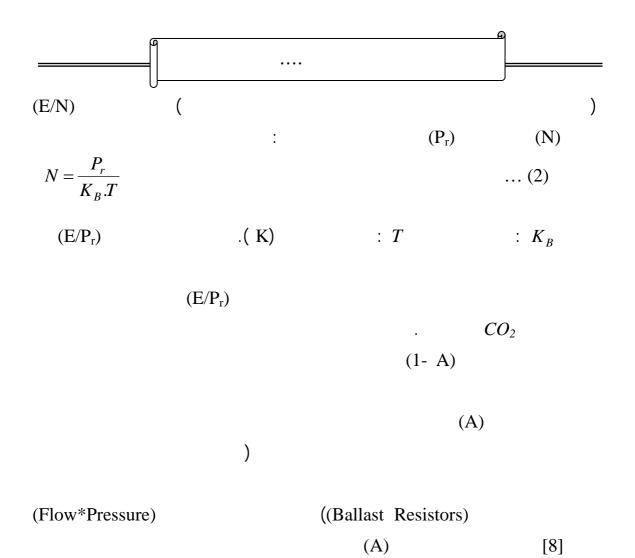
≈ 2007 (4) (19) - *∞*

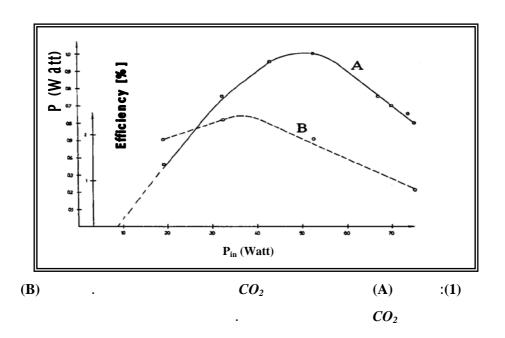
/

09/05/2007

09/11/2006

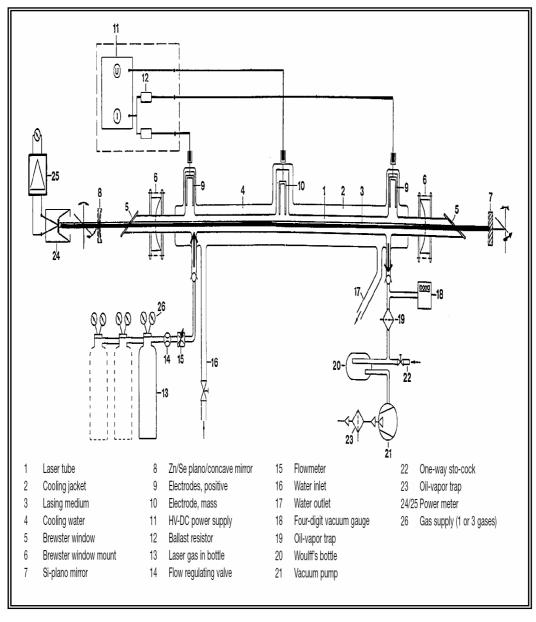

ABSTRACT

Some parameters and their effects on CO₂ laser output were studied in this research. This has been done through studying the effect of gases mixture pressure inside the electrical discharge tube and effect of electrical discharge current. Calculating (E/N) through molecular population using the optimum power parameters of the molecular laser CO₂, was done. The theoretical value of output power and this value were compared with the practical value.


It was found that the optimum operating conditions for the system were (35 mbar) as an operating pressure and (25 mA) as discharge current, where the velocity of the cooling water flow rate was (0.55 liter/min.). System efficiency in the optimum operating cases of CW CO₂ laser reached (1.7%) and system output power was (0.765 Watts). The best value of the factor (E/N) of the system has been determined and found to be (3.42 \times 10⁻¹⁶ V.cm²) which is near the international calculated standard value of CO₂ laser systems (4.5 \times 10⁻¹⁶ V.cm²).

```
(0.765 \text{ W})
                 . (1.7%)
              (3.42*10^{-16} V.cm^2)
                                                           (E/N)
              .(4.5*10^{-16} V.cm^{2})
                                         CO_2
(Working Efficiency)
                                               - [1]
            . (30%)
                         (CW-Mode)
     [2] (10%)
                                       (Pulse-Mode)
                                                                    CO_2
                                                                    CO_2
                  . [3] (9.6 \,\mu\text{m}) (10.6 \,\mu\text{m}) (
            [15] (Artamonov et al ,1981)
  )
                                                                   (14
                      .[14]
                  CO_2
  ) CO<sub>2</sub>
                                                                  CO_2
                        (Triatomic Molecule)
       (
                    (4.5%,13.5%,82%)
```

.[4] He,N_2 : .[14] [2]: $P_L = W_{21}.\Delta N.h v$...(1) : W_{21} (/cm³) $: P_L$ $\Delta N \text{ (cm}^{-3}$) $: h\nu \quad (sec^{-1})$. (Joule) CO_2 (1.5-2 Torr) CO_2 .[14]) *CO*₂ N_2 . [14] (E/N) (N) E (E/N) .[16] $(10^{-16} - 5*10^{-16} V.cm^2)$ (E/N)(E/N) CO_2 .[14] (E/N) $(10^{-15} - 10^{-16} V.cm^2)$.[16] (E/P_r) **73**



(Optimum Power Input)

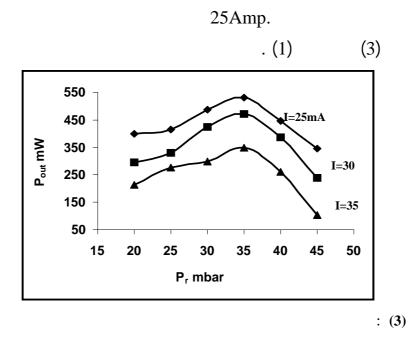
 $P_{ ext{sup.}} = I.V$...(3) (V) $(P_{ ext{sup.}})$ CO_2 .[14] (E/N) (E/P_r) $P_r = N.K_B.T$...(4) $: (P_r):$: (T) : [7] $P_{in} = I.V = 2\pi r L_a .\sigma_S .T^4$...(5) (V),(I): L_a $: \sigma_{\scriptscriptstyle S}$ ((P_{in}) $(2\pi r L_a)$. (CO_2 (e-i () (Self Sustaining Glow Discharge) $[14](N_e = 4*10^{10} Per cm^3)$ Pairs) [7,12]: $J = N_e.e.V_d$...(6) $:V_{_{d}}:$: *e* (E/N) I = J.A...(7) (A)E = (E/N) * N...(8)

(*N*) (*L*) .(4) V = E.L...(9) (9) [13]: $P_{\scriptscriptstyle out} = P_{\scriptscriptstyle in} * \eta * t$...(10) : (*t*) CO₂ (η) Efficiency = [POW.(out)/POW.(in)] * 100 %...(11) : *POW.(in)* : *POW.*(*out*): (2)) () CO_2 (PHYWE) (8 Watts) (Input Power) CO_2 (Continuous Operation) () (CO_2, N_2, He) (Longitudinal Gas Flow Technique) . [8] (2.3%) (Working Efficiency) (T_2) (T_1)

 CO_2 : (2)

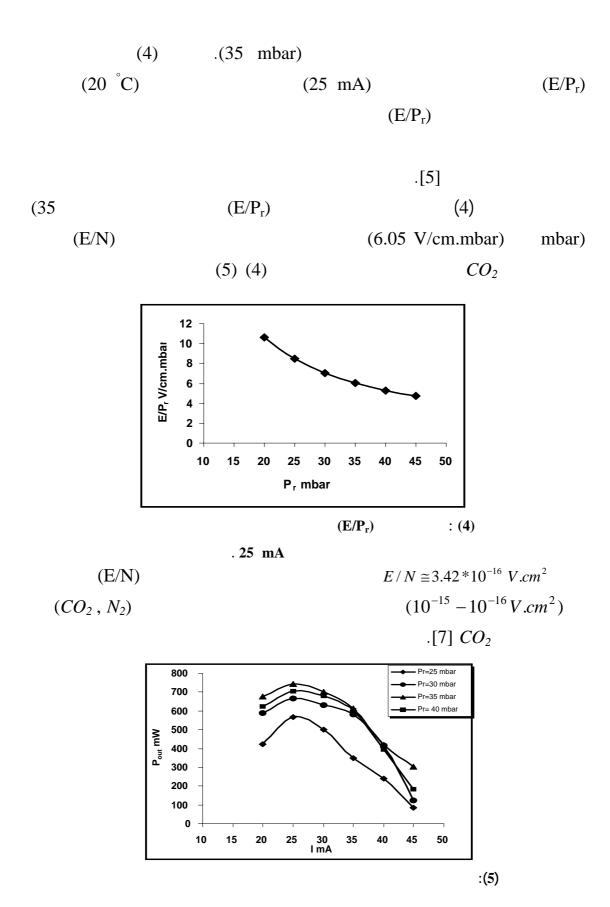
(5 mbar) (45 mbar) (20 mbar)

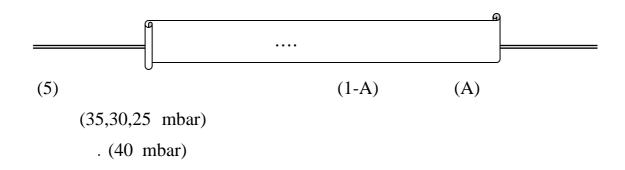
(3) .(35 mA,30 mA,25 mA)


•

(0.55 Liter/min)

. (1 Liter/min)


() (Current Discharge) ((5 mA) (45 mA) (20 mA) (
$$T_2 = 32 \,^{\circ}C$$
) ($T_1 = 17 \,^{\circ}C$) . (0.55 liter / min) . [14]


35 mbar

: (1)

	$P_r = 35 \text{ mbar}$ $I = 25 \text{ mA}$	$P_r = 35 \text{ mbar}$ $I = 30 \text{ mA}$	P_r = 35 mbar I = 35 mA
$T_1 = 20 ^{\circ}C$ $T_2 = 32 ^{\circ}C$	0.530 W	0.515 W	0.511 W
$T_1 = 23 \text{ °C}$ $T_2 = 33 \text{ °C}$	0.530 W	0.471 W	0.350 W
$T_1 = 25 ^{\circ}C$ $T_2 = 34 ^{\circ}C$	0.530 W	0.467 W	0.435 W

(25 mA) (2)
$$(P_{out} = 0.745 \text{ Watts, } P_r = 35 \text{ mbar, } I = 25 \text{ mA})$$
 (T=17 $^{\circ}$ C)

: (MatLab)

$$P_{out}(Watts) = 0.740 * e^{\frac{-1}{2} * \left(\frac{I-25}{20}\right)^2}$$

(35 mbar) $(17^{\circ}C)$ (2)

(5) (S)

(5 Watts)

.(8 Watts) (A)

 (P_{\circ})

. :(2)

I = 25mA	$P_r = 25 \text{ mbar}$	$P_r = 30 \text{ mbar}$	$P_r = 35 \text{ mbar}$	$P_r = 40 \text{ mbar}$
$T_1 = 17 ^{\circ}C$				
$T_2 = 32$ °C	0.567 W	0.667 W	0.745 W	0.704 W

```
(10-6)
                                                                                  V_{_d}
                                          . [8](5.49*10^6 cm/sec)
                                                     CO_2
 (1 cm)
                            [I = 27.48 \ mAmp.]
                                  (25 mAmp.)
 (4
             ) N
                                                               N = 6.467 * 10^{17} \ cm^{-3}
       E = 291 (V / cm)
                                        (8)
                             4.95 K Volt
                                                                   (9)
                          . P_{in} = 136 \ Watts \ (3)
                                      (P_{out} = 2.1 \, Watts) (10)
                           (\eta)
 (ZnSe Mirror)
                                                (t)
                                                        (40%)
                                                                                CO_2
                                                                 . [8] (5%)
                                                                      (11\ ^{\circ}C)
                                (11)
                                                        (1.7 \%)
                             (2.3 \%)
                                                                    .(B)
                                                                                 (1)
                                                      CO_2
(0.765 \text{ W})
               (25 \text{ mA})
                                             (35 mbar)
                                 (0.55 Liter/min, 1 Liter/min)
                                                                         (35 mbar)
                   (CO_2,N_2)
                 (35 mbar)
              2.1W
```

(0.765 W) (1.335 Watts)

 CO_2

 CO_2

 $(3.42*10^{-16} V.cm^2)$ (E/N)

 $(E/P_r) (4)$

 CO_2 (6.05 V/cm.mbar)

 $.[14](4.5*10^{-16} V.cm^{2})$

- 1. Sovelto, O., "Principles of Laser", 3rd ed., Plenum Press, (New York), (1989).
- 2. Charschan, S.S., "Laser In Industry", Western Electric Series, Van Westrand New York Reinhold Co. 641 P. (1972).
- 3. Hitz, B., Ewing, J.J. and Hecht, J., "Introduction To Laser Technology", 3rd ed., IEEE Press, (New York), (2001).
- 4. Demaria, A.J., Proceedings of the IEEE., Vol. (61) No. (6), (1973). PP (731-748).
- 5. Velikhov, E.P., "Molecular Gas Laser And Applications", Men.USSR Acad., MIR Publishers, (1981).
- 6. Dully, W.W., "CO₂ Laser Effects and Applications", Academic Press, (London), (1976). PP (130-139).
- 7. Lowke, J.J.L., Phelps, A.V. and Irwin, B.W., J. App. Phys., Vol. (44), No. (10), (1973).PP (4664-4671).
- 8. PHYWE Series of Publications, Laboratory Experiments, Physics, PHYWE System GMBH. (37070), Germany.
- 9. "Module 3_8 Energy Transfer in Molecular Laser", LEOT Tutorial on Laser, Internet, (cord.org), (2001).
- 10. "Module 3_9 CO₂ Laser System", LEOT Tutorial on Laser, Internet, (cord.org), (2001).

.11

- 12. Wilkison, M., "The Behavior of Optics At High Power", Laser Beam Products Ltd., Internet, (2003).
- 13. Witteman, W.J., "The CO₂ Laser", Springer-Verlag (Berlin), (1987). PP (1-162). (2005).

.14

- 15. Artamonov, A.V, Borkin, A. G., Dzisyak, A. P., Drobyazko, S. V., Lazurchenkov, A. I., Nekrasov, A. A. and Yu M. Senatorov, Sov. J. Quant. Electronics, Vol. 11, No. 5, (1981), pp (679-681).
- 16. Verdeyen, J.T., "Laser Electronics", 2nd ed., Prentice-Hall Inc., (USA), (1989). PP (116-445)