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Abstract  

Modern operating systems are based on the principle of time-sharing in executing simultaneous 

operations. Determining the length of the time slice, and the times when processes arrive at the ready 

queue are problems that affect metrics as the average waiting time (AWT), average turnaround time 

(ATAT), response time (RT) and the number of context switches (NCS) of the time-sharing round 

robin RR algorithms. The research aims to propose an algorithm that achieves a short waiting time 

while maintaining a reasonable response time, which is the most important characteristic of time-

sharing algorithms. The Different Arrival-Dynamic Quantum Round Robin (DADQRR) algorithm 

bases its work on different parameters to adjust the time slice value dynamically. The algorithm has 

been compared to three other algorithms that are similar in terms of dealing with different arrival times, 

namely AN, MARR, RR. The algorithm outperformed the three algorithms at range from 6.155% to 

31.409% in term of AWT. It achieved an outperformance of 5.924% to 30.850%, considering the TAT. 

The ranges of outperformance values resulted from the difference in the ranges of arrival times, as well 

as in the ranges of burst times. 
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   خوارزمية راوند روبن محسنة باوقات وصول مختلفة ومرتكزة على شريحة زمنية ديناميكية
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:الخلاصة  
ولحظة وصول  ول الشريحة الزمنيةطتحديد يبرز تعتمد أنظمة التشغيل الحديثة على مبدأ مشاركة الوقت في تنفيذ العمليات المتزامنة. 

 الاستجابة زمنو (ATAT) زمن المكوثومتوسط  (AWT) الانتظار زمنمتوسط  في مشكلة تؤثركالعمليات الى طابور الجاهزية 

(RT)  وعدد مرات تبديل السياق (NCS) زمن انتظار الوصول الى خوارزمية تحقق  البحث    يهدف.  في خوارزميات هذه الانظمة

 Different. ترتكز خوارزمية  قصيرمع المحافظة على زمن استجابة معقول وهو الخصيصة الاهم في خوارزميات مشاركة الوقت

Arrival-Dynamic Quantum Round Robin (DADQRR)     لضبط قيمة الشريحة الزمنية عديدة  في عملها على معلمات

 ,AN, MARRهي    ديناميكيًا. تمت مقارنة الخوارزمية بثلاث خوارزميات أخرى تشبهها من حيث التعامل مع أوقات وصول مختلفة

RR  و  %6.155 نبيقدره  يتراوح  تفوقا  حيث حققت    الانتظارمتوسط زمن    باعتبار. تفوقت الخوارزمية على الخوارزميات الثلاث 

ان الاختلاف في قيم التفوق نتج   .متوسط زمن امكوث  % باعتبار 30.850و    %5.924% . وحققت تفوقا يتراوح قدره بين  31.409

 عن الختلاف في مديات ازمان الوصول وكذلك في مديات ازمان التنفيذ. 
 

 راوند روبن، زمن المكوث ، زمن الانتظار ، اوقات وصول مختلفة، شريحة زمنية ديناميكية:  الكلمات المفتاحية
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1. Introduction 

Today, software systems control all modern devices. The operating system (OS) is a software program 

that runs on computers and other devices to offer a suitable environment for each user to implement 

advanced programs[1]. It provides a user interface that enables computer hardware and user programs 

to perform their functions correctly and appropriately. The operating system controls how hardware 

operates, how data and information are input and output, and how user programs are interfaced. The 

Operating system is the software that performs and implements scheduling of processes.[2] 

When talking about the operating system, terminology like multitasking and multiprocessing are 

utilized. These terms can be used interchangeably. Multiprocessing refers to using many CPUs in 

processing[3]. Even though only one CPU is being used for processing, because it switches between 

tasks so quickly, the user thinks that all apps are active at once. Multitasking is the term for it 

[4],[5],[3]. 

Numerous processes can run simultaneously on a system and share and in turn maximizes resource 

consumption. These systems compete for execution among a large number of processes running in 

memory, and are known as time-sharing systems. As a result, CPU time must be distributed among all 

of these processes[6]. 

Preemptive and non-preemptive process execution methods are two types of process execution 

methods. Non-preemptive processes run in sequential order, which means one process runs at a time 

while other processes wait for the previous process to finish. The term "preemptive process execution" 

refers to the allocation of CPU resources when a process is ready to run.  

A scheduler is a program that selects the tasks to be scheduled according to a specified algorithm [1]. 

The CPU scheduler is responsible for allocating resources, specifically CPU time, to all processes.[2] 

There are three sorts of schedulers: long-term, mid-term, and short-term. The first is a long-scheduler, 

which determines the process that moves from the process pool on a hard disk to Random Access 

Memory (RAM) (HDD) [1]. The short-term scheduler chooses one of the jobs that are ready to run 

and assigns CPU time to it. To limit the degree of multiprogramming, the mid-term scheduler 

eliminates less used or idle processes from memory. The process of selecting a particular process at a 

particular moment to give it the CPU and for a specified period is called scheduling. The scheduling 

algorithm affects the behavior of the system. As a result, it has an impact on its performance. [7]  

An operating system can choose a process and send it to the CPU for execution in many ways. Every 

scheduling algorithm has its own set of benefits and drawbacks[8],[9]. The system's behavior must be 

optimized, based on a specific criterion by choosing the best scheduling algorithm for a specific class 

of processes [6]. 

A scheduling mechanism known as First Come First Served (FCFS) adds newly incoming processes 

to the end of the queue and CPU is assigned to the head processes for execution. According to their 

arrival time(AT), the initial processes are assigned to the CPU. The average waiting time(AWT) of 

this algorithm is quite high. [8],[9]. 

Another scheduling algorithm is the Shortest Job First (SJF) scheduling algorithm, which assigns the 

CPU to the task that has the shortest CPU burst time first. The short-term scheduler pushes the 

processes with the shortest CPU burst time to the front of the queue and inserts the processes has the 

longest CPU burst time to the back. The biggest issue with this scheduling is determining when the 

next CPU burst will occur [10]. 

In Round Robin (RR) scheduling algorithm, each process is assigned to the CPU for a certain time 

slice (quantum). This prevents starvation since each process is given the same amount of time to 

complete. The main flaw in this approach is the context switch. If the quantum is little, more context 

switches will occur, resulting in low CPU efficiency, and if it is high, the algorithm will act like FCFS 

[11].. Time quantum usually lasts between 10 and 100 milliseconds[12], and 80 percent of CPU bursts 

should, as a general rule, be less than the time quantum[13]. 

For CPU scheduling, throughput is a crucial metric. It refers to the number of processes accomplished 

per unit of time. Another metric is TAT which is the amount of time between submitting a process and 
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having it judged. The CPU scheduling technique only has an impact on a metric called waiting time 

(WT) which is the overall period of time spent in the ready queue. Another measurement is the time it 

takes to begin reacting is referred to as response time(RT) [14]. A Context switch (CS) is a 

measurement which is the practice of conserving the state of an active process and resuming the state 

of a preempted process to allow for the continuation of an active process's execution from the same 

place at a later time. Context switching is typically computationally demanding, resulting in time and 

memory waste. The scheduler and operating system frequently incur this cost[7] [15],[14] 

There are many distinct CPU-scheduling algorithms, each with its own set of attributes, and selecting 

the right one can favor one class of activities over another. The features of the various algorithms must 

be examined while deciding which algorithm to utilize in a certain situation. [16] 

High scheduling performance may result in a situation in which increasing one trend undermines 

performance in another[17], [6]. 

The main attributes of Round Robin (RR) algorithm are: 

1. Process starvation may be prevented since each process has a turn. 

2. When compared to other methods, processes with shorter burst times benefit from early execution. 

3. RR algorithm is anticipatory. [18] 

In this research, the performance of the Round Robin algorithm has been improved by improving the 

values of waiting time, turnaround time and the number of context switch operations. That was reached 

by devising an algorithm for dynamic adjustment of the time quantum value, taking into account the 

arrival times to ready queue as well as the throughput of the CPU. 

Sections of this paper are as follows. Section 2 presents how the research papers related to our work 

deals with the problem. In section 3, the way of handling arriving processes was presented, how the 

time quantum was calculated and the factors that affected that calculation. Results were presented in 

section 4 and conclusions were provided in section 5.    

 

2. Related works 

 [19] offer a new algorithm, termed AN, built upon a novel strategy known as a dynamic time-quantum. 

This tactic's objective is to have operating systems alter time quantum in response to the burst time 

(BT) of a group of awaiting processes in the ready queue. The algorithm deals with processes that 

arrive at different ATs. The examples presented in the paper present a small number of processes and 

with values of BTs and ATs that soon change the algorithm to an algorithm with fixed ATs. 

[20]use Dynamic Time Quantum to build Improved Round Robin (IRR) Scheduling. The ready queue 

is first reconfigured with respect to the minimum BT. The average of the median of all operations and 

the longest BT is then given as the best time quantum according to their algorithm. The answer is then 

applied to all operations as the optimal time quantum. On each cycle of execution, the same procedure 

is applied for the quantum time until all processes have completed their tasks. Results showed that the 

suggested IRR results in fewer context shifts, a lower AWT, and a lower ATT than the conventional 

Round Robin. 

Optimized Round Robin with Dynamic Time Quantum is developed by[21]. The quantum time is 

calculated by dividing the total of all BTs in the queue by the number of processes in the ready queue 

(RQ). Processes that are unable to complete their execution after the first phase of processing are 

removed from the RQ since their BT exceeds the quantum. The mean BT of processes in the second 

phase serves as the quantum for that phase. The same reasoning is employed up until one process 

remains in a phase, at which point the BT of that process is automatically taken as the quantum time. 

Using NCS, AWT, and ATT criteria, the suggested approach outperforms the algorithms SARR, MRR, 

RR, RP-5, IRRVQ, and DQRRR. In comparison to other methods, the suggested technique savings are 

41% of AWT and 31% of ATT. The NCS and ART were not considered by the author. 

[22] develop an Efficient Round Robin CPU Scheduling Algorithm. The quantum time is calculated 

using two methods: first, the median of all BTs is determined and multiplied by the maximum BT. 

Second, the BT mean is calculated and multiplied by the shortest BT. The square root is determined 
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as the quantum time after both outcomes are added together. The resulting result is compared to 

traditional RR and two alternative techniques. Using WT, context switch, and TAT as metrics of 

evaluation, the suggested approach surpasses all previous algorithms. The proposed algorithm's main 

flaw is that its RT was high when compared to other algorithms. 

With an unknown BT, [23] offer a DTSRR scheduling algorithm. This algorithm shows that the queue 

is attended to using a dynamic time quantum for all processes. Based on FCFS on the arrival queue, 

all processes are attended. For the second cycle, the original quantum is doubled for the processes that 

are unable to accomplish their jobs. When comparing the regular RR with an optimized RR, their 

findings suggest that the turnaround is reduced by about 15%, the WT is reduced by 15%, and the 

context switch is reduced by around 10%. 

In [24], the researchers developed a novel algorithm, which consists of a number of algorithms that 

have been combined to create a single algorithm. The goal is to reduce the waiting time. It also 

decreases the number of switches to create an efficient algorithm. The new algorithm enhanced 

productivity depending on the obtained results. 

To overcome the drawbacks of the Round-Robin approach and lower RT and WT in processes with a 

predetermined amount of runtime, the researchers in [26] merged the Shortest Job First and Round-

Robin algorithms. The research discovered that the rated RR is appropriate for application since it 

reduced RT and WT while also lessening starvation by giving the shortest burst duration priority.  

In a novel strategy proposed by [24], the time quantum varies cycle by cycle according to the amount 

of time left in the process. A Process has the choice to take a more quantum time when it needs a small 

additional time to finish its execution. The Smart Round Robin is the result of the two working 

together. Compared to the Traditional Round Robin Scheduling approach, it results in lower AWT and 

lower TAT. 

[11] proposed the SIDRR Scheduling Algorithm. The BT values of all the processes in the queue are 

multiplied to produce the quantum, which is then computed by taking the nth root of the product. This 

quantum time is used in the suggested method. The nth root is determined by how many processes are 

in the queue. AWT, AVT, and NCS are used to test the suggested algorithm. The suggested approach 

is also compared to the NIRR, DABRR, IRRVQ, RMRR, and EDRR algorithms. When compared to 

previous algorithms, the result reveals an improvement in performance. When compared to the 

previous approach, the suggested technique saves 49% in terms of WT. The proposed algorithm was 

not evaluated using ART. 

A Modified Round Robin CPU Scheduling Algorithm with Dynamic Time Quantum is presented 

by[9]. The quantum used is the average burst time(ABT). The results of the experiment reveal that the 

proposed algorithm outperforms the traditional RR, and RRVQ algorithms since it requires less WT 

and TAT. In comparison to RRVQ, the suggested method reduced ATT by 10.8 percent and AWT by 

12 percent.  

Use of the enhanced method Median-Average Round Robin(MARR) is advised by the authors of [3]. 

The author suggests a dynamic time quantum for the system using the median and the ABTs of the 

processes. The proposed model was compared with four more scheduling techniques by the authors. 

They clearly show that their suggested algorithm produces better results with a smaller ATT and WT.  

 

3. Methodology 

The algorithm adopts the idea of entering processes in the queue in real time. That is, the process enters 

the competition for the CPU time as soon as it arrives and thus is based on different access times in 

the ready queue. 

The process that arrives first in the queue is handled to be executed. Processes that arrive during 

execution are added to the queue instantly, after which the process that its incomplete is inserted. The 

next process is then extracted from the ready queue to be executed in the same way and so on. 

Execution continues in this way until the ready queue stops receiving new processes. 
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A quantum time is allocated to each process that pops from the front of the ready queue for execution. 

The value of this quantum is determined by a certain algorithm. After the end of the quantum, the 

remaining burst time (RT) is considered and the process is given an additional time if the time required 

to complete execution is less than or equal to half the value of the quantum. This procedure reduces 

the number of context switches as well as the process’s WT. 

A variable AccBT is defined to keep the cumulative sum of BTs for processes when they enter the 

queue, and another variable IQPN for the number of processes in the queue. For every process that 

enters the queue, its BT is added to AccBT, and the number of processes in the queue IQPN is also 

incremented. The executed time of a process is subtracted from ACCBT and IQPN is decremented 

when the process is completed. The value of IQNP remains the same in a situation where the process 

is not completed and returns to the queue. 

 A variable CWOQ to count the number of processes completed in one cycle is defined, and another 

one RTRQ to count the processes returning to the queue waiting for another cycle. The flow chart that 

depicts the proposed (DADQRR) algorithm is shown in figure (1) 

Time Slice 

The value of the quantum depends mainly on a value equal to the cumulative BTs of the processes in 

the RQ divided by their number. The relationships between the completed processes and the processes 

completed in one turn and that return to the queue with the number of processes in the queue are used 

to modify the value of the quantum when executing each process.  

Figure 1. Flowchart of proposed algorithm 
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The quantum is increased according to specified conditions by the equation: 

𝑄 = 𝐴𝑐𝑐𝑢𝑚𝐵𝑇/(𝐼𝑄𝑃𝑁 − 1) …………………………. (1) 

And it is decreased according to specified conditions by the equation: 

𝑄 = 𝐴𝑐𝑐𝑢𝑚𝐵𝑇/(𝐼𝑄𝑃𝑁 + 1) …………………………. (2) 

 

Where: 

𝑄 : Quantum 

𝐴𝑐𝑐𝑢𝑚𝐵𝑇 : Accumulated BTs 

𝐼𝑄𝑃𝑁 : In queue processes number 

 

This method of adjusting the quantum prevents the algorithm from falling into execution in FCFS 

manner, especially in cases where many processes in front of the ready queue have relatively short 

BTs and a few processes with long BTs are at the tail of ready queue. The quantum adjusted to be 

greater than BTs of nearly 70% of the processes. At the same time, it also prevents the occurrence of 

high frequency of context switching and thus creates an additional high load on the system. The 

algorithm of calculating the quantum is shown in figure (2) 

 
 

Figure 2.  Flowchart for calculating quantum 

The value of the initial time slice was determined according to the relationship: 

Q=0.75 BT 

This quantum is granted for the first process in the queue. This process is excluded from granting 

additional time. 
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4. Results and Discussion 

Data preparation 

The data meant here are BTs and ATs. The data used can be described through the following aspects: 

1.Value: The data values have a significant impact on the results that are considered a criterion for 

comparison (such as WT, TAT, CS …etc.). 

So in order to avoid the possibility of choosing values of specific BTs with specific ATs to give results 

that are also specific, the data were generated randomly and with a regular distribution. The 

RANDBETWEEN () function in the MS Excel application was used to achieve this purpose. 

2. Range: 

Burst times: Two ranges of BTs were used. The first is with BTs in the range of 2 to 10 time units, and 

the second with a range equal to four times the first, i.e. 2 to 40 time units. 

Arrival times: The range of ATs and the number of processes indicates the rate at which processes 

flow into the queue. Two ranges of ATs were selected, the first with 0 to 20 and the second with 0 to 

40. 

The Value interacts with the Range in determining the level of the processes backlog in the queue. 

3-  The number of processes: The number of processes plays a major role in the accuracy of measuring 

the relative performance of the algorithm. The small number of data prevents the algorithm from 

presenting its effect in dealing with the data, and therefore it is not possible to obtain accurate results 

to base on for comparison. 

In order to compare the performance of the proposed algorithm with other algorithms, the following 

cases have been suggested: 

Case 1: 

The algorithms AN[19], MARR[3], and DADQRR were executed, as well as the traditional round 

robin algorithm with time slices of 2  TRR-2[13], and 5  TRR-5[13], with BTs in range 2-10.  Figures 

(3), (4), (5) show the resultant AWTs, ATTs, and the NCSs respectively.  

 

 
Figure 3. Average waiting times at BT range 2-10 

 

 
Figure 4. Average turnaround times at BT range 2-10 
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Figure 5. Context switches at BT range 2-10 

Case 2: 

The algorithms AN, MARR, and DADQRR were executed, as well as the traditional round robin 

algorithm with slices of 10, 15, 20, and 30 and with BTs in range 2-40.  Figures (6), (7), (8) show the 

resultant AWTs, ATTs, and the NCSs respectively:   

 

 
Figure 6. Average waiting times at BT range 2-40 

 
Figure 7. Average turnaround times at BT range 2-40 

 
Figure 8. Context switches at BT range 2-40 

 

In order to evaluate the performance of the proposed algorithm, it has been implemented and compared 

with other algorithms that have been designed to work with different access times. Three algorithms 

MARR, AN, and TRR with different time slices were selected for comparison as following: 
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Case 1: 

In case 1, in AWT at AT Range of 0-20 and BT range 2-10 DADQRR outperforms algorithms AN, 

MARR by %17.877 and %16.412 respectively. It also outperforms TRR-2 and TRR-5 by %22.358 

and %15.862 respectively. At AT range of 0-80, the outperformances of the supposed algorithm are 

shown in figure (9). 

 
Figure 9. The ratios of AWT outperformance of DADQRR over other algorithms 

Figures 10 and 11 show TAT and CS outperformance ratios of DADQRR over other algorithms at BT 

range of 2-10 

 
Figure 10. The ratios of TAT outperformance of DADQRR over other algorithms 

 
Figure 11. The ratios of context switches outperformance of DADQRR over other algorithms 

Case 2: 

Figures 12, 13, 14 show AWT, TAT and CS percentage ratios of outperformances of DADQRR over 

other algorithms at BT range of 2-40. 

 
Figure 12. The ratios of AWT outperformance of DADQRR over other algorithms 

The only minor/small underperformance shown is in the number of CS in comparison with TRR-30. 
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Figure 13. The ratios of TAT outperformance of DADQRR over other algorithms 

 
Figure 14. The ratios of Context switches outperformance of DADQRR over other algorithms 

 

5. Conclusion 

The proposed algorithm benefits from adjusting the quantum considering the relation between the 

number of completed processes, completed processes with one turn and the number of returned 

processes to the ready queue. Additionally, the suggested DADQRR algorithm allows processes that 

are near to completion of their execution to finish it and move on, which reduces the number of 

processes in the RQ and the NCSs. DADQRR algorithm was compared with three common algorithms 

from the point of view of AWT, TAT, and the NCSs. The proposed algorithm outperformed all the 

others. However, it underperformed only one algorithm quite a little in the number of context switches 

in one case. 
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