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ABSTRACT

Our main purpose in this work is to study the maximal chains in
group-posets to observe that this study gives us indications on the type of
some group actions on posets. Therefore we shall study the behavior of

the group actions on chains .
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8.1 Introduction :

For any group G and any set X , we say that G acts on X from the

left if to each geG and xeX there corresponds a unique element in X

denoted by £x (or some times gx) such that for all xeX and g;,g,€G;

i Cx=x (i) ®1(82x) _(2:2,) .
Such a set X with a left action of G on it , is called a left G-set , or simply
a G-set. [13].

Since the concept of a group action of a group G on a set X began

as a group homomorphism p : G >S4, , we can consider any element g

in G as a permutation g : X —»X with g(x)=2 x for all xeX . So this

concept can be extended on sets with additional mathematical

structure , with p : G —>isom (X,X) and the isomorphism related to the

structure on X.

8.2 Group-posets :

In this section we give the definition of the group actions on posets.

This definition is slightly different from the definition given in [5].

Definition (2-1) :

Let G be a group and P a poset , we say that there is a left action of
G on P if for every geG and peP there corresponds a unique element

gpe P such that for all p,q € P and g,g,,2, € G;
°p=p (i® (B p)=(&:8) p  (ii)ifp)q then Ep) Eq

Such a poset P with a left action of G on it , is called a left
G-poset , (or simply a G-poset) . When condition (ii1) is neglected, P is
called a G-set . For more details see [7], [9] and [10] .
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Also , for any group G and poset P there is at least the trivial action

which defined by : 8p =p for all geG , peP.

The following theorem shows that a group action on poset can be

defined as a poset automorphism on P.

Theorem (2-2):

Let G acts on the poset P. Then to each geG there corresponds an

automorphism Pg OD P defined by :

Pg (p)=2 p for all peP. Also , the map p: G — Aut (P) ; defined by

p (2) =P g for all geG is a homomorphism called the corresponding

homomorphism to the G action on P.
Proof :

Similar to the proof in [9]. |

Proposition (2-3) :
Let E be a G-poset . Then P(E) the family of all subsets of E

(the power set of E) is a G-poset with an action defined by ;

8y —{xeE:& xeY}.forallgeGandY e P(E).

Proof :

(1) Let YeP(E) , then ; eY:{XeE:e_lxeY}:{XeE:xeY}:Y

(i1) For any YeP(E) and g,,2,€G;
1 -1 -1
& (le):{XeE:gz x €8 Y}:{XEE:gl (82 x)e Y}
-1 -1 -1
—{xeE:& & XEY}:{XEE:(g2g1) xeY) =(8:8) v,
(iii) Let X,Y €P(E) with Y>X , and let geG. So XY , thatis 8Xc 8Y .

Hence, 8Y > 8X . Therefore P(E) is a G-poset. |
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Definition (2-4): [16]

Let P be a G-poset . For each peP , the set {geG: 8p=p} is called
the stabilizer of p and denoted by Stabg(p) or Gp.

Proposition (2-5) : [8]

Let P be a G-poset. Then for any peP , Stabg(p) 1s a subgroup of G.

Proposition (2-6) :

Let P be a G-poset. Then for all peP .
(1) G/Stabg(p) is a poset with ;

g, Stabg (p)>g, Stabg (p) if andonlyif Elp>82 p

(2) G/Stabg (p) 1s a G-poset with an action defined by ;

t(g.S‘[abG (p)) = (tg).Stabg (p) forall t,geG.
Proof :
(1)(1) It is obvious that the relation is reflexive .
(i1) Let g;.Stabg(p) > g,.Stabg(p) and g,.Stabg(p) > g;.Stabg(P).
Then &1p>82pand 8:p>8ip.So 8ip=282p.
Hence g;.Stabg(p) = g».Stabg(p).
(ii1) Let g;.Stabg(p) > g,.Stabg(p) and g,.Stabg(p) > g3.Stabg(P).
Then &1p>82pand 8:p>8sp.So 8ip>Esp.

Hence g;.Stabg(p) > g3.Stabg(p).
Therefore (G/stabg(p) , >) is a poset.

(2)(0) € (g.stabg(p)) = (eg). Stabs(P) = g.stabg(p) ,for all
g.stabg(p)e G/Stabg(p).

(11) Let g.stabg(p)e G/Stabg(p) and t,r € G. Then ;
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*(*(gStabg (p))) = "(tg Stabg; (p)) = r(tg).Staby; (p)

= (rt)g.Stab (P) = "(g.Stab (p)).
(111) Let g;.stabg(p) > go.stabg(p) , and t € G.

Then 8lp>82p. So t(g1 p)> t(g2 p

Thatis tglp 182 p. So tg,.Stab; (p) > tg,.Stab (p).

Hence, t(gIStabG (p))> t(g »Stabg (p)) -
Therefore G/Stabg (p) isa G — poset. N

Definition (2-7) : [2]

Let P be a poset . We say that the element a of P covers the element

b of P if a > b and there is no element ¢ € P such thata>c¢ >b.

Proposition (2-8) :

Let P be a G-poset and a,b €P with a covers b , then Eacovers &b
for all geG.

Proof :

Suppose that £a does not cover &p, then there exist at least an

-1 -1 -1
element ¢ € P such that 8a >¢>8b . S0 & (Ba)>8 ¢>8& (8b).

-1 q a -1 -1
Thatis & 8a>8 ¢>8 &b So €a>8 c¢>®b.Hence a>2 c¢> b

and this is a contruduction . Therefore &a covers &b. n

Definition (2-9) : [1]
Let P be a poset . Then the set , C(P) = {(a,b) : a covers b} PxP, is

called the covering poset of P.
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Proposition (2-10) :

Let (P,>) be a poset , then ((P),>)is a poset such that : for all (a,b) ,
C

(a’,b") €C(P) , (a,b)> (a,’b’)if andonlyif {(a,b)=(a’,b") or b>a'}
C

Proof :
(1) Let(a,b)eC(P),then(a,b)>(a,b).

(i) Let(a,b) >(a’,b") and(a’,b")>(a,b).

Then either ; (a,b)=(a’,b"),orb>a’" andb’ >a.

Now sup posethatb >a’andb’ >a, then we have a>b,b>a’,a’>b’andb’ >a.
So, a > a and this is a contradiction . Hence it mustbe(a,b)=(a’,b").

(iii) Let (a,b)>(a’,b")and (a’,b")>(a”",b").
C C

Theneither(a,b)=(a’,b’)=(a’,b"),so(a,b)=(a",b"),orb>a"andb’'>a".

So we have b>a',a’">b’andb’>a". That is b>a".Hence(a,b)>(a",b")
C

Therefore C(P) is a poset. u

Theorem (2-11) :

Let P be a G-poset . Then C(P) is also a G-poset with an action
defined by; &(a,b) = (8a,8 b) for all (a,b) € C(P) and geG.
Proof :
() ®(a,b)(®a,® b)=(a,b) for all (a,b) eC(P).
(ii) 2152 (a,b) =21 (522,82 b) = (%1 (%22),%1 (%2 b))
= (81824,8:18: 1) =882 (a,b)

For all (a,b) € C(P) and g,,g, €G.
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(iii) Forall(a,b),(a’,b") e C(P)and g € G, with (a’,b") > (a,b).Thenb’' > a
C

So &b’ >8 a Since(a,b),(a’,b")e C(P).Then (8a,8 b),(8a’,8 b") e C(P)
Thatis(8a’.8 b")> (8a,8 b). Hence 8(a’,b")> 8(a,b).
C C

Therefore C(P) is a G-poset. |

§3. Group-Chains :

In this section we study the group actions on chains and the behavior

of these actions and when the trivial action is the only one.

Definition (3-1) : [2]

A poset P is called a chain (or totally ordered set) if : for all a,b €P :
a>borb>a.

Equivalently, the poset P is called a chain if for every two different
clements a,b of P eithera>borb>a .

From the definition above , we conclude that every element of a
chain covers at most one element and covered at most by one element .
Also any chain has at most one maximal element I and one minimal

element 0.

Proposition (3-2) : [2]

Any chain X of n elements is isomorphic to the set of natural numbers

n = {1,2,...,n}. That is there exists a bijection function f:X — nsuch that:

f(x,)=f(x,)if andonlyif x, > x,.

Theorem (3-3) :

Let X={x,},_be a G-chain and I be a set of successive integers

with ... X, <X; <X, <...
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If &x; =x;then &x;,, =x;,, foralli,j,i+r,j+rel

Proof :

(1)Let i+1,j+1el. Since X is a chain , then x , covers x, and by
proposition (2-8), €x;,covers Ex..

Since 8x; = X; .then x,, covers €x,.S0 8x,,, =X

(i))Now we shall use the mathematical induction to prove that
Ex, =Xj,-From (i) we see that ExX.\1 =xj,for r =I. Suppose

gxi+n :xj+nf0r r =n and itn , j+n € I. Since X is a chain , then

g g g _8
covers X, . S0 X, covers ©x; . Now from ©x;,, =° x;,, we

X i+n+1

g _
have Xi+n+l — Xj+n+1 .

Therefore ,8x,,, = Xj foralli,j,itr,jtre L. n

Lemma (3-4) :

Let X be a G-chain and geG . If 8x,=x,and x, <x then

-1
& x, <x;forall x; eX.
Proof :
—1 -1 -1 -1 -1
gxi:Xt:g (gxi):g X4 —8 gxi =8 X4 =8 X =X;.
-1 -1 -1
Also,x; <x, =8 x,<® x,. Therefore & x; <x;. m

Proposition (3-5) :

Let X be a G-chain and geG with g~' =g. Then geStabg(x;) for

all x; € X.
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Proof :
-1
Let 8x, =x, Then x; =8 x,.Sox; =8 x,. Suppose that x, #x_.
Then either x; < X, orx, < x; If x; < x, then &x; <€ x, So,x, < x;.That
is a contradiction . Similarly we have a contradiction if x; < x;.
Hence , since X is a chain , then x; = x,. So, 8x; =x;.

Therefore ge Stabg(x;) for all x;eX. [

Theorem (3-6) :
Let (X , <) be a G-chain . Then the action of G on X is only the

trivial action if X has O or I.

Proof :

(1) Let 0 = x,€X and geG. Suppose that gx1 # X, then x, <8 x;[x; =0].

-1
Also , & x; <x,=0. So this is a contradiction . So, £x, =x,.Now
from theorem (3-3) we have gxi =x; forall x; € X and geG.
(ii) Let 1= x,eX and geG . Suppose that £x, # x,, then &x, < x,[x, =1].

-1
Also, x; <€ x,. So this is a contradiction .

So , 8x,=x,. Now from theorem (3-3) we have ©x;=x;for all

x; € X and geG. |
The following corollary can be proved directly from the previous

theorem , but we will give another proof.

Corollary (3-7):
Let P = {p1,ps,....pn} be a G-chain with p;>p,>...>p,. Then P is a

trivial G-chain.
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Proof :

Suppose that there exists geG and p; € P such that gpi =p, with t#
. That is &p; = p,. Suppose that t >i , then ng(n_t) = Pt+(n-t) = Pn Such
that i+(n-t) e {1,2,....n}. Also, gpi+(n_t)+1 =p,.such that
1+(n-t)+1 € {1,2,...,n}.But ‘P‘ =n. So py+1 €P. Hence gpiJr(n_t)Jrl # Pyl -
Now let gpi+(n_t)+1 =p, . Since P,y > DPiwoas then

gpi +(n—1) >8 Dit(m—t)+1- SO, pn > Pr and this is a contradiction . Similarly

we have contradiction when t <i. Hence t =1 .

Therefore the G action on P is the trivial action only. n

§.4 Maximal chains :

Finally in this section we will study the maximal chains in
group-posets and we shall observe that the study of these kinds of chains

give us some indications on the type of some group actions on posets.

Definition (4-1) : [3]
Let P be a poset and X ={x;,x

ii1s--»X:} < Pbe a chain such that

Xi <Xj1 <... <Xj, then X is called a maximal chain in P if and only if :
(1) There 1s no element as ¢ € P such that : x; <xj; <...<c<...<xj.

(1) There 1s no element as k € P such that : k <x; or x; <k.

Proposition (4-2) :

Let P be a G-poset and Y be a maximal chain in P. Then 8Y is also

a maximal chain in P with ‘g Y‘ = ‘Y‘ )
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Proof :

(1) Since Y is a maximal chain in P, so we can say Y = {X;,Xi+1,...,Xj}such

that X, is covers x, for all i<r<j.So, 8Y={8x,8x,,,..8 X ;} for
all geG. Hence ©x; <8 x;,, <...<® Xj. Suppose that there exists an

element as ceP such that 8x; <€ x,,, <...<c<..<8 X

-1 -1 -1 -1
Then & (8x;)<® (8x;,)<..<® c<..<® (Bx)).

That 1s x; <x;,; < ...<g_l ¢<..<x; and this is a contradiction since

Y is a maximal chain.
(ii) suppose that there exists an element beP such that b <8 X;then :
b<® x; :>g_1 b <x; :>g_l b=x; =>b=2x;. Similarly,if ng <a then
€x; =a. Therefore €Y is a maximal chain.

Now let the map Y —8 Y is defined by : f(y) =8 y forallye Y .
f 1s injective map since : f(y;)=1(y,) =8 Y =8 Yy =Y =Y,

Also f is onto since if x €® Ythen there exits yeY such that

x =8 y. Hence , fis bijection and ‘Y‘ :‘gY : n

Definition (4-3) : [4]
Let P be a poset and x € P . Then the subset C of P is called a cutset

of the element x in P if every element of C is not comparable with x and
all the maximal chains in P cut with Cu{x}. We shall note to this set

by cut x.

Theorem (4-4) :

Let P be a G-poset and C is the cutset of x €P . Then 8Cis the

cutset of &x . Thatis 8C =cut 8x.
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Proof :
—1 -1
Lety € cut®xthen & y is not comparable with x. So & yis not
-1 -1

comparable with x. Thatis & yeC.So (8 y)e® C. Thatis ye® C.

Hence cut $x <& C.

Now let 8s€® C. Then s €C . So s in not comparable with x .

That is &s is not comparable with €x.So &se cut €x. Therefore

EC=cut®x m

Theorem (4-5) :
Let P be a finite G-poset with P(M)= {M|,M,,...,M,} be the set of the

maximal chains in P with ‘Ml‘ = ‘MJ.‘ if and only if 1 = j. Then the trivial
action is the only action of G on P.

Proof :

To prove this theorem we must first prove that SM; =M, for

1< i < n, after that we must show that 8x =x for all x € M; and geG

First part :

Our argument proceeds by induction on the number n to prove that
EM; =M.forall ISi<n.
Let ‘Ml‘ =1, ‘MZ‘ =T1,,...,

Mn‘= 1, such that ri<r,<...<r,.
(i) Let n=2 . That is P(M) = {M;,M,} with [M,| # |[M,|.

Suppose that M, #M, , then M, =M,. So |EM,

=|M,|=|M,| and

this is a contradiction . Hence &M, =M, . Similarly we have EM, =M, .
(ii) Now assume that n=k with &M, = M, forall 1<i<k.

Let n=k+1 . Since M, =M, forall 1<i<k.
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Suppose that M, ,, =M, ,, then M, ,, = M; for some 1< j < k. So

‘ngH ng+l

=‘Mj‘=rj.But

=‘Mk+1‘:rk+1. Hence 1; = 1y , that is

j=k+1 , and this is a contradiction since k+1>j . So M, ,; =M, ,,.

Second part:

Since {Mi}, is the family of the maximal chains in P , the M; is a

finite maximal chain in P. Using corollary (3-7) we get : 8x =x for all
xeM;, geG with 1<1<n.

Therefore from part one , the action of G on P is the trivial
action only. u

The above theorem is not true when P has two maximal chains M;,M;

with [M,|= ‘MJ‘ as in the following example .

Example (4-6):
Let P = {ab,c,d} be a poset with a > b and ¢ > d. So
PM) = (M |,My:M,={a,b} , M,={c,d}}. Hence ‘Ml‘ :‘Mz‘.

Let G =C, ={e,g} with g2 =e,andBa=c.8b=d.

Therefore P is a G-poset and the action is not trivial .

Proposition (4-7) :
Let P(M) = {M|,M,,...,M,} be the set of the maximal chains in the

G-poset P. Let €M, = M, then gMj =M, forall j=1 .
Proof :
Suppose that gMj =M, for some j#1i. Then gMj =8 M; for some
-1 -1
j#i.S0 & (8M;)=% (8M;)for some j#i.
Hence M; = M; for some j#1. This is a contradiction since j#1

implies ‘P(M)‘ <n. Therefore &M j=Mforall j=1i. |
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Proposition (4-8) :
Let P be an injective G-poset , and P(M) = {M;,M,,...,M,} be the

family of the maximal chains in P. Then :
(i) (M,|=|[M,| if and only if i =j ) ,implies that G = {e}.

(i) If M| =|M, | =...=

, then ‘G‘ <n!.
(i11) If we reordered the maximal chains such that :

IN,|=|N,|=..=|N |#|N,_|= #[N,,|=

- ‘Nn

, with N;eP(M),

r+l t+1

I<i<n,then: ‘G‘ <rlx(t—r)!x..x(n-k)!.

Proof :

(1) Since p (g) = p)(p) =p = I(p) for all peP , geG , then ge ker(p).
But ker(p) = {e} because p is injective .
Then g = e for all ge G . So G=ker(p) = {e}.

(11) ‘Ml‘ = ‘Mz‘ =..= ‘M‘ So for all M;eP(M) and geG there exists some

M,eP(M) such that gMi =M,. From proposition (4-7) we have

EM, =M, forall j#i .
So the Number of permutations on the maximal chains is n!.
Now since P is an injective G-poset, then ‘G‘ <n!.

(ii1) Applying (ii) on every part of equal parts of :
N =Ny == NN = #[N| =

#|N

r+l t+1 k+1

get that the number of permutations on the equal parts are ,
!, (t-r)!,...,(n-k)! respectively . Using the fundamental principle of
counting , the number of the permutations on the maximal chains is
r! x(t-r)! x ... x(n-k)! .

Since P is an injective G-poset ,then ‘G‘ <l x(tr)!x...x(nk)!. m
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