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 المستخلص  

الاهتمام بطريقة التدرج المترافق في مسائل الامثلية غير المقيدة, وذلك في هذا البحث, تم   
لسهههههههههههل لة التلأامل ملألا و للا لاتحتاج لوفة , ة مرههههههههههه  فةد, ا ترورا نريقتي   د دتي  مط رتي   

د الطريقتههاة المقتروتههاة تن لههاة اتوههاح  ط ح بحههث مرحههدرة  ائمهها لههدالههة  CD)ني يتي  لطريقههة  
اسههههههههههههههتوهدمرها  م البحهث الق ب الملأتمهد .لو  م بحهث غير تهامد ولهذلهك اللهد  ,وفي لهل تنرار  

تحققاة ص ة التقارب الشم لي للدوال اللأامة غير التربيعية, الرتائج اللأد  ة تظلر ل اءة الطريقتي   
 .المقتروتي 

 

Abstract 

      In this paper, we are concerned with the conjugate gradient method for 

solving unconstrained optimization problems due to its  simplicity and 

don’t store any matrices. We proposed two spectral modifications to the 

conjugate descent (CD). These two proposed methods produces sufficient 

descent directions for the objective function at every iteration with strong 

Wolfe line searches and with inexact line search, and also they are globally 

convergent for general non-convex functions can be guaranteed. Numerical 

results show the efficiency of these two proposed methods.

http://edusj.mosuljournals.com/
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Introduction. 

 Let RRf n →: be continuously differentiable function. Consider the 

unconstrained nonlinear optimization problem: 

     Minimize f(x), nRx .       (1)  

We use g(x) to denote to the gradient of f at x. Due to need less computer 

memory especially, conjugate gradient method is very appealing for 

solving (1) when the number of variables is large. A conjugate gradient 

(CG) method generates a sequence of iterates by letting  

 111 −−− += kkkk dxx  , k=0,1,2,…     (2)  

where  the step-length k  is obtained by carrying out some line search, and 

the search direction kd  is defined by 





+−

=−
=

− 1

0,

,1 kifdg

kifg
d

kkk

k
k 

 ,     (3)   

where k  is scalar which determines the different CG methods [11]. There 

are many well- known formula for k , such as the  Fletcher-Reeves(FR) 

[7], Polak-Ribirere-Polyak (PRP) [13] and [14], Hesteness-Stiefel (HS) 

[10], conjugate descent (CD) [8], Liu-Story (LS) [12], and Dai-Yuan (DY) 

[5]. In survey paper Hager and Zhang in [9] reviewed the development of 

different various of nonlinear gradient methods, with especial attention 

given to global convergence properties. 

 The standard CD method proposed by Fletcher [8], specifies the 
CD
k

   by  

 
11

2

−−

−=

k
T
k

kCD
k

gd

g
 ,       (4) 

where .  denotes the Euclidean norm of vectors. An important of the CD 

method is that the method will produce a descent direction under the strong 

Wolfe line search [18]    

     ,)()( k
T
kkkkkk dgxfdxf  ++      (5)  

     ,)( k
T
kk

T
kkk dgddxg  −+       (6) 

where 10   . 
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 Another popular method to solving (1) is spectral CG method, which 

was developed originally by Barzilai and Browein [2]. Raydan in  [17] 

further introduced the spectral CG method for potentially large-scale 

unconstrained optimization problems. Birgin and Marti'nez [3] proposed a 

spectral CG method by combining CG  method and spectral gradient 

method [17], by multiplying the gradient kg in the second part of equation 

(3) by the parameter k  in the following manner: 

 




+−

=−
=

− 1,

0,

1 kifdg

kifg
d

kkkk

k
k


,     (7) 

 Zhang in [19] take FR formula and 
2

111 −−−
= kk

T
kk gyd they 

proved that this method can guarantee to generate descent directions and is 

globally convergent. Matonoha and et al in [15] proposed a modified CD 

method by 

 
11

11

11

,

−−

−−

−−

==

k
T
k

k
T
k

k

k
T
k

k
T
k

k
gd

dy
and

gd

gg
 .    (8) 

Zhong in [20] they proposed the spectral PRP method by using the standard 

PRP formula  with k  defined by 

 
( )11

2

11

.

.
1

−−

−−

−
−=

kk
T
kk

k
T
kk

T
k

k
ggdg

dggg
 .     (9) 

 Du and Liu in [6] they proposed the spectral HS method by using 

the standard HS formula with k  defined in (9). Liu and Jiang [11] 

proposed success spectral gradient method by combining the CD method 

and spectral gradient method by the following manner 

 ,
,0

0,
1





 

= −

else

gdif k
T
k

CD
k

k


       (10) 

and    
11

1
1

−−

−
−=

k
T
k

k
T
k

k
gd

dg
 .       (11) 

 In this paper we proposed two spectral CG method, they based to the 

modification to the standard CD in (4), and then proposed a suitable k  for 

each one to get a good  spectral CD-CG methods.  

 The rest of this paper is organized as follows. In the next section, a 

new modified spectral CD-CG method is proposed by combining 
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modification to CD method with k  defined in (11) will be denoted by 

MCD1, and we give its algorithm. Section 3 will be devoted to prove the 

global convergence. In section 4, new proposed spectral CD-CG method is 

proposed by combining modification to CD method with k  will be 

defined next in this section,  will be denoted by MCD2, and we give its 

algorithm. In section 5 will be devoted to prove the global convergence. 

Finally in section 6, some numerical experiments will be done to test the 

efficiency of the two proposed methods. 

 

2- Modified Spectral CD Conjugate  Gradient and its Algorithm 

(MCD1). 

 In this section, we present a new modified CD method which is 

specified by  

 
( )211
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11

2
1
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−

−−

−−=
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dgg

gd

g
 ,    (12) 

If exact line search is used, then 1MCD
k

  will reduce to standard CD
k

 , and  

k in (11) equal one. However, we used inexact line search in our work. 

We put (12) with k  defined in (11) in (7), we will get the direction of our 

proposed method  

( )
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1
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11 .
.
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d
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dgg
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g
g
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dg
d  (13)  

Algorithm (2.1) ( MCD1) 

Step 0: Given ( ) ( )1,,5.0,0,0,10*1, 5
0  == − andkRx n . 

Step 1: Set kk gd −=  

Step 2: If kg  then stop; else continue. 

Step 3: Determine the steplength k  by using the strong Wolfe line 

           search conditions (5) and (6). 

Step 4: Calculate new point kx by (2). 

Step 5: Compute 1MCD
k

d by (13). 
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Step 6: If k=n, or  2
1 2.0 kk

T
k

ggg − , set k=1, and go to step 1; else, set  

            k=k+1, and go to step 2. 

 

 The following theorem shows that algorithm (2.1) possesses the 

sufficient descent condition with strong Wolfe line search (5) and (6). 

 

Theorem 2.1 

      Let    kk dandx  be generated by algorithm (2.1), then we have  

       
2

kk
T
k

gcgd − ,       (14) 

 where  ( )21 −=c .    

Proof: We can prove the conclusion by induction. From 00
2

0 dgg T−= , the 

conclusion (13) holds for k=0. Now we assume that the conclusion is true 

for (k-1) and 01 −kg , i. e. 011
−− k

T
k

dg . We need to prove that the 

conclusion holds for k. Multiply both sides of (13) by kg , we have 
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−
.    (15) 

Now, using (6) in (15), we obtain 
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and since 10  , we will get (14). 
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3- The global convergence of MCD1 method. 

   In order to establish the global convergence result for the MCD1, we will 

impose the following assumptions for f, which have been used often in the 

literature to analyze the global convergence of CG methods with inexact 

line search. 

 

Assumption (I): Let 

(i) the level set  nRxxfxfx = ),()(/ 0
 is bounded. 

(ii) In some neighborhood   of  , f is continuously differentiable 

and its gradient g satisfying Lipschitz conditions, namely, there 

exist a constant L>0, such that 

          −− yxyxLygxg ,,)()( .     (16) 

 Obviously, from the Assumption (I, i) there exists a positive constant 

such that: 

 −= yxyxB ,, ,      (17) 

where B is the diameter of  . From Assumption (I, ii), we can also find if 

there exist a constant 0 , such that 

       xgk ,         (18) 

To prove global convergence by contradiction we assume that there is a 

positive constant   such that 

 0,  kallforgk  .      (19) 

We are going to prove that 01 MCD
k

 . Using (6) and (14) in (12) we will 

get 

 ( ) 0
1

.11 +
c

MCD
k

 .      (20)  

 

Theorem 3.1 

   Suppose that the Assumption (I) holds and consider any CG methods (2) 

and (7). The parameter 1MCD
k

 defined by (12), and  k  defined by (11), the 
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direction 1MCD
k

d is descent direction and determined k  by using (5) and 

(6), if    

           =
0

2

1

k kd
 

     then 

          0inf =
→

k
k

gLim         (21) 

Proof: From (12) , (13) and (6) we get  

     1

11

2

11

2
1

−

−−−−
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g
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g
  

        
2

1

2

2
1
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+
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k

k

k
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g
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g
 , 

Suppose that there exists a positive constants 0,, 2211  and , such that 

11   kg , 212   −kg , so we get 

 1
2

1 1







c

MCD
k

+
       (22) 

also, 

        +−=

−−

−
11

11

1

k
T
k

k
T
k

k
gd

dg
         (23) 

Take the norm of the both sides of (7) with (22) and (23), its yield  

1
1

1 −+ + k
MCD
kkkk dgd   

   ( ) A
c

B
=








++

2
1 11


                

This relation implies 
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           +=
 1

2
1

2
1

11

kk k Ad
. 

Which is contrary to proof this theorem. Therefore, the proof is complete. 

Now to prove that the new algorithm is global convergence for 

general function, we establish a bounded  for the change ( )kk ww −+1  in the 

normalized direction kkk ddw /= , which we will use to conclude, by 

contradiction, that the gradients cannot be bounded away from zero [16]. 

Lemma 3.2 

   Suppose that Assumption (I) hold and consider the CG algorithm (2.1), 

the direction kd  given by (13) satisfies the sufficient descent condition 

(14),  and the line search satisfying the Zoutendijk condition [21], then 

0kd and 

      −


=
−

2

1
1

k
kk ww ,       (24) 

where kkk ddw /= . 

Proof: Obviously, we have 0kd . Therefore, kw  is well defined. 

Now, from (19) and theorem 3.1 it follows that  

 
0

2

1

k kd
, 

otherwise (21) holds, contradicting (19). Define 

   0
11 ==
−

k

kMCD
kk

k

k
k

d

d
rand

d

v
u  .       

Therefore, we have 
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g
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      1−+= kkk wru . 

Using the identity 11 == −kk ww , therefore  
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      11 −− −=−= kkkkkkk wwrwrwu        (25)     

(the last equality can be verified by squaring both sides). Using the 

condition 0kr , the triangle inequality, and (25), we obtain 

      ( )( )11 1 −− −+− kkkkk wwrww  

                     11 −− −+− kkkkkk wwrwrw  

                      ku2= .        

From the definition of kv , and using (6) we get  

    k
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−−

− ( ) kg+− 1  

            ( ) E=+ 11   

With the above estimates we get 

 = =−
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2
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1 1

22
1 42
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k k
kkk

d

v
uww  

                =
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2

2 1
4

k kd
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Therefore (24) holds, which complete the proof. 

 

4- Modified Spectral CD Conjugate  Gradient and its Algorithm 

(MCD2). 

 In this section, we present a new modified CD method which is 

specified by  

 
11

2
2

−−

=

k
T
k

kMCD
k
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g
 ,     (26) 

and  let us consider the new parameter k  by: 
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1
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k
gd
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If exact line search is used, then 2MCD
k

 will reduce to standard CD
k

 , and 

k equal one. However, we used inexact line search in our work. We put 

(26) and (27) in (7), we will get new direction  
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Algorithm (4.1) ( MCD2) 

Step 0: Given ( ) ( )1,,5.0,0,0,10*1, 5
0  == − andkRx n . 

Step 1: Set kk gd −=  

Step 2: If kg  then stop; else continue. 

Step 3: Determine the steplength k  by using the strong Wolfe line 

           search conditions (5) and (6). 

Step 4: Calculate new point kx by (2). 

Step 5: Compute 1MCD
k

d by (28). 

Step 6: If k=n, or  2
1 2.0 kk

T
k

ggg − , set k=1, and go to step 1; else, set  

            k=k+1, and go to step 2. 

 

 The following theorem shows that algorithm (4.1) possesses the 

sufficient descent condition with strong Wolfe line search (5) and (6). 

 

 

Theorem 4.1 

      Let    kk dandx  be generated by algorithm (2.1), then we have  

       
2

kk
T
k

gcgd − ,       (29) 

Proof: We can prove the conclusion by induction. From 00
2

0 dgg T−= , the 

conclusion (29) holds for k=0. Now we assume that the conclusion is true 
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for (k-1) and 01 −kg , i. e. 011
−− k

T
k

dg . We need to prove that the 

conclusion holds for k. Multiply both sides of (28) by kg , we have  
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W e will get (29), so the proof is complete. 

 

5- The global convergence of MCD2 method. 

    In this section we are going to prove the global convergence of the 

proposed method MCD2. 

 

Theorem 5.1 

   Suppose that the Assumption (I) holds and consider any CG methods (2) 

and (7). The parameter 2MCD
k

 defined by (28), and  k  defined by (27), 

the direction 2MCD
k

d  is descent direction and determined k  by using (5) 

and (6), if    

           
0

2

4

k k

k

d

g
,       (30) 

     then 

          0inf =
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k
k
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Proof: we can rewrite (7) as follows 

 1−=+ kkkkk dgd  , 

and squaring both side of the above equation, we get 
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Noting that 
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0 gdgd T =−= , we get 
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Therefore, it follows from (33) and  (19) that 
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which indicates 
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2
1

0
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k

kd
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This contradicts the Zoutendijk condition [21]. Therefore the conclusion 

(31) holds, so the proof is complete. 

The above theorem show that the new proposed method is 

independent to any line search is descent and global convergent.  
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Lemma 5.2 

   Suppose that Assumption (I) hold and consider the CG algorithm (4.1), 

the direction kd  given by (28) satisfies the sufficient descent condition 

(29),  and the line search satisfying the Zoutendijk condition [21], then 

0kd and 
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=
−

2

1
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k
kk ww        (34) 

Where kkk ddw /= . 

Proof: Obviously, we have 0kd . Therefore, kw  is well defined. 

Now, from (19) and theorem 3.1 it follows that  
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Using the identity 11 == −kk ww , therefore  

      11 −− −=−= kkkkkkk wwrwrwu         (35)      

Using the condition 0kr , the triangle inequality, and (41), we obtain 

      ( )( )11 1 −− −+− kkkkk wwrww  

                     11 −− −+− kkkkkk wwrwrw  

                     ku2= .       (36) 



 A Global Convergence of Spectral Conjugate Gradient Method for Large … 

156 

 

From the definition of kv , and using (6) we get  
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With the above estimates we get 
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Therefore (34) holds, which complete the proof. 

6- Numerical results 

     In this section, we reported some numerical results that we obtained 

with the implementation of the two new methods MCD1 and MCD2 on a 

set of unconstrained test functions. The cod were written in Fortran 90 and 

in double precision arithmetic. Our experiments performed on a set  of (35) 

large scale nonlinear unconstrained test functions. These test functions are 

contributed in CUTE (Bongratz [4] and Andrei [1]).  

All these algorithms are implemented with strong Wolfe Powell line 

search conditions (5) and (6) with 9.0001.0 ==  and . All these  methods 

terminated when the following stopping criterion is satisfied: 

     5
1 101 −
+ kg        (37) 

We record the number of iterations denoted by (NOI), the number of 

function evaluations denoted by (NOF), for purpose of our comparisons. 

Table (1) and (2) gives a computational results of the two new methods 

(namely: MCD1 and MCD2) against the standard CD method with n= 100 

and 10000, respectively. While Table (3) and (4) gives the percentage 

performance of these two proposed methods (MCD1 and MCD2) against 

the standard CD method taking over all the tools as 100%. 
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 Table (1): Comparison between MCD1; MCD2 against  Standard CD with 

different test problems with dimension  n=100. 

 

          Test  

       Functions 

     Standard CD 

        Method 

       MCD1 

      Method 

       MCD2 

      Method 

 NOI      NOF NOI          NOF NOI          NOF 

Wood   25            62   24             53   21            49 

Dixon  465        1012  463         1008  471        1029 

Powell-3   21            45   20             43   19            41 

Strait   60           122   28             68     6            15 

 Sum   16             88   18             90   15            81 

 Shallow   13             32   13             33   10            25 

Wolfe   65           131   45             91   45            91 

Cosine      9            20    8              18    8             18 

BDQRTIC   88           231   87            229   80          213 

DENSCHNB     8            19     7             18     6            15 

Dixmaana     6            14     6             14     5            12 

Dixmaanb     5           13     5             13     5            13 

Dixmaanc     6            15     5             13     5            13 

Dixmaane  115          336   46           137   46           137 

Dixmaang    51          154   46           139   50           152 

Dixmaani    92          261   46           137   45           134 

Diagonal-2  102          326   42           161   45           171 

Diagonal-4      2             5     2             5      2             5 

Diagonal-5      2             7     2             7      2             7 

Diagonal-6      2             7     2             7      2             7 
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Rosen    30            78   30             78   29             76 

Ex. Powell   309          622   66            176   45           119 

Ex. Beal U63    11            27   11             27   11             27 

Ex. Block Diagonal    24            50   22             46    20            42 

Ex. Himmelbau    19           150    15            128    15          125 

Ex. Penalty      9            21     6             15      6            15 

Ex. PSC1    11            24     9             21      7            16 

Ex. Quadratic Penalty    10            22     7             16      7            16 

Ex. Three Exponential    32            67     9             21     7             17 

OSP    49          160    49          160   49            160 

Miele    46          152    46          153    45           144 

Cubic    80          173    15            43    15             43 

NONDIA (Shanno 78)      7           16     7             16     7              16 

TRIDIA    90          182     89            179   86            173 

Scaled Quadratic    57          116   58            117   57            115 

        Total  1944       4760  1355       3480  1294        3332 

    

Table (2): Comparison between MCD1; MCD2 against  Standard CD with 

different test problems with dimension  n=10000. 

 

          Test  

       Functions 

     Standard CD 

        Method 

       MCD1 

      Method 

       MCD2 

      Method 

 NOI            NOF NOI               NOF NOI               NOF 

Wood   31              76   29             69   26           59 

Dixon  505          1097  486         1064  498        1078 

Powell-3   22              47   21             45   20           43 
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Strait   66             134   56            115     6           15 

 Sum   34             161   29            123    23         102 

 Shallow   14              35   17             53   10           25 

Wolfe   83            167   69            150  114         211 

Cosine    12              29    9               20     9           20 

BDQRTIC  123           356 124             359  119         346 

DENSCHNB     9              21     8              23     6             15 

Dixmaana     7              17     5              13     5            13 

Dixmaanb     6              16     5              14     5            14 

Dixmaanc     7              18     6              16     6            16 

Dixmaane  401           1268 379           1143  377         1130 

Dixmaang  406           1304 402           1263  394         1183 

Dixmaani  398           1312 378           1139 377          1130 

Diagonal-2  503           1638 346           1485 370          1518 

Diagonal-4      3              7     3               7      2               6 

Diagonal-5      2              7     2               7      2               7 

Diagonal-6      2              7     2               7      2               7 

Rosen    30             78   30              78   29              76 

Ex. Powell   521          1051  132            405   53             154 

Ex. Beal U63    12             29    12             29    12             29 

Ex. Block Diagonal    27             56    24             50    20             42 

Ex. Himmelbau    11            526      9            402     8            390 

Ex. Penalty      6             22     6              22     6              22 

Ex. PSC1    13             24     9              21     7              16 
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Ex. Quadratic Penalty    10             32    11             35     7              16 

Ex. Three Exponential    35             81    12             31     8              21 

OSP   621          2111  603          2002  551          1815 

Miele    68            240    71           282    60           216 

Cubic    94            199    24             70    16             45 

NONDIA (Shanno 78)      5              15     5              15     5              15 

TRIDIA   335            671    333            667  329            659 

Scaled Quadratic   631          1266 632            1269  626           1253 

        Total  5053      14124  4289       12499  4108       11707 

     
 

 

 

 

 

Table (3): Percentage performance of the  MCD1 and MCD2  methods against 

      the standard CD method  with different test problems with dimension 

n=10000. 

   Measurement      Standard CD 

        Method 

        MCD1 

       Method 

         MCD2 

        Method 

     NOI      100%     69.70%     66.56%   

     NOF      100%     73.11%     70.00% 

 

   Table (4): Percentage performance of the  MCD1 and MCD2  methods against 

      the standard CD method  with different test problems with dimension 

n=10000. 
  Measurement      Standard CD 

        Method 

        MCD1 

       Method 

          MCD2 

        Method 

     NOI      100%     84.88%     81.30% 

     NOF      100%     88.49%     82.89% 
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From Table (3) we have obtained the following results: MCD1 saves  

( NOI 30.30%), (NOF 26.89%), and MCD2 saves (NOI 33.44%), (NOF 

30.0%) compared with standard CD method. While from Table (4) we have 

obtained the following results: MCD1 saves  ( NOI 15.12%), (NOF 

26.89%), and MCD2 saves (NOI 18.70%), (NOF 17.11%) compared with 

standard CD method 
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