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efficient solutions might be quite challenging. This study introduces an innovative approach
using the He-Kamal transform method and a Lagrange multiplier to solve the equation. The
He-Kamal transform simplifies the PDE, making it more tractable, while the Lagrange
multiplier enhances solution accuracy and convergence. Numerical simulations show that
the He-Kamal transform with a Lagrange multiplier corresponds with traditional methods
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1. Introduction

Nonlinear wave equations are crucial for understanding a wide range of physical phenomena, from fluid
dynamics to optical fiber communication [4]. The Boussinesq equation is an important formula for
simulating long wave propagation on shallow water surfaces [9, 14]. By adding a cubic nonlinear element
to the traditional Boussinesq formulation, the Cubic-Boussinesq equation expands to more accurately
represent complex dynamics like wave breaking and soliton interactions [10, 12]:

Wit — [D(W)]qq — Waqqq = f(QJ t); (ll)

Where f(q,t) represents a source function and D(w) represents an arbitrary sufficiently differentiable
function, with the requirement that [D(w)],, # 0 to assure nonlinearity. Here are the initial conditions:

W(CI: 0) = g’l(Q)'Wt(Q: O) = gZ(q)
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The conventional methods like the Variational Iteration Method [3, 15], Adomian Decomposition Method
[6, 16], and Homotopy Perturbation Method (HPM) [8, 19] combined with integral transforms [17, 18].
These methods have been widely used because of their adaptability and durability while solving nonlinear
partial differential equations. In order to iteratively refine solutions, HPM uses a perturbation series [7, 8].
To approximate answers through repeated adjustments, VIM uses the variational principle. Differential
equations are simplified for easier solutions using integral transform methods like the Laplace or Fourier
transforms. While still useful, these traditional approaches can be computationally demanding and complex
to handle significant nonlinearities.

In this work, we investigate a novel numerical method that uses the He-Kamal transform method in
conjunction with a Lagrange multiplier to solve the Cubic-Boussinesq equation. The He-Kamal transform
makes the original PDE easier to handle numerically by reducing it to a more manageable form. The
accuracy and convergence of the solution are further improved by adding a Lagrange multiplier, especially
when handling the cubic non- linearity of the equation.

2. Preliminaries
2.1 Kamal Transform Method

Definition 2.1. A new transform known as the Kamal transform will be examined for functions with an
exponential order. It is defined by [1, 2]:

el
A= {Q(t): 3,M,cp,c, > 0.]0(t)] < MeS,if t € (=1) x [0, oo)}, 2.1)

IM € R*Va € 4,|c;(a)| < M and c,(a) € R U {0}

Kamal transform is represented as &,
o _t
KQMW}=09w) = [, 9(t)e™vdt.t 20, c; SV =<, (2.2)

t
Remark 2.2. The Kernel of the Kamal transform is written as e v

2.2 Properties of Kamal Transform

Theorem 2.3 (Linearity Property [1, 2]. Let Q,(t) and Q,(t)be two distinct functions, and Kamal
Transform is Q;(v) and Q,(v) respectively, then

Kle1Q1(t) + c2Q2(0)] = 1K Q1 (t) + 2K Q2(t) = ¢1Q,(v) + c,Q2(v) (2.3)

c1 and c, are constants.
Proof. By definition, the Kamal Transform gives us

KQW) = [ Q) e vdv (2.4)
Kle1Q:1(8) + 2Q:(D)] = fOOO[C1Q1(t) + Q2 (D] e vdv
=e1 |57 @u(®) e v + ¢, [ ;7 Q2 (1) e o]
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=~ Integral is a linear operator,
= K[Q1 ()] + ;K [Q2 ()],
=¢1Q:(v) + c2,Q,(v) (2.5)

where c1, C2 are constants.

Theorem 2.4 (Integral Function [1,2]. If X[Q(t)] = Q(v), then ?C{folF(t)dt} =vQ(v)

Proof: Let H(t) = folF(t)dt. Then H(t) and H(0) = 0. The Kamal Transform of the derivative of
function characteristic gives:
K[A©®] = JKH©O} = HO) = ; K{H©))
KH®)] = vI{H ()} = vK{F ()}

K[H(t)] = vG(v)
K{[,” F(t)dt} = vG (v) (2.5)

Theorem 2.5 (Differential Property [1, 2]. If K[Q(t)] = Q(v), then
1. %{Q ()} = 3Q() - Q(0)

2. 30" ®'= L 0w) - 10 - ¢ ©®
3. }{QM ()} = QW) — ZrZh v¥T1Q(0)

Table 2.1: Kamal Transform of Some Frequently Encountered Functions [1, 2]

No ) K{Q()} = Q)
1. 1 v
2. t v?
3. t2 2! 3
4. t" r€R rlp’*1
5. thr>-1 T@+1Dv™?
6. okt v
1—kv
7. sinkt kv?
1+ k?v2
8. coskt v
1+ k2p2
0. sinhkt kv?
1— k2p2
10.  coshkt v
1—k?p2
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Table 2.2: Inverse Kamal Transform

No Q(t) K{Q@®)} =Qw)
1. |v 1
2. | v? t
2
3. | v3 %
T
4. | v renN t_'
r!
5 vl r>—1 al
’ I'(r+1)
v
kt
6. 1—kv ¢
. 2 sinkt
1+ k2p? k
8 v k
"1+ k?v? coskt
v? )
9, | —— sinhkt
1 _IIJ(ZUZ
10. T r2p2 coshkt

2.3 He Polynomial

The He polynomial is an iterative technique introduced by Ji-Huan He in 1999 for solving nonlinear
differential equations. It combines the concept of homotopy from topology with the traditional perturbation
method, enabling the solution of a wide range of linear and nonlinear problems without requiring small
parameters, which are usually needed in classical perturbation methods [7, 8].

The method constructs a homotopy that continuously transforms a difficult-to-solve nonlinear problem into
a simpler problem with a known solution. Let the nonlinear differential equation be:

Aw) - f(q) =0,
where A(w) is a nonlinear operator, f(x) is a known function, and uu is the unknown function. A
homotopy H (v, p) is constructed as:

H,p) = (1 =p)[L(v) — L(wo)] + p[A(v) = f(q)],

i. p € [0,1] is the homotopy parameter,
ii. Lisa linear operator,
iii.  ug Isthe initial approximation (an easily solvable case).

where:

When p = 0,H(v,0) corresponds to the linear problem L(v) — L(w,) = 0, and when p = 1, H(v, 1)
corresponds to the original nonlinear problem
AWw)—f(q@) =0
The solution v is expressed as a power series in p:
v =wy + pwy + piw, + -
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Substituting this expansion into the homotopy H (v, p) = 0, the terms are collected by powers of p, yielding
a sequence of linear equations for wy, wy, ..., wy,

In HPM, He polynomials are used to systematically manage and simplify the higher-order nonlinear terms
in the series. The He polynomials for a nonlinear function N (u) are defined as:

1 o™ X
H,(wg, Wy, ..., Wy) =F(3—p" N Zp Wi
| k

Whenp =0

These polynomials allow for the expansion of N(u) as:

NZ Wy = Z H,(Wg, Wy, ..., W)
k=0 n=0

Hy(w) = Wo3
Hi(w) = WgW1
H,(w) = 3wowi3wiw, (2.6)

Using the recursive relation derived from collecting terms with the same powers of p, the approximate
solution is obtained by summing up the terms:
w=wy + w; + wy + -

2.4 Lagrange Multiplier

The Lagrange multiplier is a crucial component of the Variational Iteration Method (VIM), which Ji-Huan
He introduced to provide analytical approximations to linear and nonlinear problems. This multiplier
facilitates the construction of correction functionals that iteratively converge to the solution [20].

The Lagrange multiplier is a function or constant determined based on variational theory. In the context of
VIM, it is used to optimize the correction function to satisfy the system's governing equations. It ensures
that the constraints imposed by the differential equation are respected throughout the iterative process.

Consider a differential equation of the form [20]:
L(w) + N(w) = g(q),

where:

e L isa linear operator,

e N isanonlinear operator,

e g(q) isasource term,

e w(q) is the unknown function.
The correction functional in VIM is constructed as:

W (@) = wi(q) + f AW [L (W) + N(@, () — g)] dv,
0

where:
e wy(q) is the approximation in the nth iteration,
e A(v) is the Lagrange multiplier to be determined,
e wy,(v) is arestricted variation, satisfying §w,, (v) .
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The Lagrange multiplier A(v) is obtained using variational theory. By ensuring that the correction
functional satisfies the Euler-Lagrange equations of the problem, A(v) is derived explicitly. For most linear
problems, the multiplier A(v) is a constant, while for nonlinear problems, it may depend on s and other
parameters.

2.4 Construction of the Proposed Method
Given the following partial differential equation [13]
Lw)+Nw) —q(m) =0 (2.7)
Where
L(w) is a Linear term
N(w) is a nonlinear term
Q(m) is the source term
W (q, t) is the unknown function
Taking the Kamal transform of equation (2.6)

K[LWw) + Nw) —q(m)] =0 (2.8)
Now let's apply the Lagrange multiplier to the above equation (2.7), 4 (v), we get

AW)K[L(w) + N(w) — q(m)] =0 (2.9)

A@NK[LwW) + N(w) —q(m)]} =0 (2.10)
Thus, the recurrence relation is transformed to:
wr41(q,v) = wr(q,v) — H{K[L(w) + N(w) — q(m)]} (2.11)

Using the Kamal transform to determine the value of the Lagrange multiplier A(v), we show that w; is a
restricted variable, i.e., Sw,, = 0 and

Swry1(qV) _
Swr(q,v) =0 (2.12)

Taking the inverse Kamal transform of (2.10), yields
wry1(q,t) = wr(q, t) — {HK[L(W) + N(w) — g(m)]} (2.13)
Lastly, the approximate solution is investigated using the He-Kamal with Lagrange multiplier by changing
the computed coefficients from equation (2.12).
Note that, to simplify the nonlinearityN (w;.), the He polynomial (2.6) is used

3. Main Result
Example 3.1. Consider the cubic-Boussinesq equation of the form [14, 12]

Wee = Waq + 2(W*) gq — Wyqqq = 0 (3.1)
With
w(g,0) == w(q,0 =~ (3.2)
Applying the Kamal Transform to (3.1), then, the equation becomes
azw 3 _
x |55 aqz Z+ Za—qz(w ) = W] 0, (3.3)

using the recurrence relation (2.12) to equation (3.3), then we get

W1 (q,0) = (g, v) + AWK [32 - T2+ 222 ) - 2], (3.4)

at2
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Swr41(q, v) = wy (g, 1) + A0 | (Bw(a,v) — 2w(q, 00 — w'(g,0)) — ¢ (34 — 2.2, (w?) + 2))

aq?

(3.5)
this implies that
Swyy1(q,v) = dw,(q,v) + viz/wwr(q, v), (3.6)
Consequently,
A(v) = —v? (3.7)
Notice that w;. is a restricted variable, dw, = 0
Swrya(qv) _
wilqn) 0 (3.8)

the value of A(v) is used in equation (3.7) -

2 2 4
Wy1(q, 1) = wypq1(q,v) — V2K (67‘2’ — 2;?(w3) + ZT‘Z) (3.9)Now, taking inverse Kamal of equation
(3.9)

Wr41(0,6) = wp(q,0) = % 0236 (5 — 250 () + 525 (3.10)
Applying He’s polynomial (2.13) to equation (3.10), we get
wo + pwy + p2wy + p3wy + -
=w,(q,t) + pK~1! lvzﬂC (662:;0 -2 a(’)_qzz wd) + 6;:;0
’w; 02 (wéwy) N 64W1>l

2q? 2q* dq*
0%w, _ 02(Bwuw? + 3wiw,) N 0w,
2q* 2q* dq*
Equating the coefficients of the like powers of p yields:
p° wo = wp(q,t) + two(q, t),
*wy
9 4

ol

Applying the initial and boundary value of the Problem

aZWO _
aq?

Pt owy =K v ( 22 (wg) + Lo
. 1 EYE 0 aq*

62W0

2q?

- 92
p3 W2=i7(1[v217(( 6a—qz(W§W1)+

t
- (3.11)

)}

Wo (q’ t) =

Q|-

62W0 _
aq?

_ a2 a*
wy(q,t) =K1 [UZ.'K( ZE(WS’) + a;"
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PRy 02<1 t) 262<1 t)3+64<1 t)
B T 82\q T 2 0q2\q q?/ ~dq*\q q>

Lo (2 6t _[12 60t 126t 42t3\ 30 144t
e E N\E T E T e T ) TET )

201 [ 27(( 2 _6t_24 1200 252t2 N 84¢3 30 144t>l

= v - _ - )

q® q* ¢ q° q8 q® q° q

j(_ll 2<2v 612 24v_|_120v2 504v34_252v44_30v 144v2>l

— ’U — — — — _ )
@ q* q° q° q8 q8 q° q’

L [f2v® ev* 24v® 1200* 504v°  252v° 3003 144v*
=N E T E T s e e e e T )|
3 t3  t3  12t% 20t3 21t* 21t5 5t%  24t3

TE ¢ P T @ T T g

122 20t3 21t*  21t5  5tZ 2443

where — pr + ©  qv Tiog T e~ 7 arenoise terms,

t3 3
RN G

(3.12)

_aqp=1[,2qr (PWo 0% . 5 3*wo
w, =X [v K(aqz 6aq2 (wéwy) + P )],

t* 5
5= (3.13)
Hence, the solution of equation (3.1) is expressed as

wy(q,t) = wo+wy +w, +...

1t 3 2 tr 6

_q_q2+q3_q4+q5_q6+""" (3.14)
w (7

=¥y, — (3.15)

The closed form of equation (3.15) is
w(g,t) = — (3.16)

q+t

The result is the same as the result obtained in [14, 12]
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Figure 1: Comparison table of methods with the exact solution and also the error

Table 2: Comparison table of methods with the exact solution and also the error

-1
-0.9500
-0.9000
-0.8500
-0.8000
-0.7500
-0.7000
-0.6500
-0.6000
-0.5500
-0.5000

Example 3.2. Consider the cubic-Boussinesq equation of the form [14]
wee — (W) qq — Waqqq =0

with

w(q,0) = VZsech(q)

-1
-0.9500
-0.9000
-0.8500
-0.8000
-0.7500
-0.7000
-0.6500
-0.6000
-0.5500
-0.5000

-1.0000 -1.0000
-1.0526 -1.0526
-1.1111 -1.1111
-1.1765 -1.1765
-1.25 -1.25
-1.3333 -1.3333
-1.4286 -1.4286
-1.5385 -1.5385
-1.6667 -1.6667
-1.8182 -1.8182
-2.0000 -2.0000

-0.5000
-0.5263
-0.5556
-0.5882
-0.625
-0.6667
-0.7143
-0.7692
-0.8333
-0.9091
-1.0000

0.5000
0.5263
0.5556
0.5882
0.625
0.6667
0.7143
0.7692
0.8333
0.9091
1.0000

woe = (q,0) = \/ESGCB(Q) tanh(q)
Applying the Kamal Transform to (3.17), then, the equation becomes (3.17)

39

0.5000
0.5263
0.5556
0.5882
0.625
0.6667
0.7143
0.7692
0.8333
0.9091
1.0000
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64
Klﬁ——( 3)—71—0 (3.19

Using the recurrence relation (2.12) to equatlon (3.19) takes the form

wri1(q,0) = we(q,v) + AWK [5F - 2o (w®) - T (3.20)

Owra(q,v) = wr(q,v) + A(0) [(v_zw(q’ v) = 1w(q,0) = w'(q,0)) — % {1 (w?) + S]]
This implies that

Swy41(q,v) = 6w, (q,v) + /16Wr(q, V) (3.22)
Consequently,

Aw) = —v? (3.23)
Notice that w;. is a restricted variable, éw, = 0

Swry1(qv) _

owian) = 0 (3.24)
The value of A(v) is used in equation (3.23)

wry1(q, v) = wy(q,v) — V2K [—( %) + (3.25)

Now, taking the inverse Kamal of equation (3.25)

_ a2
Wri1(q,0) = wy(q,8) = K~ [mc |5 (w (3.26)
Applying He’s polynomial formula to equation (3.26), we get
Wo + pPWq + pZWZ + p3W3 + p4W4,
. 2 0*w,
= wy(q, 1) =PI 025 |5 <w0 )+
| 92 0%w,
- p?K | vPK [a_qz (wo?wy) + ag* ”
' 92 a*w
- ,03‘7(_1 UZ:](‘ la_(f (3W0W1 + 3W0 WZ) + aq42]]
Equating the coefficients of the like powers of p yields:
p°: wo =wo(gq,t) + two(q,t)
pl: w =-K"1|v2K [i(w
1 i 6q2 0 1
P2 wy = _gc-1 |v2c [3 ~ (wp? ,
Applying the initial and boundary conditions to obtain w
wo(q,0) = V2 sech(q) + t(v2 sech(q) tanh(q)), (3.27)
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_ az a4W0
wi(g t) =-XK1 [vzﬂC [a—qz (wo3) + o ”
1

wy =2 t2(—/2sech®(q) tanh(q) — 4v2sech3(q) tanh3®(q) + V2 sech(g)tanh®(q)) +
i t3(=5v2sech®(q) tanh(q) —
4+/2sech?(q) tanh®(q) + /2 sech(q) tanh®(q)) + % t*(2V2sech’(q) —
19v2sech®(q) tanh?(q) + 9v2 sech®(g)tanh*(q)) + 110 t5(2v2sech’(q) tanh(q) —
9v2sech®(q) tanh®(q) + 3V2 sech®(q)tanh®(q))
wy(q,t) = % t*(—19v2sech®(q)
+ 196+/2sech” (q) tanh?(q) + 90V2 sech®(g)tanh*(q)) — 124 v2sech?(q) tanh®(q)

+ V2 sech(g)tanh®(q)) + % t°(—11v2sech®(q) tanh(q)

1
+ 316V2sech’(q) tanh®(q) + 162 V2 sech® tanh®(q)) + 0 t®(159v2sech''(q)

— 36327V2sech®(q) tanh?(q) + 72819v2 sech”(q)tanh*(q)

— 23441+/2sech®(q) tanh®(q) + 819v2sech?(q) tanh®(q))

+ % t7(1850v2sech''(q) tanh(q)

— 11473+/2sech®(q) tanh3(q) + 160212 sech”(q)tanh®(q)

— 6023V2sech®(q) tanh’ (q) + 273V2sech®(q) tanh®(q)) + it8(44\/isechl3 (q)

280
— 2866v2sech''(q)
+ 14251V2 sech®(q)tanh*(q)
— 12152v2sech’(q) tanh®(q) + 1575v2sech®(q) tanh®(q))
3
+ 20 t°(4v2sech3(q) tanh(q)

— 106v/2sech'(q) tanh3(q) + 357V2 sech®(q)tanh®(q)
— 236V/2sech’(q) tanh? (q) + 25v2sech®(q) tanh®(q))

(3.29)
Hence, the solution of equation (3.17) is expressed as
wy(q,t) =wy +wy +wy + - (3.30)
The closed form of equation (3.30) is
w(g,t) =V2sech(q —t) (3.31)

The result is the same as the result obtained in [14]
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Comparison of He-Kamal and Exact Solutions

i

Figure 2: Approximate solution with t=0.5

Table3: Comparison of the methods at t=0.5

sl 0.5473 0.5473 0.6012 0.0539 0.0539
-0.8 0.665 0.665 0.7175 0.0525 0.0525
-0.6 0.7971 0.7971 0.8476 0.0505 0.0505
-0.4 0.9399 0.9399 0.9868 0.0469 0.0469
-0.2 1.0895 1.0895 1.1267 0.0372 0.0372

0 1.2374 1.2374 1.2542 0.0167 0.0167
0.2 1.3632 1.3632 1.3529 0.0103 0.0103
0.4 1.437 1.437 1.4072 0.0298 0.0298
0.6 1.4378 1.4378 1.4072 0.0306 0.0306
0.8 1.3672 1.3672 1.3529 0.0143 0.0143

1 1.2453 1.2453 1.2542 0.0089 0.0089

4. Conclusion

The paper investigates the numerical solution of the Cubic-Boussinesq problem using a Lagrange multiplier
and the He-Kamal transform technique. The equation has difficulties for traditional numerical techniques
like HPM, VIM, and integral transform since it contains a cubic nonlinear factor. The original partial
differential equation is made simpler using the He-Kamal transform method, which increases its tractability
for numerical analysis. A Lagrange multiplier is included to improve the solution's accuracy and converges
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while successfully handling non-linear components. The wave dynamics and stability characteristics
obtained by the He-Kamal transform method with a Lagrange multiplier are clearly seen in MATLAB-
generated graphs. The results demonstrate how this combination approach has the potential to further the
numerical analysis of nonlinear partial differential equations with increased accuracy and efficiency. This
method may be expanded to more complicated systems in future research, and the He-Kamal transform
and Lagrange multiplier approaches can be further improved.
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