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ABSTRACT

In this paper we investigate the existence and approximation of the
periodic solutions for certain systems of nonlinear integro-differential
equations, by using the method of successive periodic approximation of
ordinary differential equations which is given by A. M. Samoilenko. Also
these investigation lead us to the improving the extending the above
method.
Introduction

Consider the following system of integro-differential equation,
which has the form:

% = f(t, X, x,thg(s,x(s),x(s))dsj L (1)

where xe D < R", D isaclosed and bounded domain.
The vectors functions f(t,x,x,v) and g(t,x,x) are defined on the
domain:
(t,x,%,v)e R'xDx D, xD,
=(-o,0)xbxD;xD, .. (2)

which are continuous in (t,x,%,v) and periodic in t of period T , where
D, and D, are bounded domains subset of Euclidean space R™.

Let the functions f(t,x,%,v) and g(t, x, X) are satisfy the following
inequalities:
[ (t, % %, V) <M , gt x,xy<m , (3)
[t Xg, %, Ve ) — (8 Xo, %,V | S Ky Xy = X, |+ Ko R = %o| + Kglvy =,
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‘g(t, Xl, Xl)_ g(t, XZ’XZX S Ll‘xl - Xz‘ + LZ‘X]. - Xz‘ Yy eee ese (5)
forall teR' and x,x,X, €D, X%,%X,eD, and v,v,v,eD, ,
where M is appositive constant vector and K,,K,,K;,L;,L,, are (nxn)

constant matrices, \ = rTEax
°© tel0, T

We define the non-empty sets as follows:

D, =D-1M
2

D,=D-2M | L (6)

D,; =D, —[TM +TEI\/I(L1T +4L2)}

Furthermore, we suppose that the greatest eigen-value of the matrix

W = [(K1 + K, LT )%+ 2(K, + K,L,T )} dose not exceeds unity, i.e.

4wy <1, (j=12...,0). L (7)
Lemmal:

Let f(t) be a continuous vector function defined in the interval
[0,T], then:

t

j( (1) —Tﬂ f (s)dsts
0

0

<a®|f (1), .

t
where a(t):Zt(l—?j and | f(t). :trer[lgﬁ\f(t)\.

For the proofsee [4] .

Approximation Solution of (1)

The investigation of periodic approximation solution of the system
(1) makes essential use of the statements given below.
Theorem 1:

If the system of integro-differential equations (1) satisfy the
inequalities (3), (4) with assumptions (5) and the conditions (6), (7) has a
periodic solution x = X(t, x,), passing through the point (0,x,), X, € D¢,

then the sequence of functions:
t S

Xme1 (tX0) = Xg +j[f[s,xm(s,xo),xm(s,xo), Ig(71 X (7, %), %5 (7, Xo))df -

0 s-T
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1T s
_?J. f[s’xm(s’xo)’xm(saxo): Ig(T’ X (7, X0), % (7, Xo))dz'):l
0 s—T
...... (8)
with
Xo(t,X) =X W: Xt %) , m=0,1,2,...

Is periodic in t of period T, and then is uniformly convergent as m — oo
in the domain:

(t,X,) € R*xD; = (—0,00)xD; ,
to the function X (t, x,) defined in the domain (9), which is periodic in t
of period T and satisfying the system of equations:

X(t, Xy) = Xq +f{f[s,x(s,x0),x(s,xo), jg(r, X(1, %), (1, %, ) )d ]—

0 s—T

s—T

_ %} f {s, X(S, Xp), X(S, Xp), j g(r, X(7,%y), X(z, xo))d rjds}dt

which is a unique solution of the system (1).
Proof:

Consider the sequence of functions X, (t,X,),X, (t, Xg)--s X (£, Xg ) -e-
defined by recurrence relation (8). Each of the functions of the sequence
are periodic in t of period T.

Now, by the lemma 1, we have from (8), for m=0:

%, (t, Xg) — Xo| < (1—%)} f(s, X,,0, _S[g(r, xO,O)drj

0
tT
)
2

SMa(t)SI\/I% ...... (11)

ds +

ds

f(s,xo,o, jg(r, xO,O)drj

s—T

It follows that x,(t,x,) €D forall teR' and X, € D;. Moreover, on
differentiating X, (t, x,), we find

t T t

% (t, %) = f[ £.%,,0, [9(s,%,0)ds —ljf t,%0,0, [9(s,%,,0)ds gt
t-T T 0 t-T

and hence
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t 1T t
1% (8, X, )| < f[t,xo,o, Ig(s,xo,o)dsJ +?j f[t,xo,o, Ig(s,xo,o)dsjdt
T 0 T
<M (12)

By condition (6), it follows from the last inequality that
% (t,X,) e D, forall teR' and x, eD;.

Thus by induction we can prove that Xx,(t,x,)eD and
X, (t,%,) € D, forall m>1 and x; € D;.
We have to prove that the sequence of functions (8) is uniformly

convergent on the domain (9).
By using (8) and (11) the following inequalities are holds:

Xmat (8, X0) = X (6, Xo)| S @(t)MW™ (13)
and
X1 (6 %) — X (8, %) <2MW™ (14)

From (13) and (14) we conclude that for any k>1, we have the
inequalities:

k=1
Xk (6 %0) = X (4, X)) < ()MW " D> W' (15)
i=0

and
k=1

Kook (6 %0) = X (LX) <2MW ™S W (16)
i=0

It follows from (15) and (16) that:

Xk (6, X0) = X (G, X)) @MW ™(E-W)*™M ... (17)

and

Kok (0, X0) = X (LX) <2W™(E-W) M , .. (18)

forall te R' and k >1, where E is identity matrix.
From (17), (18) and the condition (7), the sequence of functions
{Xn (t, X0 ), X, (£, X) } is uniformly convergent in (9) as m — oo.

Let
Limx., (t,x)=x,(tx)) .. (19)
m—o0
and
Limx,(t,x,)=x,(tx) .. (20)
m-—o0

Since the sequence of functions x, (t,X,) and X (t,X,) are periodic
in t of period T, then the limiting functions x_(t,X,) = x(t,x,) and
X, (t, Xo) = X(t, X,) are periodic in t of period T.
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Moreover, by lemma 1 and (17), (18), the following inequalities
are holds:

Xk (6 X0) = X (6, X0)| S (W ™(E -W)*'M .. 21)
and
Kok (6, X0) = X (LX) < 2W™HE -W) M L (22)

forall m>0 and teR!,

Finally, we have to show that x(t,x,) is unique solution of the

system (1). On the contrary, we suppose that there is at least two different
solutions X(t,x,) and y(t,x,) of (1).
From (10), the following identity holds:

‘X(t’ Xo) = Y(t, Xo)‘o < (Kl + KL T )I‘X(t’ Xo) — Y(t, Xo)L +
2

T
+(K, + K3L2T)E\X(t, Xo) = V(X oo (23)

On differentiating (23) we should also obtain
X(t, %0) = Y(t, %), < 2(K, + K3L1T]X(t, Xo) = Y(t. %o)|, +

+2(K, + KL T X %) = V(. X)), o o (24)
Inequalities (23) and (24) would lead to the estimate
X(t, X)) -y, x). <Qw , (25)

where
Q :Tl(K1 + K3|—1T]X(t, Xo) = Y(t, Xo)‘o +(K2 + K3|—2T]X(t, Xo) = Y(t, Xo)‘OJ

and W = [(K1 + KL T %* 2(K, + K,L,T )}

By iteration we have
X(t, X)) —y(t. %) <Qw™, . (26)

But W™ — 0 as m — o, hence proceeding in the last inequality to the
limit we obtain that x(t,x,) = y(t,x,) which proves that the solution is

unique, and this completes the proof of theorem 1.

Existence of Solution of (1)

The problem of existence of periodic solution of period T of the
system (1) is uniquely connected with the existence of zeros of the
function A(x,), which has the form:-

A(Xy) = %} f [t, X, (t, %), X, (t, X,), j (s, . (5, X ), X, (5, xo))dstt
0

t-T
...... (27)
where x_, (t, X,) is the limit function of the sequence functions X, (t,X,).
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Since this function is approximately determined from the sequence
of functions:

Am (XO) :TE-IJ: f(t’ Xm (t’ XO)i Xm (t, XO)i jg(s’ Xm (S’ X0)1 Xm (S’ XO))dSJdt
0 t-T

m=0,1,2,....
Now we prove the following theorems taking into account that the
following inequality will be satisfied for all m>1.

‘A(Xo) _Am(XO)L = %J.[Kl‘xoo (t, %o) — X (¢, Xo)‘o + KZ‘XOO (t, %) — X (&, Xo)‘o +

+ KT (L, (8 6) =X (6 )], + Lol (1 %6) =X 83|t
1 T
< ?I<K1 + KLy T )X, (t, Xo) — Xpn (8 X)) dt +

0

)
+le(|<2 KLy T )X, (1 Xo) = X (8, %), dt
0

< [(K1 + K3L1T)£+ 2(K, + K,L,T )}Wm(E ~W)™*M

—W m+1(E _W )—1 M
Theorem 2:
If the system of equation (1) satisfies the following conditions:
(1) The sequence of functions (28) has an isolated singular point x, = x_,,

A, (x,)=0.

(if) The index of this point is nonzero.

(iii) There exist a closed convex domain D, belonging to the domain D;
and possessing a unique singular point x_, such that on it’s
boundary I'p, the following inequality holds:

inf [A,(X)|>W™(E-W)™"M,

Xel'py
where W = [(K1 + K,LT )2+ 2(K, + K,L,T )} and m>1. Then the

system (1) has a periodic solution x = x(t) for x(0) € D,.
Proof:
By using the inequality (29) we can prove the theorem in a similar
way to the theorem 1 [ 3 1.
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Remark 1: [ 1]

When R" =R, i.e. when x is a scalar, theorem 2 can be
strengthens by giving up the requirement that the singular point should be
isolated, thus we have.

Theorem 3:
Let the functions f(t,x, x,v)and g(t,x,x) of the system (1) are

defined on the interval [a,b] in R!. Assume that for any integer m>1,
the function A, (x,) defined according to formula (28) satisfies the
inequalities:

H m+1 -1 MT |
a+ﬂn;l(2b,ﬂAm(X0)S_q @-a) — o
2 2 ------
m+1 -1 MT
a+ﬂT§;_ﬂAm(X0) >q™*(1-q) —
2 2 _

where q:(K1+K3L1T)T§+2(K2+K3L2T), and K,K,,K;, L,L, are

positive constants. Then the system (1) has a periodic solution of period

T, x=Xx(t) for x(O)e[a+M—;,b—m]

2
Proof:
Let x, and x, be any two points of the interval [a+ MZT b — MZT}
such that:
Ay (X) = aﬂTlQb_EA’“ (x) .
2 2 (31)
A (Xp) = aﬂr?fiﬂ% (X) -
2 2
By using the inequalities (29) and (30), we have:
A(x,) :Am(xl)+(A(Xl)_Am(Xl))<O , } (32)
A(Xy) =An(Xp) + (A(Xz) AT (Xz)) >0.

From the continuity of A(x,)and (31), (32), there exists a point
X, X, €[x.,%,], such that A(x,) =0, and this proves the theorem.

Similar results can be obtained for other class of integro-
differential equation. In particular, the system of equations which has the
form:

dx O .
a=f t,x,x,a.([t)g(s,x(s),x(s))ds L (33)
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In this system (33), let the vector functions f(t,x,x,w), g(t,x,X)
and the scalar functions a(t), b(t) are periodic in t of period T, defined and
continuous in R*xDx D, xD,, R*xDx D, and R', R. Suppose that the
functions f(t,x,%,w) and g(t, x, x) satisfying the inequalities (3), (4) and

(5) and the conditions (6), with D, f = D, —[hl\/l %(L1 +4L, )+ MT]
Furthermore, the largest eigenvalue A, of the matrix
A= [(Kl + K3L1h)%+ 2(K, + K3L2h)} is less than unity i.e.,

Amx (AY<1, (34)
where h = max|b(t) —a(t)|

t[0,T]
Theorem 4:

If the system of equations (33) satisfies the above assumptions and
conditions has a periodic solution x = (t), passing through the point

(0,Xg), X, € D¢, then their exist a unique solution which is the limit

function of a uniformly convergent sequence which has the form:
t

b(s)
Xme1 (8 X0) = Xg "‘J{ f [S, X (81 X0)s Xy (8, %), jg(r, X (7, X)X (7, Xo))dfj_

0 a(s)

T b(s)
_%I f[s, X (S, Xg)s X (S, %), jg(r, X (7,%0), %, (7, xo))drﬂ

a(s)

...... (35)
with
Xo(t,Xg) =%, ~, m=0,1,2,...
The proof is similar to the theorem 1 [1].
If we consider the following sequence of functions:
1T b(t)
A (%) = = [ F| X0 (656), X (6 X0), [ 90150 (5150), K (5.3l it
0 a(t)
...... (36)

then we can state a theorem similar to the theorem 2 provided that:
Amax (A) <1.

Also we can consider the following system of integro-differential
equation, which has the form:

%z f[t,x, X, f[G(t,s)g(s,x(s),X(s))dsj, ...... (37)
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The vectors functions f(t,x,%,z) and g(t,x,x) are defined on the

domain:
Q=R'xbxD,xD, . (38)
which are continuous in (t,x,%,z) and periodic in t with period T , where
D, and D, are bounded domains subsets of Euclidean spaces R".

Let the functions f(t,x,%,z) and g(t, x, x) are satisfy the following
inequalities:
1f(t, %% z)<M , gt x,x)<mM , (39)

19t X3, %)= 9t Xp, % | < Lyfxy =X, + L[y —
forall teR' and x,x,X,eD, X%,%X, €D, and z,2;,z, €D, ,
where M =(M,,M,,...,M, ) is a positive constant vector and K,,K,, K,
and L, L, are (nxn) constant matrices. A matrix G(t,s) is defined and

continuous in R* x R! and satisfies the condition G(t,s) =G(t+T,s+T),
with |G (t,s)H <o 7S 0<s<t<T, where &,y are positive

o<t<T OT]

We define the non-empty sets as follows:

D, =D-1M
2

D, =D,-2M (42)
MT y My

D,; =D, - L, +4L
=0 ML ) M|
Furthermore, we suppose that the greatest eigen-value of the matrix

A= KKI + K,k %)TE + Z(K2 +K,L, %ﬂ dose not exceeds unity, i.e.

4W)<t, (j=12..0). L (43)

Approximation Solution of (37)

The investigation of periodic approximation solution of the system
(37) will be introduced by the following theorem.
Theorem 5:

Let f € C(Q2) and satisfies the inequalities (39), (40), (41) with

assumptions (42) and the condition (43) are given. Then the sequence of
functions {x, (t,x,)} defined by:
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Xmaa (6 X0) =X + [f[s,xm(s, Xo)s X (8 %), TG(S,T)Q(Tv X (7, %), X (7, Xo))dT -

J
0
—%] fLS’Xm (5, X0) X (8, %), jG(S,f)g(r, X (T, X)X (7, xo))erds ds

—00

with
dx . (t, X
Xo(t, %) =%y $=Xm(t,xo) , m=0,1,2,...

convergent uniformly in [0,T |x D, to the function x°(t,x,) whish is:

X(t, Xg) =X, + ffl:f(s, X(S, X ), X(S, Xo), jG(s, 7)9(z, x(z, %, ), X(z, xo))drj -

_Tl} f[s, X(S,Xg), X(S, Xg), iG(s,r)g(r, X(7, Xg), X(z, xo))drjds}ds
0 —00

...... (45)
provided that
0 m -1 MT
‘x (t,Xg) = X, (t,xo)L <A™(E-A) - e (46)
and
\xo(t,xo)—xm(t,xo)\ <2A"(E-A)'M L (47)
forall m>1 and teR",
Proof:
Setting m=0 and using (44), we get:
t S
X, (t, Xg) — X S(l—%jj f(s,xo,o, [G(s.D)g(z, XO,O)dz-]ds+
0 —00
t T S
+?'t[ f[s,xo,O,J;oG(s,r)g(r, xO,O)drjds
So that
X, (t, Xg) = Xo| <Meaty (48)

So that x,(t,x,)eD for all teR' and x,eD,. Moreover, on

differentiating X, (t, x,), we find
t T t

% (t, %y) = f[t,xO,O, jG(t,s)g(s,xo,O)dsJ—%'[ f[t,xo,o, jG(t,s)g(s,xo,O)dsjdt
—0 0 —0

and hence
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;
2]
TO

<2M (49)
From (49) and (42), we get X,(t,x,)eD, for all teR" and

Xo € D;. Thus by induction we can prove that x.(t,x,)eD and

% (t, %)| < dt

f{t,xO,O, jG(t,s)g(s,xo,O)dsJ

—00

f(t,xo,o, jG(t,s)g(s,xO,O)dsj

—00

X, (t,%,) €Dy, forall teR', x,eD; and m=12,....

We claim that the sequence of functions x,(t,X,) is uniformly
convergent on the domain R*x D; .

By using (44) and (48) the following inequalities are holds:

Xma1 (6 X0) = X (8, %) S x(®MA™ (50)
and
X (6 %) — X (6, X)) <2MA™ (51)

From (50) and (51) we conclude that for any k >1, we have the
inequalities:
MT =

‘Xm+k (tiXO)_Xm(tIXO)L STAmZAj . e (52)
j=0
and
k-1
Xk (6, %0) = X (8, %) <2MA™ DA (53)
j=0

forall t e R* and k >1, where E is identity matrix.
From (52), (53) and the condition (43), the sequence of functions

{xm (t,xo),xm(t,xo)} is uniformly convergent in the domain R'xD; as
m — oco. Let

Limx, (t, %) =x"(t,x,) . (54)
and
Limx, (t,x,)=x"(t,x,) . (55)

Since the sequence of functions x, (t, x,) and X, (t, x,) are periodic
in t of period T, then the limiting functions x°(t,x,) = X(t,X,) and
x° (t, x,) = X(t, X, ) are periodic in t of period T.

Moreover, by the lemma and (52), (53), the inequalities (46), (47)
are holds.

Finally, we have to show that x(t,x,) is unique solution of the

system (37). On the contrary, we suppose that there is at least two
different solutions x(t,x,) and z(t,x,) of (37).
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From (45), the following identity holds:

IX(t, Xo) — 2(t, X,)| < (Kl + KL %)%\x(t,xo) —z(t, %)| +

+(K2 +K;L, gjg\xa,xo)—za,xo)\o ...... (56)
On differentiating (56) we should also obtain
IX(t, Xo) — 2(t, Xo)|. < 2(K1 + KL, %)\x(t,xo)— 2(t, %), +

+2(K2 +K;L, %)\X(t,xo)—z(t,xo)\o ...... (57)
Inequalities (56) and (57) would lead to the estimate
x(t, %) —z(t, %) <LA, (58)

Where
L :TKKl +K,l, %)‘X(t’ Xo) = Z(t, Xo)|, +(K2 +KsL, %)‘X(t’ X,) - 2(t, Xo)‘o}

T
and A = KKl +K,L, §j§+2(r<2 +K,L, %ﬂ

By iteration (58) we have

X(t,Xo) —z(t,%o) <LA™, (59)
But A™ — 0 as m— oo, hence proceeding in the last inequality to the
limit we obtain that x(t,x,)=z(t,X,), which proves the solution is

unique, and this completes the proof of theorem 5.
Existence of Solution of (37)

The problem of existence solution of the system (37) is uniquely
connected with the existence of zeros of the function A(x,), which has

the form:-
A(xo)=T1jf[t,xo(t,xo),xo(t,xo), IG(t,s)g(s,xo(s,xo),xo(s,xo))dstt
0 —00

...... (60)
Since this function is approximately determined from the sequence
of functions:

A, (%) = %T[ f(t,xm (t, %), X, (£, %), jG(t,s)g(s,xm (S, %), X, (s,xo))dstt
0 —00
...... 61)

Now we prove the following theorem taking into account that the
following inequality will be satisfied for all m>0.
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A(X) = Ap (X)), <A™ E-AY'M L (62)
Theorem 6:
If the system of equations (37) satisfies the following conditions:
(i) The sequence of functions A (X,) has an isolated singular point
xo=x", A (x")=0 forall x,eD; and teR".

(if) The index of this point is non-equal’s to zero.
(ilf) There exist a closed convex domain D, € D; and containing a

unique singular point x°, such that on it’s boundary I'p, the

following inequality holds:
inf A, (x)|z A" (E-A)M,
xel'p,

Where A:KK1+K3L1§E+2(K2+K3L2§ﬂ and m>1. Then

the system (37) has a periodic solution x = x(t) for which x(0) € D;.

Proof:
By using the inequality (62) we can prove the theorem in a similar

way to the theorem 5[ 2 1.
Remark 2: [2]

If the set D, dose not degenerate to a point, then the A —constant
of the system (37) may be considered as the function A =A(0,x,) given
on the set R' x D, . The properties are defined by:

Theorem 7:
Let

A:D; ->R",

A(X,) :ﬂ f[t, X2 (t, %), X° (t, X, ), jG(t,s)g(s, X°(s,%,), X" (s, xo))ds]dt ...... (63)

0
where x°(t,x,) is the limit of a sequence of periodic functions (60). Then
the following inequalities are satisfied:

A(X)]. <M
and

—00

-1
A(G) - A(S) < E{E —%— E,E,T(E - 2E2)‘1} [E —~2E,(E- 2E2)‘1]x3 _ X
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For any X,,%g,Xs €D, and teR', where Elz(K1+K3L1§j and

y
E, :(Kz +K,L, Ej'

Proof:
From the properties to the function x°(t,x,) established by
theorem 5, it follows that the function A(X,) is continuous and bounded

in the domain R*x D, .
By using (63), the following inequality holds:

A(xg)-A(xg)s—T f[t,x°(t,xg),x°(t,xg), jG(t,s)g( X*(5,%4),X° (s, x5) s | -

0

t

- f(t,xo(t,xg),xo(t,xé), [6(t,9)g(5,X°(s,52), X% (5,%2) s |t

—00

< [Kl + K, %j‘xo(t, xg) — x°(t, xé)‘ +

+£K2 +K,L, gj\x"(t, X6) = X°(t, X))

and hence
A = AXS)| < Eyfx*(t,x5) = X° (6, x3)| +E,[x°(t,x) = X° (t,x3)|.

Where x°(t, x;) and x°(t,x?) are the solution of the integral equation:

t

X(t, x¥) = x¥ + j{ {s, X(s,x5), X(s, X&), jG(s,r)g(r, x(z, x8), X(z, x(‘j))dr}—

o

} f(s, X(s, X5), X(s, x5, je(s,f)g(f, X(, %), X(z, xg))dr]ds}ds
0

—00

—|||—\

Where k=1,2.
From (66), we find

‘xo(t,x(l))— x°(t,x§)‘o < ‘x(l) —xg‘o +E—;Tx°(t,xé)—x°(t,x§)o +%X°(t,xé)—>’<°(t,x§)o

On differentiating x°(t,x;) and x°(t,x?), we get:
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U |

\xo(t, x4 - x°(t, xg)L < 2El\x°(t, )= x°(t, xg)‘o + ZEz\xo(t, )= x°(t, xg)‘o

<2E,(E-26,) x°(t.xg) - X"t x3)| e (68)

Using the inequalities (67) and (68) in (65) we have the inequality (64),
and this proves the theorem.
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