1

2006/3/7 2005/4/13

Abstract

The study was carried out during the winter of 2002-2003 ,using spring wheat Triticum aestivum L.(Abu-Greab-3-cultivar). The study aimed to investigate the possibility of using ethylen glycol (an antifreezing solution) for induction of freezing tolerance in wheat plants by seeds soaking method. The study was carried out in three replicates and designated as (4×5) factorial experiment according to randomize complete block design with two factors.

The first factor was ethylen glycol concentrations with comprised four levels $(0,5,10,and\ 20\%,v/v)$ while the second factor comprised five periods of exposure to -5 c(0,12,24,48 and 72 hrs).

Different concentrations of ethylen glycol were showed significant effects at 0.05 level of significant in:-area of the first leaf after 15,30 and 60 days ,area of second leaf after 30 and 60 days; area of third leaf after 60 days ;fresh weight of first ,second and third leaves ; dry weight of second and third leaves; plant dry weight ;No. of leaves in main stem after 30 days ; total No. of leaves /plant after 60 days and the No.of stomata/mm², while there were no significant effects in amount of protein and chlorophyll a and b.

Different exposure periods were showed significant effects in :- area of first and second leaves after 15,30 and 60days; area of third leaf after 30 and 60 days; fresh and dry weight of first ,second and third leaves and the complete plant; No. of leaves in main stem after 15 and 30 days; Total No. of leaves / plant after 60 days and chlorophyll a and b ,while no significant effects were noticed in :No. of stomata/mm² of leaf surface and amount of protein. All the interactions between the two factors were significant except for protein amount. Analysis of regression between ethylene glycol concenterations and exposure periods with all studied parameters were also done for those showed significant differences.

2003-2002 -3-Triticum aestivum L. (5×4) (/)%20 %10 %5 ()%0 72 48 24 12 0 (5-) 60 30 60 30 15 60 2 60 30 .b a 60 30 15 60 30 30 15 2 .b a 60 CO_2 Fitter .(1984 (1981) Hay

(1998) Reinhoud (1974) Reid (1977) Sutcliffe (1980) (1980) Berlo Hasselt Vigh (1981) (2004) 5-20 5-(2003) 5-/ 5b a (1990) Forsyth Macfarlane

•

(1975) Bandyopadhyay Bose (1975) Naskar Bose Cluster bean (1975) Bhattacharyya Bose / Triticum 2003-2002) -3aestivum L. (2002 (5×4) . / (/)%20 %10 %5 () %0 (% 99.9 (5-) 72 48 24 12 0 : 100 60 100 100×15

4

(%20 %10 %5 %0)

(5-)

```
72 48 24 12 0:
                     )
(5-)
                         2002-8-20
    (
  (4 \times 2.2)
        % 20.15
                         %41.13
                                        % 38.12
                        (8.25=
                                            %0.98
             2002-11-17
                              20(
 7.5
                                                   )
                                 . 15(
                    25
                   20
 30 15
                                                     60
                                   = (^2)
       (1960, Kamp) 0.95× ×
     60
         /
   80
                   2
         b a
                                          50
```

.

```
. (1941, Makinny) (1949, Arnon)
                                         F
                   0.05
        F
                                 (Duncan 1955)
-)
                                               .SAS
                                                       (5
                      (1990
                                    )
                                                    Excel
                                      - 1 -
                                       60 30 15
     60 30
                         0.05
                30
                          15
     Niino)
                       paul) (1997 Maruyama) (1992
               (2000
                      (1975) Naskar Bose
cluster
                                                     bean
\% 70 \% 99 (R)^2
                                                  -1- )
                                    60 30 15
                                                  % 100
           60 30
                        % 99 % 98
                                                 -1- )
  .( -1- )
                       60
                               % 85
```

0.05 levitt . (1977 Sutcliffe) (1956)(1981) Hay Fitter (2004)5-72 24 60 60 30 15 5-(% 98 15) 30 (%88 .(-2-) 60 (% 92 % 93 % 93 % 95 .(-2-) 60 30 15 % 99 % 96 60 30 .(-2-) -1-

.(1975) Bandyopadhyay Bose

60 30 15

30

••••

```
5-
                        60 30 15
          0.05
                                   30 15
                            60
            60
                                        30 15
   .(1995)Carter
                                     30
                     .( -3- ) % 94
                                         % 100
          30 15
                                           5-
        ( -3- ) % 99 % 96
% 98
                                            .( -3- )
                          - 2 -
                                              0.05
           5-
             (1990) Forsyth Macfarlane
                            -3-
              0.05
                                                    (1)
                                        -1-
                                             (-3-
                 0.05
```

```
.(1977) Sutcliffe (1981) Hay Fitter
                        (2003)
                                       5-
    72
94 % 98 % 96 ( )
                                           %
                      5-
                      % 78
                                ( )
% 88
( -4- )
                      %88
% 97
                                    .( -4- )
                              -3-
              0.05
                                   .(1992)
Reid .(1994 Schieber) (1991 Yuan)
                                    (1974)
65
                 ( -5- ) % 100 % 69 %
```

```
5-
                  ( -5- ) % 77
              % 97 % 95 % 87
-5- )
                           -4-
                                                  .(
                                                0.05
             5-
  (
                                     5-
5-
                          (1990 Forsyth Macfarlane)
0.05
                     )
                                     -5-
                                           2 /
                   (1982
                               Sanchez-Diaz)
                                 (1984)
-6-
                        b a
                 (1999) Dufresne Pillard
                                                a
                 (1991) Yuan
                 5-
                       -5-
                                               (1994)Zhao
```

(1992) Griffith (1993) Marentes 5--5b a 0.05 (2003) b a b a .(1980 Berlo Hasselt)) 2 / %50 (-6 87 % 97 b a .(-6-) b a % -6-0.05 2 0.05 b a

.(1990, Forsyth Macfarlane)

....

. (1980)-

-4-2 15 : .(2003)

.139-120

(1990) - -

-(16) - .(2004)

.89-70 (4)

.(1992)

المصادر الاجنبية

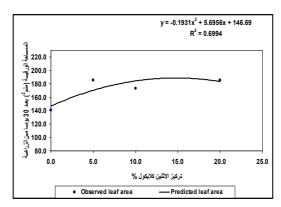
Arnon, D.I.; Histological Changes. Bot. Goz. 124:329-335. (1949).

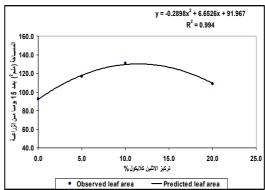
Bose, S. and Bandyopadhyay, M.; science & culture 41: p240-241. (1975).

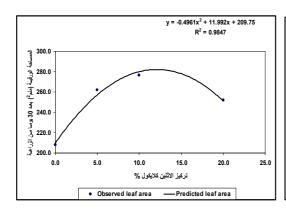
Bose, S. and Naskar, S.K.; Bulletin of the Botanical Society of Bengal ,29:p 49-52. (1975).

Bose, S. and Bhattacharyya, S.K.; plant science. (7) p19-22. . (1975).

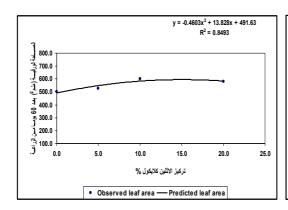
Carter, P.R. Journal of production agriculture (USA)., 8(2):P203-209. (1995).

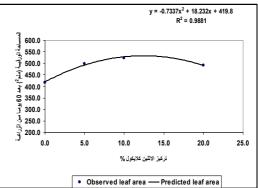

Duncan, D.B. Multiple range and multiple F tests. Biometrics. 11 P:1-42. . (1955)

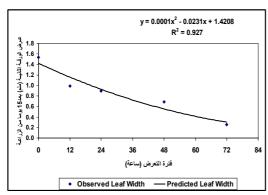

Fitter, A.H. and Hay R. K. M. (Part III). Academic press Inc. (London) LTD., P 171-199. (1981).

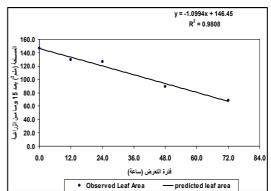

- Griffith, M.Ala ,P.Yang,D.S.C. Hon,W.C. and Mofaat,B.A.;Plant Physiol. 100:P593-596.(1992).
- Hasselt, P. and Berlo, H.; physiol. Plant. 50: P52-56. (1980).
- Kamp, C.D. Ann. Bot. Lond. 24, No. 96: 491 499. (1960).
- Levitt, J." Hardiness of plants". Vol.6. Monographs of Am. Soc. Agron. Academic press Inc., New York. (1956).
- Macfarlane, D.R. and Forsyth, M.; Cryobiology 27: p 345-358. (1990).
- Marentes, E.; Griffith, M.; Mlynarz, A. and Brush, R.A.; Physiol. Plant. 87: p 499-507. (1993).
- Maruyama, E.; Kinoshita, I.; Ishii, k.; Ahba, k. and Sakai, A. Plant cell, Tissue and organ culture. 48 : p 161-165. (1997).
- Makinny, G.; J. Biol. Chem., 140:315-233.(1941).
- Niino, T., Sakai, A. Yakuwa, H. and Nojiri, K. Plant Cell Tissue and organ culture. 28:P 261-266. (1992).
- Pillard ,D. and Dufresne D.; Arch. Environ. Contam. Toxicol. 37: p 29-35. (1999).
- Paul, H.; Daigny, G. and Sangwan Norreel, B.S.; Plant cell Reports. 19: p 768 774. (2000).
- Reid, D.M.; Pharis, R.P. and Robert, D.; physiol. Plant. 30: p53-57. (1974).
- Reinhoud, P.J.; Iren, F.V. and Kijne, J.W. JIRCAS / IPGRI joint International workshop 1988. Web site:ss.jircas-os. Affre . go .jp / explore.htmL.E-mail : reinhoud@chem.eidenuniv.ni(1998).
- Schieber, O.; Dietrich, A. and Marechal Drouard, L. (1994). Plant Physiol. 106: p 159 164.
- Sanchez Diaz, M.; Aparicio -Tejo, p.; Gonzaiez Murua, C. and pena, J.I.; Physiol. Plant. 54: p361-366. (1982).
- Sutcliffe, J.; no. 86- Edward Arnold. London. (1977).

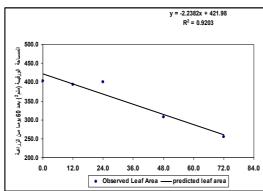
. . . .

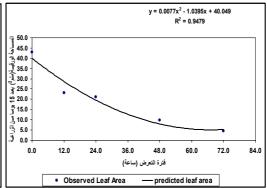

- Vigh, L.; Horvath, I.; Farkas, T; Mustardy, I.A. and Faludi-Daniel, A. Phsyiol. Plant. 51: P 287-290. (1981).
- Yuan, J.; Cline, k. and Theg, S.M. plant physiol 95: 1259-1264. (1991).
- Zhao, J.; Scientia Agricultura-sinica.27(2):p57-61. (1994).

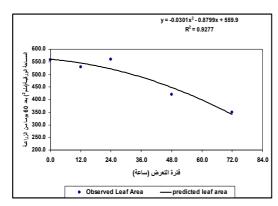


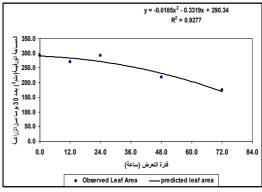


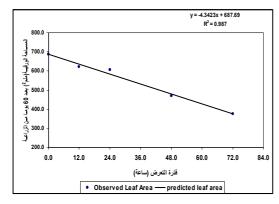


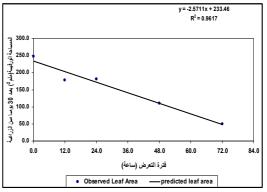




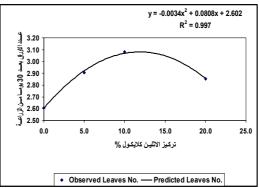

() (1) . () ()

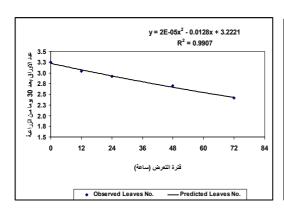


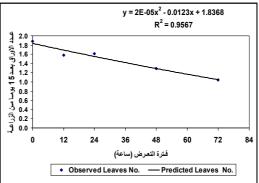


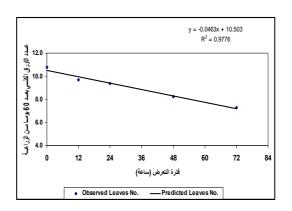


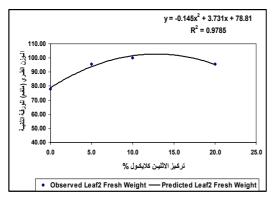


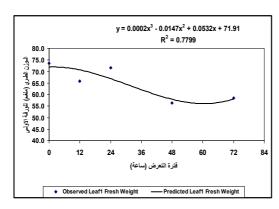


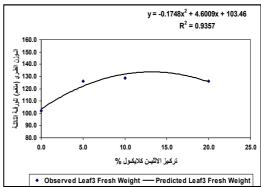


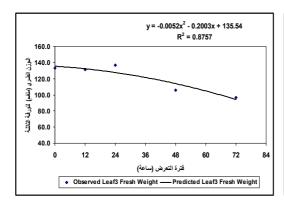


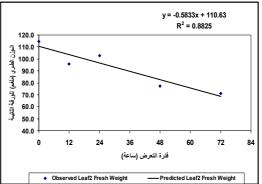

() (-5) (2) . () ()

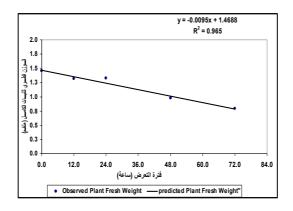


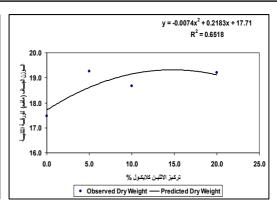


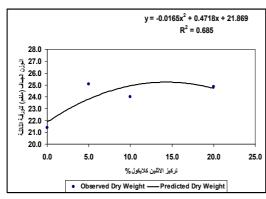


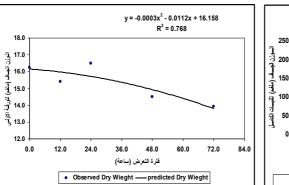

. . .

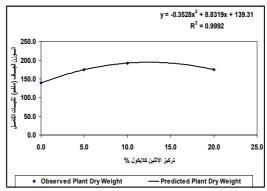


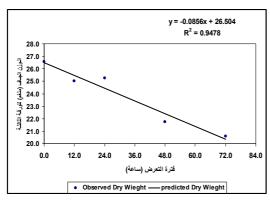


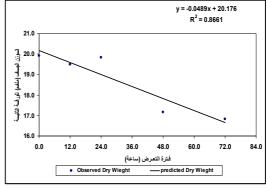


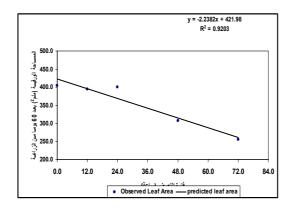


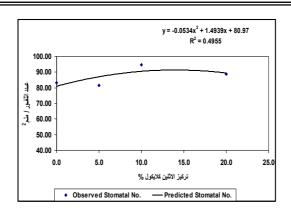


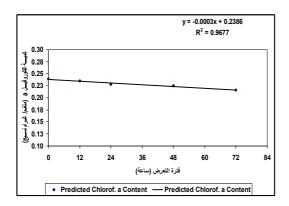


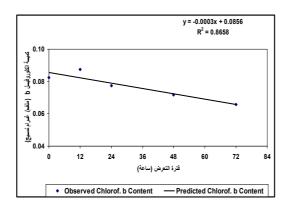












. . . .

2007 (1) (19)

الجدول (1) تأثير تراكيز الاثلين كلايكول ومدد التعرض لدرجة (-5)مئوية في مساحات الأوراق الأولى و الثانية والثالثة بعد مرور 15 و 30 و 60 يوماً وفي عدد الاوراق للساق الرئيس وعدد الأوراق الكلي.

.g												تركيز الاثلين
عدد الأوراق	، الرئيس	عدد الأوراق للساق الرئيس			مساحة الورقة بعد 60 يوم (ala^2)			مساحة الورقة بعد 30 يوم(ملم ²)			مساحة الورقة بعد 15 يوما (ملم²)	
الكلى	60	30	15	3	2	1	3	2	1	2	1	کلایکول (%) (حجم/حجم)
8.14b	3.59a	2.61b	1.41a	500.72b	417.32b	296.85b	131.16a	207.94b	141.00b	17.16a	92.58b	0
8.98ab	3.55a	291a	1.51a	525.01ab	499.25a	363.85a	157.19a	262.14a	185.53a	16.86a	116.36ab	5
9.99a	3.69a	3.08a	1.61a	602.06a	523.78a	388.76a	147.33a	276.44a	172.95a	28.07a	130.73a	10
9.13ab	3.65a	2.85ab	1.42a	581.04ab	491.80a	359.11a	132.92a	251.96a	185.26a	19.14a	108.91ab	20
										مدة التعرض(ساعة)		
10.77a	3.82a	3.25a	1.88a	686.53a	557.08a	186.24a	247.75a	291.37a	186.24a	43.00a	146.53a	0
9.67ab	3.89a	3.03ab	1.58b	622.01a	529.33a	176.50ab	178.32ab	271.22a	176.50ab	23.16b	129.35a	12
9.38ab	3.64a	2.92bc	1.62b	606.97a	559.33a	187.03a	180.90ab	292.47a	187.03a	21.08b	126.84a	24
8.22bc	3.52a	2.70dc	1.29c	469.67b	420.24b	159.23bc	109.61bc	218.90b	159.23bc	9.90bc	89.62b	48
7.27c	3.47a	2.41d	1.04c	375.86c	349.22c	146.91c	49.63c	174.12c	146.91c	4.40c	68.38b	72

30 15 (5-)

. 60

	·						UU						
1			60			30			15			(%)	
60	60	30	15	3	2	1	3	2	1	2	1	()	(/)
10.90ab	3.97ab	3.23ab	1.90a	707.71a	589.68a	401.87ab	236.04abc	285.67ab	187.76a	42.74ab	147.19ab	0	
9.53abc	3.67a	2.93a-d	1.53ab-e	654.41abc	515.00abc	381.38abc	151.04a-f	238.96abcd	160.24ab	17.03a-d	107.75abcd	12	
9.17a-d	3.67b	2.77a-d	1.50a-e	635.32abc	570.04a	393.05ab	149.04b-f	299.69ab	180.28a	18.47a-d	117.24abc	24	0
5.95de	3.38b	2.39d	1.11cde	295.78ef	240.21e	164.34e	91.10b-f	152.60c	118.28b	7.54bcd	53.39de	48	
5.17e	3.25b	1.71e	1.00e	210.39f	191.65e	143.62e	28.59f	62.77d	58.43c	0.0d	37.32e	72	
9.88abc	3.60b	3.23ab	1.93a	667.70abc	566.10ab	401.78ab	149.88a-e	310.51a	214.13a	35.05a-d	152.62a	0	
8.83a-d	3.50b	3.07a-d	1.63a-d	546.27	508.71ab	374.68a-d	193.97a	276.79ab	189.69a	23.01abcd	131.48abc	12	
9.63abc	3.63b	2.90a-d	1.60a-e	508.72a-d	579.16a	416.52a	204.12a-d	302.92ab	196.26a	17.06a-d	130.39abc	24	5
9.03a-d	3.60b	2.70a-d	1.33ab-e	483.98b-e	449.71bcd	335.77a-d	130.05b-f	214.52abc	166.70ab	9.17bcd	92.54abcde	48	
7.53b-e	3.43b	2.63bcd	1.00 e	412.41ed	392.58d	290.51cd	62.93edf	205.95bc	160.80ab	0.0d	74.78cde	72	
11.43a	4.03ab	3.40a	1.90e	704.05ab	555.09ab	400.81ab	313.92a	280.60ab	174.33a	52.46a	141.56ab	0	
10.27abc	3.67b	3.10a-d	1.70abc	628.34abc	543.53ab	416.22a	214.20a-d	292.99ab	177.53a	33.44a-d	140.61ab	12	
9.13a-d	3.40b	3.07a-d	1.80ab	635.74abc	566.02ab	402.32ab	198.22a-d	302.03ab	182.78a	30.10a-d	146.88ab	24	10
9.90abc	3.67b	3.00a-d	1.50a-e	561.77abcd	527.79abc	415.49a	158.38a-f	283.83ab	172.20ab	12.69bcd	136.00ab	48	
9.20a-d	3.67b	2.83a-d	1.13cde	480.41cde	426.49cd	308.94bc	73.83c-f	222.73abc	157.91ab	11.56bcd	88.62bcde	72	
10.87ab	3.67b	3.13abc	1.80ab	666.66abc	537.43abc	410.61ab	246.15ab	288.70ab	168.75ab	44.73abc	144.73ab	0	
10.03abc	3.73b	3.03a-d	1.47a-e	659.01abc	550.10ab	404.91ab	154.14a-f	276.15ab	178.55a	19.16a-d	137.56ab	12	
9.57abc	3.87ab	2.93a-d	1.57a-e	648.12abc	522.08abc	389.48abc	172.22a-f	265.23ab	188.82a	18.58a-d	112.86abc	24	20
8.00a-e	3.43b	2.70a-d	1.23b-e	531.14a-d	463.24abcd	312.59a-d	58.92def	224.68abc	179.76a	10.18bcd	76.57cde	48	
7.17cde	3.53b	2.47cd	1.03de	400.24de	386.15d	277.98d	33.18ef	205.04bc	210.44a	6.03cd	72.80cde	72	

	جاف (ملغم)	الوزن ال			تركيز الاثلين كلايكول			
للنبات الكامل	3	2	1	للنبات الكامل	3	2	1	(%) (حجم/حجم)
139.00b	21.40b	17.47b	14.47a	1050.00a	101.86b	78.10b	53.13b	0
175.47a	25.07a	19.26a	15.67a	1210.00a	126.33a	95.73a	70.17a	5
191.73a	24.00a	18.67ab	15.46a	1260.00a	128.80a	100.20a	72.47a	10
174.93a	24.87a	19.20a	15.67a	1180.00a	125.60a	95.67a	64.90a	20
								مدة التعرض(ساعة)
214.42a	26.58a	19.91a	16.25a	1460.00a	133.25a	114.75a	73.71a	0
188.75a	25.00a	19.50a	15.42ab	1320.00a	131.67a	95.79b	65.75ab	12
187.67a	25.15a	19.83a	16.50a	1320.00a	136.75a	102.83a	71.54a	24
140.33b	21.75b	17.17b	14.50ab	970.00b	105.66b	77.42c	56.42b	48
120.25b	20.58b	16.83b	13.92b	790.00b	96.91b	71.33c	58.42b	72

(5-)

• • • •

.

	()				()				
	3	2	1		3	2	1	()	(%) (/)
216.00ab	26.67ab	20.33ab	17.00a	1500.00ab	129.00ab	180.67ab	74.33ab	0	
169.00a-d	24.33abc	19.67ab	15.33abc	1410.00ab	122.67abc	90.50abc	61.67ab	12	
168.67a-d	24.50abc	21.00ab	17.33a	1380.00ab	134.00ab	102.00abc	67.00ab	24	
67.33f	15.67d	13.00c	11.00c	480.00c	61.00d	44.67d	30.67c	48	0
74.00ef	15.67d	13.33c	11.67bc	450.00c	62.67d	44.67d	32.00c	72	
221.00a	29.00a	21.67a	17.33a	1620.00a	138.33a	117.00a	84.50a	0	
183.00a-d	24.00abc	19.33ab	15.00abc	1230.00ab	138.33a	94.67abc	67.33ab	12	
188.00a-d	25.33abc	18.66ab	15.67ab	1340.00ab	136.00a	108.00ab	71.67ab	24	5
149.00bcd	23.67abc	18.00ab	15.33abc	980.00bc	114.67abc	95.00bc	63.00ab	48	
136.33cde	23.33bc	18.67ab	15.00abc	880.00bc	104.33bc	74.00c	64.33ab	72	
214.00ab	25.00abc	19.00ab	15.00abc	1350.00ab	135.00ab	117.67a	66.67ab	0	
200.67abc	26.00ab	19.33ab	15.33abc	1350.00ab	139.00a	105.00ab	70.33ab	12	
200.67abc	24.00abc	19.33ab	16.33a	1410.00ab	138.67a	105.33ab	78.00ab	24	10
197.33abc	24.67abc	19.33ab	16.33a	1260.00ab	134.00ab	97.00abc	74.67ab	48	
146.00bcd	20.33cd	16.67bc	14.33abc	910.00bc	97.33c	76.00c	72.67ab	72	
206.67abc	25.67abc	19.00ab	15.67ab	1350.00ab	130.67ab	115.67a	69.33ab	0	
202.33abc	25.67abc	19.67ab	16.00ab	1280.00ab	122.67abc	93.00abc	63.67ab	12	
193.33a-d	27.00ab	20.33ab	16.67a	1190.00ab	138.33a	96.00abc	69.50ab	24	20
147.67bcd	23.00bc	18.33ab	15.33abc	1170.00ab	113.00abc	83.00bc	57.33b	48	
124.67def	23.00bc	18.67ab	14.67abc	920.00bc	123.33abc	90.67abc	64.67ab	72	

² / (5-) :(5)

b a

مُ/غرام نسيج)	كمية الكلوروفيل(ملغم		2 t / .*v .*ti	تركيز الاثلين
b	a	كمية البروتين(ملغم/غم)	عدد الثغور (ثغر/ملم²)	كلايكول(%) (حجم/حجم)
0.79a	2.30a	204.95a	83.12bc	0
0.81a	2.26a	196.39a	81.38c	5
0.75a	2.26a	187.78a	94.85a	10
0.73a	2.36a	198.61a	88.77ab	20
				مدةالتعرض(ساعة)
0.83ab	2.39a	196.06a	83.90a	0
0.88a	2.35a	199.18a	86.81a	12
0.78abc	2.29ab	195.26a	89.34a	24
0.72bc	2.27ab	208.85a	88.23a	48
0.66c	2.16b	185.29a	86.91a	72

•

b a (5-)

.

((/)		(2 /)	()	(%)
b	a	(/)			(/)
0.93ab	2.50a	195.48a	82.49ab	0	
0.97a	2.47a	210.24a	81.34b	12	
0.77abc	2.27ab	168.07a	88.30ab	24	0
0.67abc	2.27ab	216.37a	83.43ab	48	
0.63bc	1.97b	234.58a	80.02b	72	
0.80abc	2.43a	131.14a	82.18b	0	
0.77abc	2.17ab	193.69a	81.48b	12	
0.90ab	2.40a	200.86a	80.25b	24	5
0.80abc	2.17ab	219.20a	82.93ab	48	
0.77abc	2.13ab	171.48a	80.05b	72	
0.80abc	2.37a	204.79a	83.42ab	0	
0.80abc	9.37a	181.34a	96.59ab	12	
0.73abc	2.20ab	199.82a	100.99a	24	10
0.70abc	2.17ab	185.89a	97.85ab	48	
0.70abc	2.17ab	167.07a	95.50ab	72	
0.80abc	2.27ab	187.27a	87.52ab	0	
0.97a	2.40a	211.48a	87.83ab	12	20
0.70abc	2.27ab	212.30a	87.73ab	24	20
0.70abc	2.47a	213.96a	88.96ab	48	
0.53c	2.37a	168.03a	92.06ab	72	