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  الخلاصة
لخوارزميات المتوازية للمتري   في حقل ا  في هذا البحث تم استحداث خوارزمية جديدة        

دالة لا خطية مع الحصول     ) 32( وباستخدام   (Wolf-powell)المتغير بالاعتماد على شروط     
  .على نتائج مشجعة مقارنة بالخوارزمية القياسية

  
Abstract 

In this paper, a new optimal parallel line search step-size is 
designed to improve the parallel VM algorithm and satisfies Wolf's-
Powell condition by using thirty-two non-linear test problems. The new 
proposed algorithm has been worked well on our selected test problems, 
and it has a superiority on the standard algorithm.   

 
1. Introduction 

The parallelization of QN methods has been considered by several 
researchers in the past decades. The first work was done by Satraeter 
(1973) for the symmetric rank-one method and it was later modified by 
Van Laarhoven (1985). At each step, this algorithm updates the Quasi-
Newton matrix along m independent directions by parallelly evaluating 
values of the functions and the gradients at m points.  

For a positive definite quadratic function, it can be shown that the 
method converges in one iteration regardless of the initial starting point. 
Computational results of Laarhoven (1985) for a set of well-known 



A new Parallel VM algorithm for solving large scale optimizations problems. 

112 

problems with no more than four variables indicates that the algorithm 
improves the total number of parallel function evaluations, and the total 
number of iterations.  

In the well known variables metric algorithms, we start from an 
arbitrary point x°∈ En. The search direction sk at the k-th iteration of the 
algorithm is constructed through the following relation:  

)kx(fkHks ∆−= ………             (1) 
where f is the function to be minimized (assumed to have continuous 
second derivatives),xk the current iteration point and Hk an approximation 
to the inverse Hessian matrix at xk. 

The next iteration point xK+1 is obtained by  
K

K
K1K sxx λ+=+ ………        (2) 

where λk stands for an approximation to a minimum of along the search 
direction sk from xk. Finally, we update Hk by an additive correction Dk, 
yielding  

kk1k DHH +=+ ………      (3) 
where Dk depends on  

k1kk xx −=σ + ………      (4) 
and 

)x(f)x(fY k1kk ∆−∆= + ………     (5) 
There are many possible choices for the correction matrix Dk. We 

consider first the so-called rank-two updating formula (Fletcher, 1980) 
where Dk is given by  
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and we update Hk with conjugate gradient method (CG) method by 
calculating the search direction Sk+1 as: 
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where Hk+1 is any positive-definite symmetric matrix, or preconditional 
CG method (PCG).  

The search direction (defined in (7) was first proposed by Nazareth 
(1979) and was also called the preconditioned Hestense and Stiesfel 
method. It has been shown that for a quadratic q as given by: 

xbAxx
2
1)x(q TT −= ………       (8) 

It must be true that  
H1=A-1 
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Thus, it takes only one linear search to find the minimum of q, for 
arbitrary initial point x°∈En, since the first search direction is the Newton 
direction. A sequential variable metric method, however, needs n linear 
searches. We expect a similar reduction in linear searches for the non-
quadratic case. This is extremely important, since linear searches take a 
large amount of function evaluations. A further reduction in computing 
time can be achieved by parallelizing the linear search itself. (see Van 
Laarhoven, 1985).  
 
2. Standard Parallel Al-Bayati and Aaref2004Self-Scaling Algorithm: 
Step 1: for any sarting point xo, and initial matrix H0 (usually H0=I) and n 

linearly δ1, δ2, …, δn ,set k=0.  
Step 2:  let s1 )1(1 xfH ∆−=  
Step 3: for k=1,…. n, K

K
KK sxx λ+=+1 …where Kλ  argmin f( K

K
K sx λ+ )=ELS 

(exact line search; sequential wolf line search conditions is used).  
Step 4: check if ║∆f(xk+1)║<∈, is small number, stop otherwise, continue.  
Step 5: calculate in parallel ∆f(xk), ∆f(xk1), …, ∆f(∆kn), where xkj = xk + δj 
and ykj = ∆f(xkj) - ∆f(xk) 
Compute γkj, j = 1, …, n through 
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Step 6: develop search direction 

T
1k1k

T
1kk1k

1kk
1k

gg
gHggHS
++

++
+

+ +=  

Where gk+1= ∆f(xk+1) 
Step 7: if available storage is exceeded then employ a restart option either 
with k = n or with powell switching criterion or 0gHg 1kk

T
1k >++  where 

0gHg 1kk
T

1k >++  guarantee the positive definiteness of H.  
For more details see Al-Bayati &Aaref (2004). 
 
3.  New Parallel VM algorithm 

The proposed parallel VM(PVM) algorithm consists of the 
following steps: 
1) Initialization: let k= 0, and x° be the initial guess of the minimum 

and H° = I be the identify matrix. Set ε > 0 as the required accuracy.  
2) compute the function and gradient values at xk  

let fk = f (xk) 
and gk = ∇f (xk) 
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3) compute the parallel search directions. Let m1 > 0 be the number of 
processors available for computing the search directions in parallel 
compute  

1kjk
j
k m...,,2,1j,g)t(Hd =−= ………     (10) 

In this paper, we apply the parallel line search algorithm for the Al-
Bayatiy (1991) VM-algorithm: Proceed as follows: 

Call the line search routine in parallel along each search direction 
1

j
k m...,,2,1j,d = , stop executing this procedure once a line minimum λk 

has been found to satisfy the following Wolf's condition along any search 
direction j

kd :  
j
k

T
kk

j
kkk dgx0001.0)dx(f λ≤λ+  ………     (11) 

And  
j
k

T
k

j
kkk dgx09.0)dx(f ≥λ+∇ ………      (12) 

Let *
kd be the search direction that αk has been found successfully. 
In this step, if a line minimum points are found from more than one 

search direction, then *
kd  is choses to be the search direction that attains 

the lowest minimum point. The details of our new line searches used in 
our proposed parallel algorithm is given bellow: 

 
3.1 Parallel Line Search Step (PLS) 

The parallel line-search procedure works as follows. Let m2 be the 
number of parallel processors available for locating the minimum along a 
particular search direction 1

j
k m...,,2,1j,d = , let λmax be the maximum 

allowable step-size, and denote ψ(λ) = f (xk + λ j
kd ). The parallel line 

search process consists of the following steps: 
1. Choose the step sizes: 

Let 0 < λj < λmax , i = 1, 2, … m2 where λ1 < λ2 < λ(m
2
) are m2 

different approximately chosen step sizes. For instance, we may chose λ1 
= 0.5, λ2 = 1.0, … , λm2 = λmax , let Φ be the set of these step sizes.  
 
3.2 Compute the function and gradient values concurrently  
For i = 1, 2, … , m2, compute concurrently 

j
k

i
k

i
k dxx λ+= ,  

)x(ff i
k

i
k = , 

)x(fg i
k

i
k ∇=  

 
3. Test for successful points 
     Let Φ* be the set of step sizes λi such that for each λi ∈Φ* , λi satisfies 
the Wolf's conditions (2.3) – (2.4). If Φ* ≠ φ (empty set) and *i

k Φ∈λ  is 
the step size which corresponds to the minimum functional value, that is,  
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)dx(f)( j
k

i
k
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k min
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λ+=λΨ
Φ∈λ

 

Then set i
kk λ=λ  and return to the main PQN routine; otherwise, 

proceed to step 4. 
 
3.3 Choose interpolation points: 

Let Φ+ be the set of step sizes such that for each λi ∈Φ+, λi satisfies 
0gd i

k
j
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> . 
Let Φ- = Φ - Φ+. Choose λ1 ∈Φ- such that  )dx(f)( j
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And choose λ2 ∈Φ+ such that  )dx(f)( j
k
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λ+=λΨ
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If Φ- = Φ, then choose λ1= 0. If Φ+ = Φ, then choose λ2= λm , 
where λm ∈Φ- such that 

)dx(f)( j
k
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3.4  Apply the cubic interpolation technique 

Let ϕ(λ) be the cubic polynomial passing the two points λ1 and λ2. 
Let λ* be the minimum of ϕ (λ)  
Compute )dx(f)( j

k
*

k
* λ+=λϕ  

and  
h* = ∇ψ (λ*) 
  If λ*satisfies Wolfe's conditions(2.3)–(2.4),then set                                                            
λk=λ* and return to the main PQN routine. Otherwise, if 0)(.d *j

k

T

>λψ∇  
then replaces λ1 with λ*; if 0)(.d *j

k

T

≤λψ∇ then replace λ2 with λ*. Repeat 
step 5. 
 
4.  Outlines of the new proposed algorithm. 

In this section, we are going to a new optimal step by modifying 
the parallel Al-Bayati self- scaling (1991) Algorithm by using parallel 
line search procedure (λi) and satisfies the Wolf's condition.  

 
4.1  Outlines of the new parallel VM- algorithm. 
Step 1: for any starting point xo, and initial matrix (usually Ho = I), and n 
linearly δ1, δ2, …, δk, set k=0. 
Step 2: let s1 = -H1 ∆f (x1) 
Step 3: for k=1, …, n, i= 1, …, m, xk+1 = xk + λi sk 
Where λi is parallel line search satisfies Wolf's condition 

j
k

T
kk

j
kkk dgx0001.0)dx(f λ≤λ+  and satisfies conditions (3.1,3.2,3.3) 

Step 4: check if ║∆f(xk+1)║<∈, ∈ is small number, stop otherwise, 
continue.  
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Step 5: calculate in parallel ∆f(xk), ∆f(xk1), …, ∆f(∆kn), where xkj = xk + sj 

and ykj = ∆f(xkj) - ∆f(xk), jTkj
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Step 6: develop search direction 
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Where gk+1= ∆f(xk+1) 
Step 7: if available storage is exceeded then employ a restart option either 
with k = n or with powell switching criterion or 0gHg 1kk

T
1k >++  where 

0gHg 1kk
T

1k >++ guarantee the positive definiteness of H.  
 
5. Numerical Results and Conclusions: 

The comparison tests involve well knowon test functions with 
different dimensions (Bunday, 1984). All the results were obtained using 
programs written in FORTRAN.  

The comparative performance of the algorithms are evaluated by 
considering both total number of iteration (NOI) and total number of 
function (NOF). The stopping criterion is taken to be  
║∆f(xk+1)║< 5*10-5 

The line search employed is the cubic fitting technique which uses 
function values and their gradients. Which is fully described in Bunday 
(1984).  
Two algorithms were tested, namely  

1) Standard Parallel Al-Bayati and Aaref(2004) Algorithm. 
2) The new proposed algorithm. 

Our numerical results are presented in two tables. Table(5.1) 
compares between the two algorithms using cubic fitting line search with  
Wolfe condition, for sixteen small dimensionally test functions 4≤ n ≤ 80. 
It is clear that the idea of parallel algorithms is well defined in the field of 
parallel methods. 

Namely, there are about (17 )% NOI and (12)% NOF 
improvements on the standard Al-Bayati's*Aaref (2004) method. Also, 
table (5.2) represents the results of our numerical comparison between the 
two algorithms, but for sixteen large dimensionality test functions 100 ≤ n 
≤ 500. In fact the new algorithm in this case and for the selected set of 
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test functions has an improvement of about (19)% NOI and (15) NOF on 
the standard well known algorithm.   

 
Table(5.1): Comparative of New-algorithm against the standard Al-

Bayati&Aaref(2004)algorithm for 4≤n≤80 

Test Function n Standard parallel Al-
Bayati &Aaref(2004)  (new) 

  NOI NOF NOI NOF 
Rosen brock 4 8 27  4 21  

Powell 4 19 43 19 43 
Wood 4 14 33 14 33 
Wolf 4 15 40 11 31 

Helical 8 17 38 15 30 
Cubic 10 17 44 9 41 
Recipe 10 18 45 18 45 
Miele 10 13 34 15 34 
Miele 20 13 34 13 34  
Edger 20 4 13 4 9 

Tridigid 30 12 30  12 30 
Helical 40 16 35 9 30 
Wolf 40 40 80 30 72 
Powel 40 15 34 11 25 
Wood 60 15 34 11 25 
Rosen 80 8 17 8 9 
Total  244 581 203 512 

 
Table(5.2): Comparative of New-algorithm against the standard Al-

Bayati&Aaref (2004) algorithm for 100≤n≤500 

Test Function n Standard parallel 
Bayati&Aaref(2004)  New 

  NOI NOF NOI NOF 
Wolfe 100 45 89  34 75  
Cubic 100 11 37 11 37 
Dixon 100 21 67 11 50 
Powell 120 21 48 14 31 
Rosen 120 12 35 10 32 
Wood 120 18 35 17 35 
Helical 160 10 20 10 20 
Edger 160 10 21 6 11 
Reciep 200 10 19 9 13  
Miele 200 28 72 24 67 

Tridigid 200 30 40 28 40 
Rosen 240 12 35 10 30 
Miele 300 30 72 24 67 
Cubic 350 13 36  11 37 
Reciep 400 4 13 9 13 
Powell 500 22 48  14 31  
Total  297 687 242 589 
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6.  Appendix:  
1-  Generalized Powell Function: 
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2-  Generalized Wood Function: 
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3-  Generalized Sum of Quadratics Function: 
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4-  Generalized Dixon Function:  
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5-  Generalized Rosenbrock Function: 
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6-  Generalized Cubic Function: 

     
( ) ( )[ ]
( ) .;1,2,1x

,x1xx100f

T
0

2/n

1i

2
1i2

23
i2 1i2

L−=

−+−= ∑
=

−−  

7-  Generalized Tri Function: 
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