that Es and SOs follow nearly the same KR. This is obvious from the comparable
values of the slope, y-intercept, and rms for both Es and SOs in the table. Yet, according to Barway et al. [21], this is only true
for bright SOs.
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Figure 6. The KR of E galaxies
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Figure 7. The KR of SO galaxies
Table 4. KR slope and y-intercept for E and SO galaxies
Type slope y-intercept rms
E 2.297 +£0.220 19.960 + 0.142 0.600
SO 2.211 +£0.315 20.202 + 0.175 0.685

4. Conclusions

The fundamental plane (FP) and its projections, Faber-Jackson relation (FJR), and Kormendy relation (KR) were studied
for 70 elliptical (E) galaxies and 70 lenticular (SO) ones. The results showed a close similarity between the corresponding FP
coefficients of Es and SOs, indicating they lie nearly on the same FP, with an rms scatter of (0.140) for Es and (0.172) for SOs.
This means that the correlation is more tight for elliptical galaxies. The results, also, showed that both elliptical and lenticular
galaxies follow FJR almost similarly, with their corresponding coefficients being close to each other. Yet, the rms scatters of
(0.101) for Es and (0.873) for SOs indicate the strongest correlation for Es. The results also showed that Es and SOs obey KR,
with their corresponding coefficients and rms scatters (0.600 for Es and 0.685 for SOs) being close to each other.
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