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ABSTRACT
The Hosoya polynomials of Steiner 3-distance of hypercube graphs
Q,,, and of the square of a path, P, are obtained in this paper. The

Steiner n-diameters of Q,, and P? are also obtained.

1. Introduction.
We follow the terminology of [2,3]. For a connected graph
G =(V,E) of order p, the Steiner distance[4,5] of a non-empty subset

ScV(G), denoted by d;(S), or simply d(S), is defined to be the size

of the smallest connected subgraph T(S) of G that contains S; T(S) is
called a Steiner tree of S. If |S|=2, then d(S) is the distance between the
two vertices of S. For 2<n< p and |S|=n, the Steiner distance of S is

called Steiner n-distance of S in G. The Steiner n-diameter of G (or the
diameter of the Steiner n-distance), denoted by diam G or & (G), is
defined as follows:
diam; G =max{d; (S):S cV(G),|S|=n}.

Remark 1.1. It is clear that

(1) If n>m, then diam’ G>diam,_ G.

(2)If S"=S, then dg(S")<d(S).

The Steiner n-distance of a vertex v eV (G), denoted by W (v,G),

Is the sum of the Steiner n-distances of all n-subsets containing v. The
sum of Steiner n-distances of all n-subsets of V (G) is denoted by d, (G)

or W, (G). It is clear that
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W, (G)=n" YW (v.G). ... (1.1)
veV (G)
The graph invariant W_ (G) is called Wiener index of the Steiner n-
distance of the graph G.
Definition 1.2[1] Let C,(G,k) be the number of n-subsets of distinct
vertices of G with Steiner n-distance k. The graph polynomial defined by

8
H (G;x)= D.C (G.K)X*, L (1.2)
k=n-1
where &, is the Steiner n-diameter of G; is called the Hosoya polynomial
of Steiner n-distance of G.[1].
It is clear that

*

W, (G)= %kc;(c;,k) ....... (1.3)

k=n-1

For 1<n<p, let C (u,G,k) be the number of n-subsets S of

distinct vertices of G containing u with Steiner n-distance k. It is clear
that

C,(u,G,0)=1.
Define
8y
Ho(uG;x)= D.Co(u,Gk)x*. ... (1.4)
k=n-1
Obviously, for 2<n< p
H;j(c;;x)=E Y Hy(uGx). (1.5)
ueV (G)

Ali and Saeed [1] were first whom studied this distance-based
polynomial for Steiner n-distances, and established Hosoya polynomials
of Steiner n-distance for some special graphs and graphs having some
kind of regularity, and for Gutman’s compound graphs G, ¢G, and

G, : G, in terms of Hosoya polynomials of G; and Ga.
In this paper, we obtain the Hosoya polynomial of Steiner 3-
distance of Q, and PZ. Moreover, diam,Q, and diam PZ are

determined.
2. Hypercube Graphs (m-Cube Q,,)

The Cartesian product [3] of two connected disjoint graphs
G, =(V,,E;) and G,=(V,,E,)is the graph denoted by G xG, with
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vertex set V, xV,in which (x,,y,)is joined to (X,,Y,)whenever
{x,x, e Ejand y; = y,} or {y,y, € E,and X, = X, }.

If Gz is a (p1, gi1)-graph and G: is a (p2, g2)-graph, then G, xG, is a
(P1p2, P1G2+p20s)-graph.

Now, the graph m-cube Qnm is defined recursively [3] by Q, = K,
and Q,, =Q,,; xK, for m>2. Thus Q,, has 2" vertices which may be
labeled by the binary m-tuples (s;,s,,..,S,,) Where each s; is 0 or 1, for
1<i<m. Two vertices of Q,, are adjacent if their binary
representations differ at exactly one place.

The diameter of Q,, is m[7], and Q,, is m-regular graph.
We next describe the Steiner n-diameter of the m-cube Qm.
Proposition 2.1. For m>2 and n>2" —m+1,
diam Q, =n—-1
Proof. Since Q,, is m-connected [3], so the removal of any (m-1)-subset
of vertices produces a connected subgraph of order 2™ —m+1.

That is for any subset S of order n>2" —m+1, the induced subgraph
(S) is connected, which implies that

d(S)=n-1
This completes the proof. L
Proposition 2.2. For m>2 and 2<n<2" —m,

diam Q. >n
Proof. We assume the contrary, that is we let diam Q,. < n, then for any
n-subset S of vertices of Q,,, d(S)=n-1. This means that the removal
of any V — S subset of vertices produces a connected subgraph of Q,,.
Thus, Q,, is (V — S|+ 1)-connected.
But V —S|+122" - (2" -m)+1=m+1
Contradicting the fact that Q, is m-connected, so, we must have

diam Q. >n. =

Proposition 2.2 states that for 2<n<2™ —(m-1), n is a lower bound
for diam, Q.. We can improve this bound in the next proposition.

Proposition 2.3. For 2<n<2™ —m
diam,Q,, > max{m,n}
Proof. It is clear that, this is true for m=2 and m=3.
It is known thatdiam,Q,, =m, and max{m,2}=m > 2,
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So it is also true for n=2.
(@) If max{m,n}=m, that ism>n, and if S contains u, =(0,0....,0)
and u,, =(1,1,...,1), then d(u,,u,,)=m and d(S)=m.
Therefore diam, Q,, = m.
(b) If max{m, n}= n, then by Proposition 2.2, diam"Q_ >n.
So, diam’,Q,, > max{m,n} for 2<n<2™ —m, |

In the case of n=3, we have the following result.
Proposition 2.4. For m> 3

diam,Q, =m.

Proof. The proof is by induction on m.

It is clear that diam;’Q3 =3, thus assume m > 3. Suppose that the
result is true for m = k(> 3), and consider m =k +1.

Let S ={u,,u,,u,} be any 3-subset of vertices of V (Q,;).
We know that

Quir =Qi xK .
If SV (Q,)or V(Q,), then by induction hypothesis d(S) <k, where
Q, is the second copy of Q, . (See Fig. 2.1).

JvwHo

—

!.II ’
u v w Q,

Fig. 2.1.

Now, let u;,u, eV(Q,) and u; eV (Qy), and let u; be a vertex in
V(Q,) adjacent to u, (see Fig.2.1), then

d({uy, u,, U )<k
Thus,

diam;Q,,, <k +1=m
By Proposition 2.3, diam,Q,, >m, because 2< 2™ —m for m > 3.
Thus,

diam,Q,, =m. u
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We next investigate the Hosoya polynomial of Steiner 3-distance
of Q,,, which is obtained as a reduction formula in the following

theorem.
Theorem 2.5. For m> 3,

H3(Qns X) = (2+6X)H ;3 (Qryoyi X) +4XH Qg X),
where
H,(Q;X)=2"(1+x)™"" —2m72,
Proof. Let S be a 3-subset of vertices of V(Q,), and consider
Q,, =0Q,,_; xK,, assuming that Q,,_, and Q,_, are the two copies of
the (m-1)-cube in Qm.
We consider three cases for de (S).
Case l. If SV (Q,,,) orV(Q;,_,), then
de (S)= de_l (S)= dQ,m_1 (S).
The Hosoya polynomial corresponding to all such S of this case is
F(X)=2H3(Q,1; X).

Case Il. Let u,v,w be any 3 vertices of V(Q,,_;) and u’,v’,w’ are the

vertices of V (Q/,_,) adjacent respectively to u,v,w as shown in Fig. 2.1

for k=m-1.

If S={u,v,w'}, {uv,wHu',v,w}, {u,v,wHu',v,w'}or {u,v',w'} then
do (S)=1+dq 1({u,v,w}).

Thus, the Hosoya polynomial for all such six possibilities of S is
F,(x) =6xH3(Qpy; X)
Case I If S ={u,u’,v}, {u,u’,w}, {u,u’,v'} or {u,u’,w'} then
do (S)=1+dq (S)=1+dq | (S"),
where S'={u,v} or {u,w}and S”={u’,v'} or {u",w'} and d, (S’) and
do (S") denotes the ordinary distances of S’and S"in Q,_; and
Q/,_;, respectively.

Thus, the Hosoya polynomial for all such possibilities of S in this case is
Fy(X)=4xH (Qp 43 X).

Now, adding the polynomialsF,(x), F,(x) and F;(x) we obtain the

required reduction formula. B

Returning to the reduction formula obtained in Theorem 2.5, we
find that H;(Q,,; ) can be simplified as shown in the next corollary.
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Corollary 2.6. For m>3
m—2
H3(QniX) = 4%7 (2+6X) ™7 +4x 3 (2+6x) " H3 (Qpy: X)
k=1

Proof. We know that
H3(QuiX) = (2+6X)H3(Qp_y; X) +4XH(Qr, 4 X)
= (2+6X)[(2+ 6X)H3(Qr_3 X) + 4XH; (Q_p; X)]+ 4XH 3 (Qp_y: X)
= (2+6%)° H3(Q_: X) + 4xX[(2+ 6X)H; (Qn_z: X) + H3 Qs X)]

= (246X)" 2 H3(Qy: X) +4X[(2+ 6X)™° H(Qpy_m_zyi X)
+(2+6x)"" H, (Qumz): X) + ...
+ H,(Qpyi X)]
It is obvious that H,(Q,;X) =4x>
Hence
m-1
Hi(Qm:X)=4x*(2+6X)" 2 +4x D) (2+6X)" " "H,(Q;;X). m

r=2
Next corollary computes the Wiener index of Steiner 3-distance of

Qm-
Corollary 2.7. For m> 3

W, (Q,.) =8™2(3m + 2) + 2™ n§4k et m — k) + (27 —1)(3k + 1)},

k=1

3. The Square of a Path (P;?)
The n™ power G"[6] of a connected graph G has vertex set V (G)

and for each distinct vertices u,v of G", uve E(G")whenever
1<dg(u,v)<n.
It is clear that, if diamG = n then G" is a complete graph.

In [7], W. A. M. Saeed proved that

diamG" =[dla:16—l.

In this section, we consider the square P of a path P,, with

respect to Steiner distance. First, we find the Steiner n-diameter.
Proposition 3.1. Foreven t >4, and for 2<n<t, the Steiner n-diameter

of P2 is LN L
2 2

Proof. The graph P? is shown in Fig.3.1.
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U, T Ug Ug Uiy Ui_o U

Fig. 3.1. The square of P,.

Let P, =u,,u,,...,u,, then
V(P?)=V(P)={u,,u,,...,u}.
If S is an n-subset of vertices of V(P?) such that d(S) is

maximum, then S must contain the two vertices u: and u; the other
vertices of S must be the first n-2 vertices from the sequence (See Fig.
3.1).

UZ,U3,U4,...,Ut_2,Ut_1.

) n )
Therefore S  contains {T J vertices from one of the

sets A={u,,u,,...,U,_,}, B={ Us,U5,...,u,, } and contains [T—l

i i n i
vertices from the other set. If S contains [ T—l vertices from A, then

T(S) must contain the u, —u, path u,,u,,u,,...,u,_,,u,, and so S will

contain the [TJ vertices from B, and the size of T(S) will be

%+[n%2 J But if S contains [ %2] vertices from B, then T(S) must

contain the u, —u, path u;,us,Us,...,U,_;,U,, and the size of T(S) will
alsobe L+ 122

2 2
Hence, the proof of the proposition. |

Proposition 3.2. Forodd t > 3, 2<n<t, the Steiner n-diameter of Pt2 IS

t—-3 |n
—+| .
2|
Proof. The proof is similar to that of Proposition 3.1. It is clear that there

i i -1
Is exactly one shortest u, —u, path in Ptzwhose length is o namely
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u,,Us, Ug,...,U,_,,U,. The other (n—2) vertices of the n-subset S are the
first n—2 from the sequenceu,,u,,u,,...,u,_, . Therefore S will contain

the first [%z—l vertices from {u,,u,,...,u, , }.

Thus S of maximum Steiner n-distance has
t—1 n-—2 t—-3 n
d(S)= + = +|—=1.
(5)=73 [ 2 ] 2 M "

Next, we find Hosoya polynomial of the Steiner 3-distance of the
square of a path P,.

Theorem 3.3. Let t =2s>6 be an even positive integer, then
H3(P?;x) = H3 (P2, X) + F(X)
where
s—1 )
F(X)=2x"+2x° + D [4(x+1) j — 2x — 2]x!
j=2
Proof. The graph P? is shown in Fig.3.1; its vertices are relabeled as
shown in Fig.3.2 in order to simplify the derivation of F,(X).

W \wmlv

’

V1 V5 Vs v, Vio Vs Ve
Fig. 3.2. P?

Let P2, be obtained from P? by deleting the two vertices v, V',
Then

H3 (P %)= Hy (P25 %) + Fo(x),
where

Fo(x)=Yx"®),
S

in which|S|=3, SN{v,,vi}# ¢ and SNV (PZ,)#¢.
To find F,(x) we consider several cases for S.

(1) If S={v,,v.,w}, weV(P2,), then
d(S)=s+1-i,whenw=v, orv , 6 1<i<s-1.
Thus, the polynomial corresponding to all such S’s of this case is
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s—1 ] s
f() =2 x*" =2 "x).
i=1 j=2
(2) If S={v,,v;,v;}, 1<i< j<s-1,then
d(S)=s-i.
It is clear that for each value of i there are (s—i—1) values of j. Thus
s—1 _
the corresponding polynomial is Z(s —i=1)x>.
i=1
The same polynomial is obtained if S ={ug,u;,u’}.

Therefore, for such 3-subsets S we get
s—2 _ s-1 .
f,(X)=2D (s—i—1)x*" =2 (j—1)x’.
i=1 j=2
() If S={vg,v;,vi} or {v{,v;,v{}, then

d(S)=s-i+1,1<i<s-1.
Thus, the corresponding polynomial is

s—1 . s=1
f3(S)=2D x* =2 xI*,
i=1 j=1
(4) 1f S={v,,v;,Vi}, 1<i< j<s—1, then
d(S)=s+1-i.
Similarly, if S={v,,v{,v;}, 1<i< j<s-1,then

d(S)=s—i
Thus, the corresponding polynomial is

B ST

= P

_ (j—D(x+1)x’.
(B)If S ={v;,vji,v'j}, 1<i< j<s-1,then
d(S)=s—-i+1,
and there are (s—1—1) values for j.
Similarly, if S={vg,v{,v;}then d(S)=s—i+1forl<i<j<s-1.
Thus, the polynomial corresponding to all these 3-subsets is

s—2 . s—1 .
fs(x)=2D (s—i—-1x* =2 (j—1x!*.
i=1 =2

(6) If S={v,,v{,Vvi}, 1<i< j<s—1,then
d(S)=s-1.
The corresponding polynomial is

Il
N
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s—2 )

Z(s —i=1)x*".

i=1
Similarly, if S={vg,v;,v;}, 1<i<j<s-1, thend(S)=s—i+1.
The corresponding polynomial for such S is

s—2 )
Z(s— i—1)x5'*,
i=1

Thus, the distance polynomial for all these 3-subsets S in this case is

fG(X)= §(S— i _1)X5—i + iz(s_ i _1)Xs—i+1

s—1 )
= (i—1(x+1)x’!
j=2
These are all possibilities of S. Therefore

6
Fs(X)=Z f (x)

s=1 s-1 _ o1
=2x2+2x°+ 22 x) + 2D (j—1x) + 2D x I

j=2 j=2 j=2
s-1 . s—1 )
+22 (J—D(x+Dx) + 2D (j-x!*™.
=2 j=2

Simplifying the above summations we get the reduction formula given in
the theorem.

The Wiener index of the Steiner 3-distance of P72 for even t is

given in the next corollary.
Corollary 3.4. For t=2s>4,

WS*(Pt2)=W;(PtEZ)+gs(s—l)(zs—n.
We now consider the square of a path P,of odd order t=2s+1.

The next theorem gives us a reduction formula of H,(P?;x).
Theorem 3.5. For t =2s>7, we have
H3(P5x) = H3 (P21 )+ Fo(x),

where
s—1 _
Fo(X) =%+ ) [(x+3)j + x]x'**.

j=1
Proof. The graph Pt2 Is shown in Fig. 3.3 where the vertices are labeled
as that of Fig. 3.2.
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W WHl
Vi Vo Vs Va Vio Ve, Vs
Fig. 3.3. P2, odd t
P._,° is obtained from P,” by removing vertex v.,,. Thus
H3 (P25 x) = Hy(P2io1; X) + Fo(X),
where
Fo(x)=Yx"®),
S

in which the summation is taken over all 3-subsets S
S={v u;} forall u;,u JEV(Pt 1)

We consider the following 5 cases.
DIf S={vy,,v;,v;}, 1<i< j<s, then

d(S)=s+1-i.

The number of values of j is (s-i) for each values of i. Thus, the
polynomial corresponding to such 3-subsets S of this case is

f (X) Z(S s+1 i SinjH.

(2)If S={vg,,,V;,V } 1<i<s, then
d(S)=s+2-i.
Therefore the corresponding polynomial is

S . s-1
f,(x) =) x"" =%+ x*D %!
i=1 ji=1
(3) If S={vy,,vi,Vi}, 1<i< j<s, then
d(S)=s—-i+1,

and for each value of i there are (s-i) values for j. Thus, the
corresponding polynomial for such case of Sis

f(X) Z(S SI+1 ZJXJH

4) If S={vs+1,vi,vj}, 1<i< jSS,then
d(S)=s+2-i,
and for each value of i there are (s-i) values for j. Thus, the
polynomial corresponding to all 3-subsets S of this case is

s+l |’ j
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f (X) Z(S S+2 i — XZZJXJ

(5) Finally, If S_{vs+1, Vil 1SI<]SS, then d(S)=s+1-1i, and

there are (s-i) values for j for each value of i. Therefore, the

corresponding polynomial IS
s—1

f (X) Z(S S+l i ZZij+l-
j=1
Thus,
5 s—1 .
F(X) =D ()= (jx+ x* + jx+ x*j+ jpOx’ + x°
r=1 j=1
s—1 )
=x*+ D [(x+3)j + x]x . u

=1

The next corollary gives us the Wiener index of the Steiner 3-distance
of P, for odd t.

Corollary 3.6. Forodd t=2s+1, s> 2, the Wiener index of P? is
WS*(Pt2)=W3*(Pt31)+%(5—1)(452 +7S+6)+2.
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