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Abstract 

Every day, there is great growth of the Internet and smart devices connected to the network. Additionally, 

there is an increasing number of malwares that attack networks, devices, system and applications. One of 

the biggest threats and newest attacks in cybersecurity is Ransom Software (Ransomware). Although there 

is a lot of research on detecting malware using machine learning (ML), only a few focus on ML-based 

ransomware detection, especially attacks targeting smartphone operating systems (e.g., Android) and 

applications. In this research, a new system was proposed to protect smartphones from malicious 

applications through monitoring network traffic. Six ML methods (Random Forest (RF), k-Nearest 

Neighbors (k-NN), Multi-Layer Perceptron (MLP), Decision tree (DT), Logistic Regression (LR), and 

eXtreme Gradient Boosting (XGB)) are applied to CICAndMal2017 dataset which consists of benign and 

various kinds of android malware samples. 603288 benign and ransomware samples were extracted from 

this collection. Ransomware samples were collected from 10 different families. Several types of feature 

selection techniques have been used on the dataset. Finally, seven performance metrics were used to 

determine the best feature selection and ML classifiers for ransomware detection. The experiment results 

imply that DT and XGB outperform other classifiers with best detection accuracy at more than (99.30%) 

and (99.20%) for (DT) and (XGB) respectively. 
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:الخلاصة  
  ی عدد البرامج الضارة الت  یف  ادةیز   كأخرى، هنا  ةیالمتصلة بالشبکة. من ناح  ةیالإنترنت والأجهزة الذک  یف  رینمو کب  كهنا  وم، یکل    یف

مجال    ی وأحدث الهجمات ف  داتی( أحد أکبر التهدRansomware)  ةی. تعد برامج الفدقاتیتهاجم الشبکات والأجهزة والأنظمة والتطب
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منها    ل ی، إلا أن القلML  یمن الأبحاث حول اکتشاف البرامج الضارة باستخدام التعلم الآل  ریالرغم من وجود الکث  لى. عیبرانیالأمن الس
( Android)مثل    ةیالهواتف الذک  لیتستهدف أنظمة تشغ  ی . خصوصاً الهجمات التMLالمستندة إلى    ةیعلى اکتشاف برامج الفد  فقط  رکزی

  تمیالضارة من خلال مراقبة حرکة مرور الشبکة.    قاتیمن التطب  ةیهواتف الذکال  ةیلحما  دینظام جد  قتراحهذا البحث، تم ا   ی. فقاتیوالتطب
 Multi-Layerو  Decision Treeو    k-Nearest Neighborsو    Random Forest)  یللتعلم الال  اتیستة خوارزم  قی تطب

Perceptron وeXtreme Gradient Boosting   وLogistic Regressionاناتی( على مجموعة ب CICAndMal2017  
  دة یالحم  ناتیمن الع  603288. تم استخراج  Androidالبرامج الضارة لنظام    ناتیوأنواع مختلفة من ع  دةیحم  ناتیتتکون من ع  یالت

 اریاخت  اتی. کما تم استخدام عدة أنواع من تقنلفةعائلات مخت  10من    ةیبرامج الفد  ناتیمن هذه المجموعة. تم جمع ع  ةیوبرامج الفد
الب  زاتیالم أخاناتیعلى مجموعة  استخدام سبعة مقا  رًا،ی.  لتحد  سیی تم  تقن  دیللأداء   MLوأفضل مصنفات    زاتیالم  اریاخت  اتیأفضل 

٪(  99.30)  تتجاوزکشف    قةعلى المصنفات الأخرى بأفضل د  تفوقانی  XGBو    DTنتائج التجارب إلى أن    ری. تشةیلاکتشاف برامج الفد
 . ی( على التوالXGB( و )DT٪( لـ )99.20و )
 

 البرامج الضارة، برامج الفدیة، التحلیل الثابت والدینامیكي، حركة مرور الشبكة، خوارزمیات التعلم الالي.  :المفتاحيةالكلمات 
 

 

1. Introduction 

     The Android OS covers the world with 85% of smart devices and phones market share and it continues 

to grow [1]. In the last years, relying on smart devices (especially smartphones) has increased in daily 

activities ranging from studying, shopping, and entertainment, to financial transactions [2]. The reasons 

for this are due to recent technological developments, the widespread of smartphones and contemporary 

conditions (such as the COVID-19 quarantines). These reasons have the Android OS the main target for 

attackers [3]. Unfortunately, Android differs from other mobile OS, in that it maintains openness and does 

not impose many restrictions on users for application uploading and downloading. It leaves the safety of 

the phones and devices in the user's hands through letting them decide whether or not to install an 

application thus, smartphones have become more liable to cyber-attacks [1]. 

     Cyber criminals are developing malicious applications to target individuals, companies and even 

governments. Ransomware takes over the victim's device, and blocks or encrypts the data, therefore, 

preventing the victim from using the device. The victim can get back to using the device or its data only 

if ransom is paid [4]. Ransomware made history in 2020 as it contributed to the first reported death related 

to a cyber-attack, when a German hospital was attacked by ransomware, causing a lock out of their systems 

and preventing treatment of patients. Consequently, a woman in need of urgent help died [5]. 

     According to Cisco Annual Internet Report [6], more than 299 billion mobile applications will be 

downloaded and used in 2023. With the great growth and increasing use of applications, network 

interaction and utilization has increased substantially via these applications [7]. Besides, network traffic 

has increased dramatically due to many permanently linked applications like social networking 

applications. Now, with the fast evolution of the Internet, the fifth generation will make AI systems, the 

Internet of Things and self-driving cars the most important tools that humans use in their lives. By 2023, 

the fifth generation connection will create three times more traffic than the fourth generation connection 

[6]. To detect Android malware, antivirus software uses standard code analysis and signature detection 

techniques which are known to hackers. The use of ML methods for network traffic detection is one of 

the best solutions used as effective ransomware detection [3]. 
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1.1 Malware 

     The malicious software, which is known as malware, is one of the most dangerous and most common 

cyber threats. These programs are built to collect sensitive data and information, disrupt, damage, or gain 

unauthorized access to applications, system, or networks [8]. In addition to losses in money, information, 

time, and infrastructure for individuals, companies and institutions, these victims could incur other harms 

like loss of lives. According to the malware function and its proliferation systems, malware can be divided 

(not exclusive categories) into several types such as (ransomware, adware, virus, worm, trojan, bot, 

scareware, etc.) [9]. 

 

1.1.1 Ransomware 

     Ransomware is a class of serious safety problems that attacks individuals, companies, organizations 

and even governments. It locks up or encrypts information, systems, and devices, then asks for ransom 

payment to access and use them again [7]. Victims (persons, companies, etc.) may be exposed to great 

damage as a result of paying money as ransom in addition to the costs of downtime and loss of reputation 

and may even lead to loss of life [10]. In 2020, cybercrime has witnessed a great evolution in ransomware 

attacks. This threat has included malevolent tactics and targeted some of the most vulnerable industries in 

the year. A survey of 1,100 IT professionals showed that 90% of them had customers who experienced 

ransomware attacks in 2020 [5]. By 2021, ransomware is expected to cause $20 billion in loss [11]. The 

ransomware growth in the recent years is imputed to the rise of Ransomware-as-a-service (RaaS).  By 

(RaaS), a novice attacker can easily pay a service, customize his ransomware, and deploy it on many 

computers around the world. 

     There are two common kinds of Ransomware: the Crypto- Ransomware that encrypts the victim's files 

and data and prevents him/her from access, and provides the decryption files key only if the ransom is 

paid. The second type is Locker-Ransomware that leaves the victim’s files and data as they are, but it 

prevents the victim from accessing and using his/her device, and access can only be regained once a 

ransom is paid. Usually, the Crypto-Ransomware encrypts a specific extension from the memory, like 

.jpg, .doc, .pdf, that is, files that contain text documents, presentations, and images which usually include 

important and personal user data. 

     The techniques of ransomware detection include statistical-based techniques, event-based techniques, 

data-centric-based techniques, and ML based techniques which are considered as a new research topic. 

The focus of this research is on using the techniques of ML for android ransomware detection by 

monitoring network traffic. 

 

1.2 Static & dynamic analysis 

     To save phones and smart devices from threats that attack android OS, various solutions based on 

features analysis were proposed. The static analysis is the approved technique by antivirus companies. It 

is a passive approach based on signature check and source code by educing the features from the source 

code of the applications or extracting them from the binary strings. This means testing files or applications 

without running its code. It is a faster and safer approach that generates rich information about malware 

samples. But it suffers several flaws. Cyber-criminals use different polymorphism and obfuscation 

techniques to overcome the detection systems via packing and encryption [9]. 

     Another solution is dynamic analysis which involves executing the malicious file in an isolated and 

safe environment (e.g., sandbox) in order to know the real behavior, that is, the way it interacts with the 

underlying OS, and analyze their execution logs. But this technique needs more processing capacity and 

battery power. It is difficult because sometimes the malware that is being analyzed in a safe environment 

differs from the real one, and it is not available for all researchers [12]. both analysis techniques have their 
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benefits and flaws. The static analysis of features is safer and faster than dynamic but, malicious programs 

can avoid detection using techniques of code obfuscation. In contrast, polymorphic malware techniques 

and code obfuscation hardly evade dynamic analysis because malware is monitored and analyzed at 

execution time. Therefore, to use dynamic analysis at the lowest cost, one of the best solutions is to use 

CICAndMal2017 dataset which is available and based on real-time network traffic features. 

The contributions of this research are: 

1. Using the data preprocessing techniques on the network traffic dataset and explaining the benefits 

of these techniques on the performance of android ransomware detection. 

2. Understanding feature selection techniques and comparing between them to determine the best 

option. 

3. Applying ML methods on the dataset based on best features to determine the best methods for 

ransomware detection. 

4. This research aspires to discover the perfect method to detect ransomware via monitoring network 

flow, which is done by comparing the research with related works that have used the same dataset. 

     The remaining parts of this paper are as follows: section 2 reviews the related works to detect malware 

by ML methods. The details of dataset and network traffic are explained in section 3. The proposed model 

is discussed in section 4. The data preprocessing techniques are shown in section 5. The experiments in 

feature selection techniques, ML classifiers, and the results are explained in section 6. 

 
 

2. Related Works 

     Much research has been conducted in the area of Android malware detection. This research relied on 

static, dynamic, or hybrid features analysis. In 2017, Chen et al. designed a novel system that utilizes data 

mining techniques with dynamic analysis to monitor the Application Programming Interface (API), which 

is the interaction procedures and protocols between applications, for ransomware detection. In order to 

create API call flow, the authors monitor the behaviors of software, then, they commence mapping the 

API calls in a feature space. The researchers applied data normalization technique and methods of feature 

selection to select the best for discriminating between ransomware and benign software. Then, four data 

mining algorithms were used for building the detection model. The experimental results show that SL 

algorithm can achieve 98.2% and 97.6% accuracy and detection rate respectively [13]. 

     In 2018, Al-rimy et al. conducted research that provides an important and detailed review of 

ransomware. This survey provides a comprehensive demonstration and study of the latest technology to 

detect and prevent ransomware. The authors made a new classification of ransomware from various 

viewpoints. They explain the factors and circumstances that helped make these attacks successful, and 

discuss the related research into struggling ransomware, with various solutions for analyzing these attacks, 

as well as detecting, preventing, and predicting them [10]. 

     In 2018, Cusack et al. used a programmable forwarding engine (PFEs) which collects network 

monitoring data for per-packet. This data was utilized to monitor the flow of network between the 

command and control (C&C) server and an infected computer. After feature extraction from the flow, the 

authors used this data to classify ransomware. The classification model achieved 86% detection rate with 

11% false negative rate [12]. 

     In 2018, Zhang et al. utilized static feature analysis for ransomware classification. First, from 

ransomware samples, the authors transformed opcode sequences into N-gram sequences. Then, they treat 

N-gram vectors as feature vectors. Next, they introduce these vectors into five ML methods to classify 

ransomware. The models are validated with six metrics. The proposed approach achieves 91% accuracy, 

and 99% accuracy of binary classification [14]. 
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     In 2018, Alhawi et al. proposed a NetConverse, which is a ML method for ransomware detection. They 

use TShark to create a dataset from the conversation of network traffic. Features are extracted and fed into 

ML classifiers that achieved 97% accuracy for DT and 96% for Logistic Model Tree (LMT) [15]. 

     In 2019, another work utilized the features of network to detect ransomware using ML classifiers. 

Kaiiali et al. focus on crypto ransomware network activities. Network features are extracted and fed for 

two classifiers that operate in parallel on (packet and flow levels). The detection accuracy of the two 

proposed levels was 97.92% and 97.08% respectively [16]. 

     In 2019, Noorbehbahani et al. applied two experiments on CICAndMal2017 dataset to analyze six ML 

techniques (DT, RF, Random Tree (RT), k-NN, NB, and SVM) for ransomware detection. Firstly, a 

dataset was applied with different forms and classes of ransomware on ML classifiers. Then they were 

applied to 10 ransomware families separately on classifiers. The results show that RF was the best in both 

experiments. The highest detection accuracy belongs to RF with accuracy score 83%, and 79% for DT 

[7]. 

     In 2020, Moussaileb et al. suggested an analysis of different families of ransomware depending on 

collected logs form a device system and network. In order to packet detection, the authors delved into the 

malware network traffic that created by these samples. This work shows that using DT to detect zero-day 

attacks provides high detection rates among other ML algorithms [17]. 

     In 2020, Sangal et al. used ML methods for new android malware detection. They applied many 

techniques (RF, KNN, SVM, and NB) on a dataset of android applications with permissions and intent 

features. First, they performed data pre-processing to handle missing values. Next, they used feature 

selection to minimize the dataset dimensions. They used AndMal2019 dataset which was provided by 

CIC. The best detection result was 96% using RF classifier [18]. 

     In 2020, during the lockdown due to COVID-19, everyone sat at home and their interactions with 

others increased mostly through smartphones. Hence, this presented an opportunity for cyber criminals to 

develop malware-infected applications. For this purpose, Sangal et al. proposed a new system which 

focuses on machine learning and signature-based methods to detect known Android malware. In this work, 

11,000 distinct Android applications belonging to twelve different Android application categories were 

collected. Ten feature selection methods were used to reduce the dimensions of the dataset. For Android 

malware detection, Deep Neural Network (DNN) machine learning technology was used, and it achieved 

97% of malware detection points from real-world applications [19]. 

     In 2020, 67 research papers for malware detection and classification were reviewed in a deep survey 

by Mateu et al. This study aimed ats providing a detailed and systematic overview of ML methods 

(especially Deep learning DL methods) for malware detection. It also offered a description of the features 

and methods in a traditional ML process, from feature extraction, and selection steps to detection and 

classification. It explained all feature analysis methods with all the branches [20]. 

     In 2021, a survey for risks of cyber-attacks and Advanced Persistent Threat (APT) attacks was made. 

Lee et al. touched upon the rapid development of APTs and their use of AI techniques to design the new 

kind of ransomware, that spreads quickly between users of IoT devices and smartphones to infect the 

largest number of them at the same time. The authors proposed using detection and response tools which 

can quickly extract ransomware attack features and respond of this threat. They built an open-source 

framework that enables ransomware detection at the system and network level [21]. 

 
 

3. The Network Traffic and Dataset used 

     Network traffic or data traffic refers to the data that moves across the network at any time. It consists 

of a sequence of packets (packet is the smallest unit of data that is passed over a network). Each packet 

includes Payloads (raw data) and Headers (metadata) that contain basic flow information [15]. One of the 
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best methods to detect malware is to monitor malicious network traffic which can uniquely offer a clear 

view of the behavior of malware applications. When a malicious program infects a victim’s device, it may 

establish a connection to an external server to perform a malicious operation like download updates or 

other malware, to obtain new commands, or to steal sensitive and private information [17]. Therefore, 

monitoring network traffic that enters the network and leaves it, intra-network traffic and device activity, 

provides important and useful information to disclose malicious behavior. 
 

     The dataset used in this research was obtained from the Canadian Institute for Cybersecurity [22]. It is 

a collection of benign samples and several malware types. The AndMal2017 dataset includes network 

traffic, API/SYS calls, memory dumps, logs, and phone statistics with 42 malware families. The previous 

works proved that network traffic can be utilized to detect and classify android malware. Therefore, this 

research focuses on the network traffic feature for detecting ransomware applications. 603288 ransomware 

and benign data samples were extracted with network flow features that consists of six columns for each 

flow (FlowID, SourceIP, DestinationIP, SourcePort, DestinationPort, and Protocol) and 79 network traffic 

features. This dataset was created via CICFlowMeter software [23] which is a network traffic flow 

generator and analyzer. 

 
 

3.1. Ransomware Dataset 

     In this research, 353288 ransomware samples were used with 85 features which were collected from 

10 popular ransomware families. Table I lists the behavior and characteristics of ransomware and the 

number of samples used for each one of the families. 

Table I. Description of behavior and characteristics of ransomware dataset 
Ransomware 

family 

AV 

labelled 

Num. of 

samples 

Attack 
Att-1 Att-2 Att-3 Att-4 Att-5 Att-6 Att-7 Att-8 

Charger Sophos 39551 √   √ √ √   

Jisut ESET 25672     √ √   

Koler Avast 44555  √ √   √   

LockerPin ESET 25307     √ √ √  

Simplocker Symantec 4715 √   √  √ √  

Pletor Alibaba 46082      √ √ √ 

PornDroid Ikarus 39859       √  √ 

RansomBO Fsecure 40685      √ √  

Svpeng Sophos 54161 √     √ √  

WannaLocker Avast 32701       √ √ 

Total Ransomware samples     353288  

Description: 

Att-1: Steal data (credit card credentials, contacts and SMS messages) 

Att-2: Harvest data (bookmark history, text messages and mobile accounts) 

Att-3: Phishing to the contact list / Send SPAM SMS 

Att-4: Download malicious software (malware) 

Att-5: Malware spread (uninstall AVs, load dynamic code, source encrypting) 

Att-6: Lock up the device 

Att-7: Encrypt the user files and data 

Att-8: Modify contents / SD card 

 

3.2. Benign Dataset 

     The benign applications used in this research were published in 2015, 2016 and 2017 in Google play 

market. These applications are more than six thousand and they have been grouped based on the popularity 

of the applications (best free new and most free popular) for each class available in the market. These 

applications were checked in Virustotal Web Service with two Antivirus Products (AV) [24]. 250000 
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benign samples with 85 features of network traffic were extracted and used in this research. These features 

can be categorized into classes such as (Flow-ID, Packet-based, Byte-based, Flow-based, Time-based). 

 

4. The Proposed System 

      The proposed system in this research consists of five steps as shown in Figure I. 

 
Figure I. The methodology of the proposed system 

The five steps can be briefly explained as follows: 

A. Gathering a network feature dataset using traffic capture such as CICFlowMeter [23] or from sober 

website such as [22]. 

B. Data preprocessing is the second step, through removing the missing value in the columns, 

removing features with low variance values. Then, the technique of data normalization was used 

to scale and modify the data in the range [0 and 1] via (Max-Min method). It is notable that in this 

research, the dataset used does not contain any missing values. 

C. The third step is feature selection. Several techniques were used to analyze and select the best 

features from the dataset. 

D. Six algorithms of ML were applied on the selected features from the previous step. The dataset 

used in this work was divided into 80% for training the algorithms, and the rest for testing. 

E. Finally, (Testing and Evaluation step), the 20% remaining dataset that broke up from the total data 

was used for testing the ML classifiers. 

 

5. The Data preprocessing 

     The analysis shows that the CICAndMal2017 dataset includes 85 features of network traffic. The 

names of the features are shown in the Table II, along with their values that are an instance in the dataset. 
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Table II. Example of an instance (the features and their values) in CICAndMal2017 dataset 
No. Feature name Feature value No. Feature name Feature value 

1 Flow ID 

198.11.132.53-

10.42.0.211-

443-57835-6 

44 Bwd Packets/s 0.261789451 

2 Source IP 10.42.0.211 45 Min Packet Length 0 

3 Source Port 57835 46 Max Packet Length 1452 

4 Destination IP 198.11.132.53 47 Packet Length Mean 268.2142857 

5 Destination Port 443 48 Packet Length Std 468.915325 

6 Protocol 6 49 Packet Length Variance 219881.582 

7 Timestamp 
28/08/2017 

02:20:24 
50 FIN Flag Count 0 

8 Flow Duration 61117818 51 SYN Flag Count 0 

9 Total Fwd Packets 11 52 RST Flag Count 0 

10 Total Backward Packets 16 53 PSH Flag Count 1 

11 Total Length of Fwd Packets 1048 54 ACK Flag Count 0 

12 Total Length of Bwd Packet 6462 55 URG Flag Count 0 

13 Fwd Packet Length Max 419 56 CWE Flag Count 0 

14 Fwd Packet Length Min 0 57 ECE Flag Count 0 

15 Fwd Packet Length Mean 95.27272727 58 Down/Up Ratio 1 

16 Fwd Packet Length Std 139.3908827 59 Average Packet Size 278.1481481 

17 Bwd Packet Length Max 1452 60 Avg Fwd Segment Size 95.27272727 

18 Bwd Packet Length Min 0 61 Avg Bwd Segment Size 403.875 

19 Bwd Packet Length Mean 403.875 62 Fwd Header Length 240 

20 Bwd Packet Length Std 580.0636603 63 Fwd Avg Bytes/Bulk 0 

21 Flow Bytes/s 122.8774234 64 Fwd Avg Packets/Bulk 0 

22 Flow Packets/s 0.441769698 65 Fwd Avg Bulk Rate 0 

23 Flow IAT Mean 2350685.308 66 Bwd Avg Bytes/Bulk 0 

24 Flow IAT Std 11753837.31 67 Bwd Avg Packets/Bulk 0 

25 Flow IAT Max 59977363 68 Bwd Avg Bulk Rate 0 

26 Flow IAT Min 14 69 Subflow Fwd Packets 11 

27 Fwd IAT Total 1140235 70 Subflow Fwd Bytes 1048 

28 Fwd IAT Mean 114023.5 71 Subflow Bwd Packets 16 

29 Fwd IAT Std 117387.5319 72 Subflow Bwd Bytes 6462 

30 Fwd IAT Max 296745 73 Init_Win bytes_forward 65535 

31 Fwd IAT Min 148 74 Init_Win bytes_backward 11680 

32 Bwd IAT Total 61029770 75 act_data pkt_fwd 5 

33 Bwd IAT Mean 4068651.333 76 min_seg size_forward 20 

34 Bwd IAT Std 15473328.797 77 Active Mean 1140235 

35 Bwd IAT Max 59999671 78 Active Std 0 

36 Bwd IAT Min 14 79 Active Max 1140235 

37 Fwd PSH Flags 0 80 Active Min 1140235 

38 Bwd PSH Flags 0 81 Idle Mean 59977363 

39 Fwd URG Flags 0 82 Idle Std 0 

40 Bwd URG Flags 0 83 Idle Max 59977363 

41 Fwd Header Length 240 84 Idle Min 59977363 

42 Bwd Header Length 352 85 Label RANSOMWARE 

43 Fwd Packets/s 0.179980247    
 

     After analyzing the dataset, it was noted that its features have different value ranges, in addition to 

features (columns) that have complete zero values. Therefore, the dataset needs data preprocessing 

operations before using ML algorithms on it, as follows. 
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5.1 Deleting the low variance columns (features) 

     When a dataset includes features that has values with a very slight variance or has same value for all 

rows in the column, then these features will not add any informative power to the model [25]. Hence, 

using these features also adds an unnecessary computational burden and should be removed from the 

dataset. In order to improve the model performance, the technique of deletion features with low variance 

is used. The Variance Threshold technique which was provided by sklearn [26] was used in this research. 

VarianceThreshold is a simple basic feature selector that deletes the low-variance columns. This technique 

only handles the input columns (X), not to the target column (y), and it is most useful when used for 

unsupervised learning. After applying this technique on the dataset, twelve low-variance features were 

removed from the whole feature set as shown in Table III. The remaining features are 69 out of a total of 

85 features. Four columns were removed from the data that were entered to ML algorithms because their 

values are string and cannot be used for training the algorithms. Up to this step, the data entered is 69 

features. 

Table III. The features with low variance (zero values in all columns) 
No. Feature’s Name No. Feature’s Name 

1 Bwd PSH Flags 7 Fwd Avg Bytes/Bulk 

2 Fwd URG Flags 8 Fwd Avg Packets/Bulk 

3 Bwd URG Flags 9 Fwd Avg Bulk Rate 

4 RST Flag Count 10 Bwd Avg Bytes/Bulk 

5 CWE Flag Count 11 Bwd Avg Packets/Bulk 

6 ECE Flag Count 12 Bwd Avg Bulk Rate 

 

5.2 Normalizing the dataset values 

     Researchers always aspire to get the best performance of the designed system. Data normalization is a 

very important technique that is used to improve the performance of the ML system [13]. The reason for 

this is that some datasets (e.g., CICAndMal2017 dataset) include features with very different values, 

ranges, and scales. For example, one of the CIC dataset features is "FIN Flag Count" which is (the number 

of packets with FIN), the values of this feature are 0 or 1. Whereas the values of "Flow Duration" feature 

(duration of the flow in microsecond) is in the range of tens to millions of microseconds. When a feature 

selection technique is used on these features, then this technique tends to bias toward larger values over 

smaller values. To solve this problem, a data normalization technique is used. In this research, the Max-

Min technique was used to normalize data attribute in the dataset within the range [0-1] using equation 1 

[25], where Z ϵ [min, max] and z' ϵ [0, 1]. 

𝑧′ =  
𝑍 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
 … (1) 

 

6. Experiments 

     Several experiments were performed on the proposed system in order to obtain a perfect result. These 

experiments included: 

 

6.1 The Techniques of Feature Selection 

     The efficiency of the detection and classification system usually depends on the nature and quality of 

the dataset. Also, data with higher dimensions increases noise and may lead to a complex detection model 

thus, the need to use feature selection appears. The feature selection or (feature reduction) technique is 

defined as the operation of identifying and selecting the feature that more related to the desired output 

variable, and thus, reducing the mathematical and statistical operations [27, 28]. The results are (reducing 

classification time, reducing overfitting, and increasing accuracy). It is especially important to use feature 
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selection technique particularly when the dataset is very huge. To find out the benefit of using this 

technique, first all feature sets (69 features) were used to train and test the six ML classifiers. After this, 

the next two feature selection techniques were used to train and test the ML classifiers. 

 

6.1.1 Univariate Feature Selection Technique 

     The statistical test Univariate feature selection was used to determine which of the features are the best 

and choose the one that has a strong relationship with the target via univariate statistical tests. When it 

analyzes the relationship between one feature and its goal, it ignores the other features. That is the reason 

to called it ‘univariate’ because each feature has its result. In the end, all the results are compared, and 

then f-test or (f- statistic) method was used to select features with top scores. f-test is a method that is used 

when the input data is in numerical form and the output is categorical. The sklearn Python provides 

f_classif() function which is implementation of f-test method [29]. Finally, SelectKBest( ) function [30] 

was used to choose the best (10, 15, 20, 25) features out of the 69 total features. 

 

6.1.2 SelectFromModel technique 

     SelectFromModel is a technique that is used with a model (estimator) which has feature_importantance 

attribute. The best features, which are the most important features, are chosen according to feature weights 

[31]. SelectFromModel handles all features at the same time, thus it can capture interactions compared to 

univariate feature selection. Three models (Random_Forest, Extra_Trees, and Logistic_Regression) were 

used to fit data and select features. The results of applying SelectFromModel technique on the dataset was 

selection of 21 features with RF model, 20 features with ET model, and 17 features with LR model out of 

the whole number of features. The effect of using these features to train and test the ML classifiers is 

shown in the results in Table V. 

 

6.2 Machine Learning Classifiers 

     Six ML classifiers which are commonly used in the field of cybersecurity [3, 9, 15] have been used to 

detect Android ransomware in this research. The focus on these classifiers was to measure their efficacy 

in detecting ransomware when used with data normalization and feature selection techniques that were 

not used in previous works. Another focus is also to design a simple and perfect security system based on 

machine learning techniques and methods for early detection of ransomware in network traffic before it 

hits the target. The ML classifiers used are: 

 

6.2.1 Decision Tree (DT): DT is a simple regression and classification method. It is a Supervised ML 

sequential model where the data is constantly split according to a certain parameter with a series of tests, 

similar to a flow chart structure where the inner node denotes a test on a feature. The leaf node holds a 

class label, and each branch of tree represents a result of the test. The DT flow starts when the features 

which were extracted from a new sample are introduced to the tree. Then it creates a group of questions 

to ask of this sample’s features sequentially. The max_depth parameter (maximum depth of the tree) is 

very important to control the efficacy of the tree. The tree with most depth produces the best result, but it 

will require a lot of time and calculations to process [3, 32]. In decision tree algorithm, the input is the 

maximum depth of the tree, which is 40 in this research, and the strategy (best or random) used to select 

the split at each node, was the ‘best’ in this research. The most important feature will be the root of the 

DT, then other features will be distributed from the top of the DT to the bottom depending on several 

sequential questions (decisions) and the results of information gain. The output in DT is the final nodes 

which represent the results of the questions (the target feature values), in this research the output is the 

class of the sample (benign or ransomware). 
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6.2.2 Random Forest (RF): RF is an ensemble method that is based on and consists of many DTs and 

bagging techniques. Bagging demands train each DT on a part of the whole dataset. Each tree gets its 

classification, and finally the classification is done using majority voting on the DTs results. The most 

important parameters are max_depth that define the maximum depth of the tree, and n_estimators, which 

define the number of trees in the forest [9, 32]. In random forest algorithm, the input is the number of 

decision trees and the maximum depth of the tree used to train the dataset. In this research, the number of 

the trees in the forest was 50, and the maximum depth of each tree was 25. Several decision trees will 

produce several classification results. Thus, the output of random forest for classification problems is the 

majority vote of the most trees, which represent the classification result (ransomware or benign). 

 

6.2.3 Logistic Regression (LR): LR is an algorithm that is based on ‘Statistical Learning’ method. It is 

used for regression and classification tasks. LR is a probability-based prediction algorithm that uses 

sigmoid function to transform the output and returns value of probability. It separates between the samples 

by making a boundary (hyperplane or line). For the new samples, LR examines these samples to learn on 

which side of the hyperplane they are located, then it makes the decision. The most important parameters 

are max_iter parameter which define the maximum number of iterations [3, 9]. In logistic regression 

algorithm, the input data with N samples and M features was used to train the algorithm with maximum 

number of iterations, which is 150 iterations. The multi_class parameter was set to ‘ovr’ to handle binary 

classification issues. The solver parameter (the strategy of the optimization problem) was set to ‘lbfgs’ 

that process complex dataset in faster way. These parameters were set to produce a predictive model for 

the output variable (benign or ransomware) using sigmoid function, and this is the output of LR. 

 

6.2.4 k-Nearest Neighbor (k-NN): it is one of supervised ML algorithm that are used in the tasks of 

regression and classification. It assumes that similar things exist in close proximity (near) to each other. 

It stores the part of training data and does not make the prediction until it receives the part of test data. 

The process of prediction is done when getting the instance of test data, then it scans the training data for 

the k most similar neighbors. For this, it is computationally expensive. The most important parameter is 

n_neighbors, which is defined as the number of neighbors to use [3, 9]. In k-NN algorithm, the input is 

the k- nearest training samples in the dataset, which equal to 5 in this research. All points in neighborhood 

have same weights through using ‘uniform’ weight function. The prediction for each sample in the test 

data is calculated using Euclidean metric. The output in k-NN for classification problems is a class 

membership, which represents a prediction of whether the sample is ransomware or benign by a majority 

vote of the sample's neighbors. 

 

6.2.5 XGBoost (XGB): It is an open-source library that has recently been used in many ML applications. 

It provides a high-performance implementation of gradient boosted DT to solve many data science issues 

in an accurate and fast way. Boosting involves training multiple poor DTs at successive steps to enhance 

the prediction. A poor DT model can only perform well on part of the training data, where multiple poor 

learners are combined selectively to produce a much powerful learning model. The learning_rate 

parameter is a hyperparameter that controls the changing in the weights updating of a model in response 

to the estimated error [3]. In XGBoost algorithm, the input is the number of gradient boosted trees (which 

set to 50 with n_estimators parameter) and the maximum depth of the tree (which set to 25 with max_depth 

parameter). Repeatedly, each tree makes its prediction and computes the error for the output variable, and 

these errors are then used to build the next tree. The output of XGBoost is computing through adding the 

new tree prediction to the predictions of the previous trees, then the final prediction result (ransomware 

or benign) is found. 
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6.2.6 Multi-Layer Perceptron (MLP): The Deep Learning MLP is a class of feedforward ANN. It 

utilizes backpropagation supervised learning technique for training. It consists at least of 3 layers of nodes 

(input, hidden, and output) with linear or nonlinear activation function. Each node in any layer is 

connected to all the nodes in the next layer (Fully-Connected Layer). The most important parameters are 

the hidden_layer_sizes which are define as the number of hidden layers with the number of its elements, 

and the activation parameter which is defined as the activation function for the hidden layer [3, 32]. In 

MLP algorithm, the input is defined by the nodes in input layer which equal to the features count, and the 

hidden layers (3 in this research) with different numbers of nodes via the parameter ‘hidden_layer_sizes 

= (64, 128, 64)’. The activation function is ‘relu’ and the maximum number of iterations = 20. After 

several times of calculating the weighted sum, applying the activation function, and weights adjusting, the 

MLP output is found with one node in output layer which its result is (Ransomware or Benign). 

 

6.3 Performance Metrics 

     To evaluate ML classifiers, seven metrics based on confusion matrix were used in this experiment, 

Confusion Matrix (CM) is an error matrix which is used in ML fields specifically in statistical 

classification issues. It is a table layout that shows an algorithm performance. Each column of CM refers 

to the instances in a predicted class, and each row in CM refers to instances in an actual class. CM is 

explained in Table IV: 

Table IV.  Confusion Matrix 

Parameter 
Prediction 

Ransomware Benign 

Actual 
Ransomware True Positive (TP) False Positive (FP) 

Benign False Negative (FN) True Negative (TN) 

 

Where: 

• TP: malware samples count that are correctly classified. 

• TN: benign samples count which are correctly classified. 

• FP: benign samples count which are incorrectly classified. 

• FN: malware samples count which are incorrectly classified. 

The Machine Learning metrics are: 

• Accuracy (Auc): the total percentage of cases classified correctly, it is the correctly classified 

samples divided by all of the classifications 

𝐴𝑢𝑐 =   
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
    …   (2) 

• Precision (Pr): It returns the rate of relevant results 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
     …      (3) 

• Recall (Re), or True Positive Rate (TPR): the detection rate of malware instances that detected by 

the system 

𝑅𝑒, 𝑇𝑃𝑅  =    
𝑇𝑃

𝑃
  =   

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
    …    (4) 

• True Negative Rate (TNR): it’s the ratio between correctly predicted negative and all negative 

samples, it is proportions of benign instances that correctly detect by the system. 

𝑇𝑁𝑅  =    
𝑇𝑁

𝑁
  =    

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
    …    (5) 

• False Positive Rate (FPR): it is the percentage of misidentified malware 
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𝐹𝑃𝑅  =    
𝐹𝑃

𝑁
   =     

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
     …      (6) 

• F-score (F): it is a measure of a test's accuracy that evaluates the system performance by uniting 

both precision and recall in on value 

𝐹 = 2 ×
𝑃𝑟 × 𝑅𝑒

𝑃𝑟 + 𝑅𝑒
    …     (7) 

• Classification Time (T): the required time to train the model 

 

6.4 Results 

    The Table V presents the results of using ML methods for android ransomware detection.  
 

Table V. Results of Performance Metrics for ML Classifiers 
Num of 
features 

Decision Tree 

Auc Pr Re TNR FPR F Time 

ALL  98.35 98.24 98.44 97.89 0.023 98.34 40.28 

10_best 98.38 98.16 98.55 97.62 0.023 98.34 4.42 

15_best 98.39 98.17 98.55 97.62 0.023 98.34 7.18 

20_best 98.93 98.76 99.08 98.24 0.017 98.91 10.48 

25_best 99.02 98.86 99.15 98.39 0.016 98.99 12.89 

RF = 21 99.32 99.20 99.42 98.85 0.011 99.31 7.60 

ET = 20 99.31 99.18 99.41 98.82 0.011 99.29 9.51 

LR = 17 99.37 99.25 99.46 98.92 0.010 99.35 5.71 

Num of 
features 

Random Forest 

Auc Pr Re TNR FPR F Time 
ALL  95.83 95.48 96.16 92.21 0.057 94.76 164.95 

10_best 93.69 93.26 94.16 91.46 0.078 93.58 70.61 
15_best 93.99 93.58 94.41 91.95 0.075 93.88 71.07 
20_best 94.67 94.27 95.08 92.36 0.073 94.33 77.74 
25_best 94.74 94.30 95.89 92.63 0.071 94.57 87.22 
RF = 21 96.97 96.22 97.35 95.03 0.048 96.91 75.07 
ET = 20 97.02 96.63 97.45 95.11 0.047 97.04 71.98 
LR = 17 95.99 95.63 96.36 94.20 0.056 95.91 68.22 

Num of 
features 

Gradient Boosting XGB 

Auc Pr Re TNR FPR F Time 
ALL  96.46 96.37 96.54 96.08 0.039 97.15 385.52 

10_best 96.73 96.39 96.98 95.52 0.044 96.65 77.69 
15_best 96.73 96.39 96.98 95.52 0.044 96.65 84.92 
20_best 97.37 97.07 97.62 96.18 0.038 97.31 111.15 
25_best 97.55 97.26 97.79 96.41 0.035 97.49 124.50 
RF = 21 99.28 99.15 99.39 98.78 0.011 99.26 106.86 
ET = 20 99.22 99.08 99.33 98.68 0.013 99.20 91.90 
LR = 17 99.26 99.14 99.37 98.75 0.012 99.24 95.52 

Num of 
features 

K-Nearest Neighbor 

Auc Pr Re TNR FPR F Time 
ALL  97.13 96.92 97.55 95.41 0.0448 97.18 491.91 

10_best 97.09 96.73 97.45 95.38 0.0461 97.02 384.23 
15_best 97.09 96.73 97.45 95.38 0.0461 97.02 573.81 
20_best 97.70 97.37 98.01 96.16 0.0383 97.64 745.41 
25_best 97.70 97.38 98.02 96.16 0.0383 97.65 900.18 
RF = 21 97.92 97.61 98.23 96.46 0.0353 97.87 177.95 
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ET = 20 97.89 97.59 98.19 96.40 0.0359 97.85 145.34 
LR = 17 98.16 97.87 98.43 96.88 0.0311 98.12 115.78 

Num of 
features 

Multi-Layer Perceptron 

Auc Pr Re TNR FPR F Time 
ALL  58.30 79.14 50.03 65.45 0.0025 61.30 196.53 

10_best 89.27 88.78 89.55 87.97 0.1202 89.06 99.13 
15_best 89.27 88.78 89.55 87.97 0.1202 89.06 103.10 
20_best 89.88 89.42 90.24 88.11 0.1188 89.70 145.75 
25_best 89.95 89.49 90.28 88.63 0.1136 89.75 162.25 
RF = 21 91.64 91.19 91.99 89.93 0.1006 91.47 128.48 
ET = 20 91.30 90.93 91.93 88.18 0.1081 91.18 115.69 
LR = 17 91.24 90.78 91.48 90.07 0.1092 91.05 106.63 

Num of 
features 

Logistic Regression 

Auc Pr Re TNR FPR F Time 
ALL  69.88 77.87 64.45 77.26 2.027 62.86 37.35 

10_best 84.52 84.22 83.67 88.51 0.114 83.91 11.12 
15_best 84.52 84.22 83.67 88.51 0.114 83.91 11.12 
20_best 85.05 84.80 84.23 89.00 0.109 84.48 15.99 
25_best 85.16 84.92 84.34 89.10 0.108 84.59 21.90 
RF = 21 85.66 85.30 85.07 88.51 0.114 85.18 14.37 
ET = 20 85.16 84.80 84.59 87.99 0.120 84.69 12.83 
LR = 17 85.41 84.99 84.90 87.85 0.121 84.94 10.91 

 

     From Table V, the benefits of using feature selection techniques can be noted, especially where it 

selects the best number of the most important features, which contributed to improving the performance 

of the system in terms of high detection accuracy, precision, recall and f-score, and reducing the FPR rate. 

In addition, feature selection technique has reduced training time to a quarter of the required time to train 

all features, and the reason for this was the decrease of computations and processing operations. 

     Also, from Table V, it can be concluded that both DT and XGB classifiers are the best method used 

for ransomware detection with detection accuracy exceeding 99%. DT is faster than XGB when compared 

in terms of “classification time” metric because DT is a single tree that can process a large dataset in a 

short time. The XGB classifier provides exceedingly high accuracy and it prevents overfitting, but it is 

more difficult than DT and it requires more arithmetic operations (as with RF) and a lot of training time 

as it consists of several trees. k-NN classifier provided superior performance with a detection accuracy of 

more than 98%. Although the efficiency of k-NN depends on n_neighbors parameter, it requires more 

training time and more storage space because it is a lazy algorithm, k-NN does not learn data 

generalization at the training phase, it delays that to the testing phase. The detection accuracy for MLP 

classifier exceeded 91%, and the experiments proved that increasing the number of iterations in MLP 

leads to better results, but it takes more training time. The detection accuracy for LR was low (≈ 85%). 

The reasons for this are that LR is suitable to process linear problems and simple datasets with separable 

data (uncorrelated features), because LR has a linear decision surface. 

     In comparison with previous works, Table VI presents the detection accuracy for the proposed system 

and the works [7] and [16] which used the same dataset (the CICAndMal2017 dataset) for android 

ransomware detection. Also, the table shows a comparison with the work [15] which used the dataset with 

the same features that were extracted from network traffic for android ransomware detection. 
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Table VI. Comparison between the proposed system and previous works 
  Works   

Methods [15] [16] [7] 
The proposed 

system 

DT 97.10 - 77.70 99.30 

RF 96.10 97.45 82.80 97.02 

k-NN 95.30 - 74.76 98.16 

XGB - - - 99.20 

MLP 95.20 - - 91.64 
 

 

From Table VI, it can be concluded that the proposed system gives a higher accuracy rate for ransomware 

detection (in bold font) than other works. 

     According to the experiments, the benefits of dynamic analysis for ransomware detection from its early 

phases of entering the device over the network become clear. Also, it can be concluded that using a number 

of network traffic features (e.g., 21 features by RF selector, 20 by ET selector ... etc.) is considered 

effective in distinguishing ransomware from benign. The proposed system gives high accuracy (more than 

99%) for both DT and XGB classifiers, and low FPR (0.010) and (0.011) for DT and XGB respectively. 

So, it can be stated that the proposed ML methods are effective for Android ransomware detection when 

applied to network traffic features. Thus, it can be adopted as a method for detecting ransomware 

applications on smartphone. 

 

7. Conclusion and Future works 

     Some attackers can recognize patterns of malicious and benign applications and then attempts to 

simulate a specific class of traffic (for example the duration of the flow) or use fake IP address, but it is 

impossible to change the variance of some or all features for evading the detection system as in the 

proposed system. For this reason, it is important to highlight that this research differs from other works 

that utilize one category of network traffic. This research focused on selecting the best features from the 

total feature set. The analysis results of the experiments show that the features of network traffic are very 

suitable when utilizing them to detect the ransomware, as the dataset used in this analysis has been 

extracted from online network traffic. Several techniques were used to select best features, and six ML 

algorithms were applied for android ransomware detection. Finally, seven performance metrics were used 

to evaluate ML classifiers. The results showed that the average detection accuracy was (more than 99%) 

for DT and XGB, and FPR is (0.016% and 0.029%) for DT and XGB respectively. For future work, the 

suggestion is using network traffic features for detection and classification of other android malware types. 

Also, the aim is to choose other types of features (e.g., utilizing memory dump, permission, logs, or API 

calls) to develop a widespread Android ransomware detection framework. 
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