ON MAXIMAL CHAINS IN POSETS WITH GROUP ACTIONS

&

Abdul Aali J. Mohammad

Department of Mathematics

College of Education

University of Mosul

Abbas H. Kathim

Department of Mathematics

College of Science

University of Kirkuk

Received 15/11/2006

Accepted 21/02/2007

ABSTRACT

Our main purpose in this work is to study the maximal chains in group-posets to observe that this study gives us indications on the type of some group actions on posets. Therefore we shall study the behavior of the group actions on chains .

§.1 Introduction:

For any group G and any set X, we say that G acts on X from the left if to each $g \in G$ and $x \in X$ there corresponds a unique element in X denoted by ${}^g x$ (or some times gx) such that for all $x \in X$ and $g_1, g_2 \in G$; (i) ${}^e x = x$ (ii) ${}^g_1({}^g_2 x) = (g_1g_2) x$.

Such a set X with a left action of G on it, is called a left G-set, or simply a G-set. [13].

Since the concept of a group action of a group G on a set X began as a group homomorphism $\rho: G \to S_{1x1}$, we can consider any element g in G as a permutation $g: X \to X$ with g(x) = g x for all $x \in X$. So this concept can be extended on sets with additional mathematical structure, with $\rho: G \to \text{isom } (X,X)$ and the isomorphism related to the structure on X.

§.2 Group-posets:

In this section we give the definition of the group actions on posets. This definition is slightly different from the definition given in [5].

Definition (2-1):

Let G be a group and P a poset , we say that there is a left action of G on P if for every $g \in G$ and $p \in P$ there corresponds a unique element $g_p \in P$ such that for all $p,q \in P$ and $g,g_1,g_2 \in G$;

Such a poset P with a left action of G on it, is called a left G-poset, (or simply a G-poset). When condition (iii) is neglected, P is called a G-set. For more details see [7], [9] and [10].

Also, for any group G and poset P there is at least the trivial action which defined by : ${}^gp = p$ for all $g \in G$, $p \in P$.

The following theorem shows that a group action on poset can be defined as a poset automorphism on P.

Theorem (2-2):

Let G acts on the poset P. Then to each g \in G there corresponds an automorphism $\, \rho_g \,$ on P defined by :

 ho_g (p)= g p for all p \in P. Also , the map $\rho:G\to Aut$ (P) ; defined by $ho(g)=^{\rho}g$ for all $g\in G$ is a homomorphism called the corresponding homomorphism to the G action on P.

Proof:

Similar to the proof in [9].

Proposition (2-3):

Let E be a G-poset . Then P(E) the family of all subsets of E (the power set of E) is a G-poset with an action defined by ;

$${}^{g}Y = \{x \in E : {}^{g^{-1}}x \in Y\}, \text{ for all } g \in G \text{ and } Y \in P(E).$$

Proof:

(i) Let
$$Y \in P(E)$$
, then; ${}^eY = \{x \in E : {}^{e^{-1}}x \in Y\} = \{x \in E : x \in Y\} = Y$

(ii) For any $Y \in P(E)$ and $g_1, g_2 \in G$;

$$g_{2}(g_{1}Y) = \{x \in E : g_{2}^{-1}x \in g_{1}Y\} = \{x \in E : g_{1}^{-1}(g_{2}^{-1}x) \in Y\}$$
$$= \{x \in E : g_{1}^{-1}g_{2}^{-1}x \in Y\} = \{x \in E : (g_{2}g_{1})^{-1}x \in Y\} = (g_{2}g_{1})Y.$$

(iii) Let $X,Y \in P(E)$ with Y>X, and let $g\in G$. So $X\subset Y$, that is ${}^gX\subset {}^gY$. Hence, ${}^gY>{}^gX$. Therefore P(E) is a G-poset.

Definition (2-4): [16]

Let P be a G-poset . For each $p \in P$, the set $\{g \in G: {}^{g}p = p\}$ is called the stabilizer of p and denoted by $Stab_{G}(p)$ or Gp.

<u>Proposition (2-5)</u>: [8]

Let P be a G-poset. Then for any $p \in P$, $Stab_G(p)$ is a subgroup of G.

Proposition (2-6):

Let P be a G-poset. Then for all $p \in P$.

(1) $G/Stab_G(p)$ is a poset with;

$$g_1.Stab_G(p) > g_2.Stab_G(p)$$
 if and only if $g_1 p > g_2 p$

(2) G/Stab_G (p) is a G-poset with an action defined by ;

$$^{t}(g.Stab_{G}(p)) = (tg).Stab_{G}(p) \text{ for all } t,g \in G.$$

Proof:

(1)(i) It is obvious that the relation is reflexive.

(ii) Let $g_1.Stab_G(p) \ge g_2.Stab_G(p)$ and $g_2.Stab_G(p) \ge g_1.Stab_G(P)$.

Then
$$g_1 p \ge g_2 p$$
 and $g_2 p \ge g_1 p$. So $g_1 p = g_2 p$.

Hence $g_1.Stab_G(p) = g_2.Stab_G(p)$.

(iii) Let $g_1.Stab_G(p) \ge g_2.Stab_G(p)$ and $g_2.Stab_G(p) \ge g_3.Stab_G(P)$.

Then
$$g_1 p \ge g_2 p$$
 and $g_2 p \ge g_3 p$. So $g_1 p \ge g_3 p$.

Hence $g_1.Stab_G(p) \ge g_3.Stab_G(p)$.

Therefore $(G/stab_G(p), \ge)$ is a poset.

- (2)(i) $e(g.stab_G(p)) = (eg)$. $Stab_G(P) = g.stab_G(p)$, for all $g.stab_G(p) \in G/Stab_G(p)$.
 - (ii) Let $g.stab_G(p) \in G/Stab_G(p)$ and $t,r \in G$. Then;

$$r(t(g.Stab_{G}(p))) = r(tg.Stab_{G}(p)) = r(tg).Stab_{G}(p)$$
$$= (rt)g.Stab_{G}(p) = rt(g.Stab_{G}(p)).$$

(iii) Let $g_1.stab_G(p) > g_2.stab_G(p)$, and $t \in G$.

Then
$$g_1 p > g_2 p$$
. So $f(g_1 p) > f(g_2 p)$

That is ${}^{tg_1}p > {}^{tg_2}p$. So ${}^{tg_1}.Stab_G(p) > {}^{tg_2}.Stab_G(p)$.

Hence, ${}^{t}(g_1Stab_G(p)) > {}^{t}(g_2Stab_G(p))$.

Therefore $G/Stab_G(p)$ is a G-poset.

<u>Definition (2-7)</u>: [2]

Let P be a poset . We say that the element a of P covers the element b of P if a > b and there is no element $c \in P$ such that a > c > b.

Proposition (2-8):

Let P be a G-poset and a,b \in P with a covers b , then $\ ^g$ a covers $\ ^g$ b for all $g \in G$.

Proof:

Suppose that ga does not cover gp , then there exist at least an element $c \in P$ such that ${}^ga > c > {}^gb$. So ${}^{g^{-1}}({}^ga) > {}^{g^{-1}}c > {}^{g^{-1}}({}^gb)$. That is ${}^{g^{-1}}g_a > {}^{g^{-1}}c > {}^{g^{-1}}g_b$. So ${}^ea > {}^{g^{-1}}c > {}^eb$. Hence $a > {}^{g^{-1}}c > b$ and this is a contruduction . Therefore ga covers gb .

<u>Definition (2-9)</u>: [1]

Let P be a poset . Then the set , $C(P) = \{(a,b) : a \text{ covers } b\} \subset P \times P$, is called the covering poset of P.

Proposition (2-10):

Let (P, \ge) be a poset, then $((P), \ge)$ is a poset such that: for all (a,b), $(a',b') \in C(P)$, $(a,b) \ge (a',b')$ if and only if $\{(a,b) = (a',b') \text{ or } b \ge a'\}$

Proof:

- (i) Let $(a,b) \in C(P)$, then $(a,b) \ge (a,b)$.
- (ii) Let $(a,b) \geq_{C} (a',b')$ and $(a',b') \geq_{C} (a,b)$.

Then either; (a,b)=(a',b'), or $b \ge a'$ and $b' \ge a$.

Now suppose that $b \ge a'$ and $b' \ge a$, then we have $a > b, b \ge a', a' > b'$ and $b' \ge a$. So, a > a and this is a contradiction. Hence it must be (a, b) = (a', b').

(iii) Let
$$(a,b) \ge (a',b')$$
 and $(a',b') \ge (a'',b'')$.

Then either (a,b) = (a',b') = (a',b'), so (a,b) = (a'',b''), or $b \ge a'$ and $b' \ge a''$.

So we have $b \ge a'$, a' > b' and $b' \ge a''$. That is $b \ge a''$. Hence $(a, b) \ge (a'', b'')$

Therefore C(P) is a poset.

<u>Theorem (2-11)</u>:

Let P be a G-poset . Then C(P) is also a G-poset with an action defined by; g(a,b) = (ga,gb) for all $(a,b) \in C(P)$ and $g \in G$.

Proof:

- (i) ${}^{e}(a,b)({}^{e}a,{}^{e}b) = (a,b)$ for all $(a,b) \in C(P)$.
- (ii) $g_1(g_2(a,b)) = g_1(g_2a,g_2b) = (g_1(g_2a),g_1(g_2b))$ = $(g_1g_2a,g_1g_2b) = g_1g_2(a,b)$

For all $(a,b) \in C(P)$ and $g_1, g_2 \in G$.

(iii) For all (a,b), $(a',b') \in C(P)$ and $g \in G$, with $(a',b') \gtrsim (a,b)$. Then $b' \ge a$

So
$${}^gb' \ge {}^ga$$
 a .Since $(a,b), (a',b') \in C(P)$. Then $({}^ga, {}^gb), ({}^ga', {}^gb') \in C(P)$
That is $({}^ga', {}^gb') \ge ({}^ga, {}^gb)$. Hence ${}^g(a',b') \ge {}^g(a,b)$.

Therefore C(P) is a G-poset.

§3. Group-Chains:

In this section we study the group actions on chains and the behavior of these actions and when the trivial action is the only one.

<u>Definition (3-1)</u>: [2]

A poset P is called a chain (or totally ordered set) if : for all $a,b \in P$: $a \ge b$ or $b \ge a$.

Equivalently, the poset P is called a chain if for every two different elements a,b of P either a > b or b > a.

From the definition above , we conclude that every element of a chain covers at most one element and covered at most by one element . Also any chain has at most one maximal element I and one minimal element 0.

<u>Proposition (3-2)</u>: [2]

Any chain X of n elements is isomorphic to the set of natural numbers $\underline{n} = \{1, 2, ..., n\}$. That is there exists a bijection function $f: X \to \underline{n}$ such that: $f(x_1) \ge f(x_2)$ if and only if $x_1 \ge x_2$.

<u>Theorem (3-3)</u>:

Let $X = \{x_i\}_{i \in I}$ be a G-chain and I be a set of successive integers with ... $x_{i-1} < x_i < x_{i+1} < ...$

If ${}^gx_i = x_j$ then ${}^gx_{i+r} = x_{j+r}$ for all $i, j, i+r, j+r \in I$.

Proof:

(i) Let $i+1, j+1 \in I$. Since X is a chain , then x_{i+1} covers x_i and by proposition (2-8), ${}^gx_{i+1}$ covers gx_i .

Since $g_{x_i} = x_j$, then x_{j+1} covers g_{x_i} . So $g_{x_{i+1}} = x_{j+1}$.

(ii)Now we shall use the mathematical induction to prove that ${}^gx_{i+r}=x_{j+r}.$ From (i) we see that ${}^gx_{i+1}=x_{j+1}$ for r=1. Suppose ${}^gx_{i+n}=x_{j+n}$ for r=n and i+n, $j+n\in I$. Since X is a chain, then x_{i+n+1} covers x_{i+n} . So ${}^gx_{i+n+1}$ covers ${}^gx_{i+n}$. Now from ${}^gx_{i+n}={}^gx_{j+n}$ we have ${}^gx_{i+n+1}=x_{j+n+1}$.

Therefore,
$$g_{x_{i+r}} = x_{j+r}$$
 for all $i, j, i+r, j+r \in I$.

Lemma (3-4):

Let X be a G-chain and $g \in G$. If ${}^gx_i = x_t$ and $x_i < x_t$ then ${}^{g^{-1}}x_i < x_i \text{ for all } x_i \in X.$

Proof:

$$g_{x_i} = x_t \Rightarrow g^{-1}(g_{x_i}) = g^{-1} x_t \Rightarrow g^{-1}g_{x_i} = g^{-1} x_t \Rightarrow g^{-1}x_t = x_i.$$

Also,
$$x_i < x_t \Rightarrow^{g^{-1}} x_i <^{g^{-1}} x_t$$
. Therefore $g^{-1} x_i < x_i$.

Proposition (3-5):

Let X be a G-chain and $g \in G$ with $g^{-1} = g$. Then $g \in Stab_G(x_i)$ for all $x_i \in X$.

Proof:

Let $g_{x_i} = x_t$ Then $x_i = g^{-1} x_t$. So $x_i = g_t$. Suppose that $x_i \neq x_t$.

Then either $x_i < x_t$ or $x_t < x_i$. If $x_i < x_t$ then ${}^gx_i < {}^gx_t$. So, $x_t < x_i$. That is a contradiction . Similarly we have a contradiction if $x_t < x_i$.

Hence , since X is a chain , then $x_i = x_t$. So, ${}^g x_i = x_i$. Therefore $g \in Stab_G(x_i)$ for all $x_i \in X$.

<u>Theorem (3-6)</u>:

Let (X , \leq) be a G-chain . Then the action of G on X is only the trivial action if X has 0 or I.

Proof:

- (i) Let $0 = x_1 \in X$ and $g \in G$. Suppose that ${}^g x_1 \neq x_1$, then $x_1 < {}^g x_1 [x_1 = 0]$. Also, ${}^g {}^{-1} x_i < x_1 = 0$. So this is a contradiction. So, ${}^g x_1 = x_1$. Now from theorem (3-3) we have ${}^g x_i = x_i$ for all $x_i \in X$ and $g \in G$.
- (ii) Let $I=x_1\in X$ and $g\in G$. Suppose that ${}^gx_1\neq x_1$, then ${}^gx_1< x_1[x_1=I]$. Also , $x_1< g^{-1}$ x_1 . So this is a contradiction .

So , ${}^gx_1=x_1$. Now from theorem (3-3) we have ${}^gx_i=x_i$ for all $x_i\in X$ and $g\in G$.

The following corollary can be proved directly from the previous theorem, but we will give another proof.

Corollary (3-7):

Let $P = \{p_1, p_2, ..., p_n\}$ be a G-chain with $p_1 > p_2 > ... > p_n$. Then P is a trivial G-chain.

\underline{Proof} :

Suppose that there exists $g \in G$ and $p_i \in P$ such that ${}^gp_i = p_t$ with $t \neq i$. That is ${}^gp_i \neq p_t$. Suppose that $t \geq i$, then ${}^gp_{i+(n-t)} = p_{t+(n-t)} = p_n$ such that $i+(n-t) \in \{1,2,\ldots,n\}$. Also, ${}^gp_{i+(n-t)+1} = p_{n+1}$ such that $i+(n-t)+1 \in \{1,2,\ldots,n\}$. But |P|=n. So $p_{n+1} \not\in P$. Hence ${}^gp_{i+(n-t)+1} \neq p_{n+1}$. Now let ${}^gp_{i+(n-t)+1} = p_r$. Since $p_{i+(n-t)} > p_{i+(n-t)+1}$, then ${}^gp_{i+(n-t)} > p_{i+(n-t)+1}$. So, $p_n > p_r$ and this is a contradiction. Similarly we have contradiction when $t \leq i$. Hence t = i.

Therefore the G action on P is the trivial action only.

§.4 Maximal chains:

Finally in this section we will study the maximal chains in group-posets and we shall observe that the study of these kinds of chains give us some indications on the type of some group actions on posets.

Definition (4-1): [3]

Let P be a poset and $X = \{x_i, x_{i+1}, ..., x_j\} \subseteq P$ be a chain such that $x_i < x_{i+1} < ... < x_j$, then X is called a maximal chain in P if and only if:

- (i) There is no element as $c \in P$ such that : $x_i \!<\! x_{i+1} \!<\! \ldots \!<\! c \!<\! \ldots \!<\! x_j$.
- (ii) There is no element as $k \in P$ such that : $k \le x_i \ \ \text{or} \ x_j \le k.$

Proposition (4-2):

Let P be a G-poset and Y be a maximal chain in P. Then gY is also a maximal chain in P with ${}^gY = |Y|$.

Proof:

(i) Since Y is a maximal chain in P , so we can say $Y = \{x_i, x_{i+1}, ..., x_j\}$ such that x_{r+1} is covers x_r for all i < r < j. So , ${}^gY = \{{}^gx_i, {}^gx_{i+1}, ..., {}^gx_j\}$ for all $g \in G$. Hence ${}^gx_i < {}^gx_{i+1} < ... < {}^gx_j$. Suppose that there exists an element as $c \in P$ such that ${}^gx_i < {}^gx_{i+1} < ... < c < ... < {}^gx_j$.

Then
$$g^{-1}(g_{x_i}) < g^{-1}(g_{x_{i+1}}) < ... < g^{-1}(g_{x_j})$$
.

That is $x_i < x_{i+1} < ... < g^{-1}$ $c < ... < x_j$ and this is a contradiction since Y is a maximal chain.

(ii) suppose that there exists an element $b \in P$ such that $b \leq^g x_i$ then: $b \leq^g x_i \Rightarrow^{g^{-1}} b \leq x_i \Rightarrow^{g^{-1}} b = x_i \Rightarrow b =^g x_i$. Similarly, if ${}^g x_j \leq a$ then ${}^g x_i = a$. Therefore ${}^g Y$ is a maximal chain.

Now let the map $f: Y \to^g Y$ is defined by : $f(y) =^g y$ for all $y \in Y$. f is injective map since : $f(y_1) = f(y_2) \Rightarrow^g y_1 =^g y_2 \Rightarrow y_1 = y_2$.

Also f is onto since if $x \in {}^g Y$ then there exits $y \in Y$ such that $x = {}^g y$. Hence, f is bijection and $|Y| = {}^g Y$.

<u>Definition (4-3)</u>: [4]

Let P be a poset and $x \in P$. Then the subset C of P is called a cutset of the element x in P if every element of C is not comparable with x and all the maximal chains in P cut with $C \cup \{x\}$. We shall note to this set by cut x.

<u>Theorem (4-4)</u>:

Let P be a G-poset and C is the cutset of $x \in P$. Then gC is the cutset of gx . That is gC = cut gx .

Proof:

Let $y \in \text{cut}^g x$ then g^{-1} y is not comparable with $g \in S$. So g^{-1} y is not comparable with x. That is g^{-1} y $\in S$. So g^{-1} y $\in S$. That is $g \in S$.

Hence cut ${}^g x \subseteq {}^g C$.

Now let ${}^gs\in {}^gC$. Then $s\in C$. So s in not comparable with x. That is gs is not comparable with ${}^gx.So$ ${}^gs\in cut$ gx . Therefore ${}^gC=cut$ gx

<u>Theorem (4-5)</u>:

Let P be a finite G-poset with $P(M) = \{M_1, M_2, ..., M_n\}$ be the set of the maximal chains in P with $|M_i| = |M_j|$ if and only if i = j. Then the trivial action is the only action of G on P.

Proof:

To prove this theorem we must first prove that ${}^gM_i=M_i$ for $1\leq i\leq n$, after that we must show that ${}^gx=x$ for all $x\in M_i$ and $g\in G$

First part:

Our argument proceeds by induction on the number n to prove that $^gM_i=M_i \text{ for all } 1 {\leq} \ i {\leq} \ n \ .$

Let
$$|M_1| = r_1$$
, $|M_2| = r_2$,..., $|M_n| = r_n$ such that $r_1 < r_2 < ... < r_n$.

(i) Let n=2. That is $P(M) = \{M_1, M_2\}$ with $|M_1| \neq |M_2|$.

Suppose that ${}^gM_1 \neq M_1$, then ${}^gM_1 = M_2$. So $\left|{}^gM_1\right| = \left|M_2\right| = \left|M_1\right|$ and

this is a contradiction . Hence ${}^gM_1 = M_1$. Similarly we have ${}^gM_2 = M_2$.

(ii) Now assume that n=k with ${}^gM_i=M_i$ for all $1 \le i \le k$.

Let n=k+1. Since $gM_i = M_i$ for all $1 \le i \le k$.

Suppose that ${}^gM_{k+1} \neq M_{k+1}$ then ${}^gM_{k+1} = M_j$ for some $1 \leq j \leq k$. So $\Big|{}^gM_{k+1}\Big| = \Big|M_j\Big| = r_j$. But $\Big|{}^gM_{k+1}\Big| = \Big|M_{k+1}\Big| = r_{k+1}$. Hence $r_j = r_{k+1}$, that is j = k+1, and this is a contradiction since k+1 > j. So ${}^gM_{k+1} = M_{k+1}$.

Second part:

Since $\{Mi\}_{i=1}^n$ is the family of the maximal chains in P , the M_i is a finite maximal chain in P. Using corollary (3-7) we get : ${}^gx = x$ for all $x \in M_i$, $g \in G$ with $1 \le i \le n$.

The above theorem is not true when P has two maximal chains M_i, M_j with $\left|M_i\right| = \left|M_i\right|$ as in the following example .

Example (4-6):

Let $P = \{a,b,c,d\}$ be a poset with a > b and c > d. So $P(M) = \{M_1,M_2:M_1=\{a,b\}$, $M_2=\{c,d\}\}$. Hence $|M_1|=|M_2|$.

Let
$$G = C_2 = \{e,g\}$$
 with $g^2 = e$, and $g^2 = e$, $g^2 = e$.

Therefore P is a G-poset and the action is not trivial.

Proposition (4-7):

Let $P(M) = \{M_1, M_2, ..., M_n\}$ be the set of the maximal chains in the G-poset P. Let ${}^gM_i = M_t$, then ${}^gM_j \neq M_t$ for all $j \neq i$.

Proof:

Suppose that ${}^gM_j = M_t$ for some $j \ne i$. Then ${}^gM_j = {}^gM_i$ for some $j \ne i$. So ${}^{g^{-1}}({}^gM_i) = {}^{g^{-1}}({}^gM_i)$ for some $j \ne i$.

Hence $M_j = M_i$ for some $j \neq i$. This is a contradiction since $j \neq i$ implies |P(M)| < n. Therefore ${}^gM_j \neq M_t$ for all $j \neq i$.

Proposition (4-8):

Let P be an injective G-poset , and $P(M) = \{M_1, M_2, ..., M_n\}$ be the family of the maximal chains in P. Then :

- (i) $(|M_i| = |M_j|)$ if and only if i = j), implies that $G = \{e\}$.
- (ii) If $|M_1| = |M_2| = ... = |M_n|$, then $|G| \le n!$.
- (iii) If we reordered the maximal chains such that:

$$\begin{aligned} & \left| N_{_{1}} \right| = \left| N_{_{2}} \right| = ... = \left| N_{_{r}} \right| \neq \left| N_{_{r+1}} \right| = ... = \left| N_{_{t}} \right| \neq \left| N_{_{t+1}} \right| = ... = \left| N_{_{n}} \right|, \text{ with } N_{i} \in P(M), \\ & 1 \leq i \leq n \text{ , then } : \left| G \right| \leq r! x(t-r)! x... x(n-k)! \text{ .} \end{aligned}$$

Proof:

- (i) Since ρ (g) = ρ_g)(p) = p = I(p) for all peP, geG, then ge ker(ρ). But ker(ρ) = {e} because ρ is injective. Then g = e for all geG. So G=ker(ρ) = {e}.
- (ii) $|M_1| = |M_2| = ... = |M_n|$. So for all $M_i \in P(M)$ and $g \in G$ there exists some $M_t \in P(M)$ such that ${}^gM_i = M_t$. From proposition (4-7) we have ${}^gM_i \neq M_t$ for all $j \neq i$.

So the Number of permutations on the maximal chains is n!. Now since P is an injective G-poset, then $|G| \le n!$.

(iii) Applying (ii) on every part of equal parts of : $|N_1| = |N_2| = ... = |N_r| \neq |N_{r+1}| = ... = |N_t| \neq |N_{t+1}| = ... \neq |N_{k+1}| = ... = |N_n| \ \text{we}$ get that the number of permutations on the equal parts are , r!, (t-r)!,...,(n-k)! respectively . Using the fundamental principle of counting , the number of the permutations on the maximal chains is r! $x(t-r)! \times ... \times (n-k)!$.

Since P is an injective G-poset ,then $|G| \le r! \ x(t-r)! \ x \dots x \ (n-k)!$.

REFERENCES

- [1] Behrendt. Gerhard, "Covering Poset" Discrete Math. 71. No.3, (1988), 189-195.
- [2] Birkhoff G., "Lattice Theory", Amer. Math. Soc. Coll. Pub. Vol. XXV, Third Edition, (1967).
- [3] Donnellant T., "Lattice Theory", Pergamon Press, (1968).
- [4] Hanlon P., "The Incidence Algebra of a Group Reduced Partially Order Set" Combinatorial Math. 7, Sprnger. No.829.
- [5] Mohammad A.J. & Mohammad S.A. "β-operations on Finite Posets", J. Edu. & Sci., Vol. 19, (1994), 104-114.
- [6] Mohammad A.J. & Mohammad S.A. "On Finite, Group-Sets of Finite Groups", J. Edu. & Sci., Vol.22, (1994), 78-84.
- [7] Morris I. & Wensley C.D., "Adams Operations and 2-operations in -Rings", Discrete Mathematics, 50, (1984), 253-270.
- [8] Neumann P. M., Stoy G.A. & Thompsone E.C., "Groups and Geometry", Vol.I. The Mathematical Institute, Oxford, (1982).
- [9] Rose J.S., " *A Course on Group Theory*", Cambridge University Press, Cambridge, (1978).
- [10] Solomon L., "The Burnside Algebra of a Finite Group", J. Combine. Theory 2, (1967), 603-615.