

Effect of Allelopathic Potential of Corn, Sunflower, Field Capacity and Ascorbic Acid in Growth of Two Wheat cultivars

M. S. Faysal

Department of Biology, College of Education for Pure Science, University of Mosul, Mosul, Iraq

Email: dr.Mohmmadsf@gmail.com

(Received December 16, 2019; Accepted February 05, 2020; Available online June 01, 2020)

<u>DOI: 10.33899/edusj.2020.126418.1034,</u> © 2020, College of Education for Pure Science, University of Mosul. This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

Abstract

This study was carried out inside a wired house and included the planting two cultivars of wheat (Sham 6 - IPA 99) in soils containing roots residues of corn (*Zea may L*) and sunflower (*Helianthns annuus L*) with exposing plants to three levels of field capacity (35, 60, 85%) and spraying plants with three concentrations of ascorbic acid (0, 100, 200) ppm in order to know the effect of these factors on some physiological, biochemical and allelopathic potential of wheat. The experiment has been designed on the basis that it is factorial and over completely Randomized Design (C.R.D) Duncan's multiple range test at 5% level was used to compare between the means and the results showed.

The addition of corn residues and sunflower showed a great effect in lowering plant height, relative water content, chlorophyll, number of grains / spike and grains yield with the increasing the concentration of catalase.

Exposure of plants to drought (35% field capacity) showed a negative effect on all traits above comparing to field capacity (60, 85%) except for the increase in antioxidant enzymes (Peroxidase, Catalase).

Plants submitted under two types of stress (drought + allelopathy) can improve their growth and reduce the negative effect of drought and the inhibitory effect of residues by treating it with ascorbic acid especially in the concentration 200 ppm.

More over, sham 6 was significantly superior on IPA 99 in most physiological and biochemical characters, which was reflected in the increasing grains yield.

Keywords: allelopathy, Field capacity, Ascorbic acid, wheat.

محمد سعيد فيصل

قسم علوم الحياة. كلية التربية للعلوم الصرفة. جامعة الموصل الموصل العراق

الخلاصة

اجريت هذه الدراسة في البيت السلكي التابع لقسم علوم الحياة/ كلية التربية للعلوم الصرفة وتضمنت زراعة صنفين من الحنطة (شام 6 وإباء 99) في ترب تحتوي متبقيات جذور الذرة الصفراء وزهرة الشمس مع تعريض النباتات إلى ثلاث مستويات من السعة الحقلية (35, 60, 85%) ورش النباتات بثلاث تراكيز من حامض الاسكوربيك (صفر, 100, 200) جزء في المليون, وذلك لمعرفة تأثير تلك العوامل على بعض الصفات الفسلجية والبايوكيميائية والجهد الاليلوباثي للحنطة, صممت التجربة على انها عاملية وفق التصميم العشوائي الكامل (C.R.D) باستخدام اختبار دنكن متعدد المدى عند مستوى احتمال 5% للمقارنة بين المتوسطات وبمكن ايجاز النتائج بما يلى:

اضافة متبقيات زهرة الشمس والذرة الصفراء اظهرت فاعلية كبيرة في خفض ارتفاع النبات والمساحة الورقية ومحتوى الماء النسبي والكلوروفيل الكلي وعدد الحبوب في السنبلة وحاصل الحبوب مع حصول زيادة في تركيز انزيم الكاتليز.

تعريض النباتات إلى الجفاف (35% سعة حقلية) اظهر تأثيراً سلبياً على جميع الصفات أعلاه مقارنة مع السعة الحقلية (60, 85%) باستثناء الزيادة الحاصلة في تركيز الانزيمات المضادة للأكسدة (الكاتليز والبيروكسيديز)

ان النباتات المعرضة إلى نوعين من الاجهاد (الجفاف + الاليلوباثي) يمكن تحسين نموها وتقليل التأثير السلبي للجفاف والتأثير التثبيطي للمتبقيات وذلك بمعاملتها بحامض الاسكوربك وخاصة التركيز 200 جزء في المليون

من جانب آخر تفوق صنف الحنطة شام 6 معنويا على الصنف اباء 99 في أغلب الصفات الفسلجية والبايوكيميائية والذي انعكس على زيادة حاصل الحبوب.

الكلمات المفتاحية: الاليلوباثي – السعة الحقلية – حامض الاسكوريك – الحنطة

Introduction

Wheat is the first cultivated grain in the world wide in Iraq in terms of the importance of nutritional, taxonomy, it's economic, cultivated areas and production. In Iraq, the cultivated area of wheat was estimated at 7146,000 dunams in winter season 2017 [1].

The process of growing any plant needs essential elements. Water is most important element for all physiological activities, it affects the process of photosynthesis and the transfer of all compounds, including plant hormones, which is done only in the presence of water. Therefore exposing the plant to drought causes obstruction of many physiological processes and this is negatively reflected on the vegetative growth and the yield [2].

The study of Khaled (2010) [3] is about the impact of four levels of field capacity (100, 75, 50, 25%) in the growth of wheat, the plant height has reduced with the reducing of the field capacity.

In addition to the impact of drought as an environmental factor, there are invisible factors that also affect negatively or positively the growth and productivity of plants, This a phenomenon is called direct or indirect effect, of substances produced by plants or residues in other plants through the secretion of allelochemicals in the environment is allelopathy [4].

A study about the allelopathy effects of wheat, corn and sunflower residues on growth and yield of wheat, revealed that the control treatment is significantly surpassed in all characters, residues of wheat cause the highest reduction[5].

According to Shao *et al.* (2019) [6] wheat has acquired two kinds of response system to drought pressure. The first one is that wheat can change its growth and developmental phenotype to deal with an arid environment through long ecological adaption, which is more linked with allelopathic regulation.

The seconed one is anti – drought mechanism, it maintains water balance by closing leaves stoma and decreasing water loss due to transpiration effect.

On the other hand, Vitamins are one of the things that can be used to reduce environmental stresses, especially drought, they perform various biochemical functions, some of which are hormones such as growth regulators of cells and others act as antioxidants, such as vitamin C (Ascorbic), which is a non- enzymatic antioxidants that is exploited by plants under stress conditions [7]. Some researchers note that ascorbic acid (ASA) has a similar effect as a growth regulator that encourages growth by promoting photosynthesis and a relationship between leaf area it is increase in vegetative growth and plant content of ascorbic acid [8, 9].

The aim of this research was to get benefit from interaction concentrations of Ascorbic acid in reducing the visible environmental stress (drought) and non- visible (Allelopathy) on the growth of two wheat cultivars.

Materials and Methods

The study was conducted in the wired house and laboratories of the Department of Biology , College of Education for Pure Science, Mosul University in the season of 2018-2019. The soil used in this study is taken from the agricultural fields of the college of Agriculture and Forestry at depth (0-30) cm. The soil was dried and passed through 2 mm diameter sieve. The plants of sunflower and corn were collected from the agricultural fields after the harvest they were brought to the laboratory and the root was separated from the vegetative. The root was well washed, then residues of the root was scraped onto a piece of nylon and left in the wire house to dry. The dried root is cut into small pieces and placed in an oven at (70) °C for 48 hours after that is it and grinded with an electric mill and kept in bags under laboratory conditions to be used in later studies. 3g of residue / 100 gm soil were added to each pot that contains 4 Kg of soil a liter of water was added to each pot. These pots were covered with a piece of cellophane perforated for ventilation and left in a wired house randomly fore a period of incubation for three weeks.

On 15Decembr2018, ten seeds of two cultivars of wheat (sham -6- and IPA -99-) were sown. The two cultivars were obtained from the examination and certification of seeds / Nineveh. After two weeks, seedings were reduced to five per each pot. After 40 days of sowing the plants were exposed to three levels of field capacity (85, 60, 35%) by weighing each pot daily, plants were sprayed with (0, 100, 200) ppm of ascorbic acid and control plant was sprayed with distilled water. After 52 days from the date of spraying 3 replicates were used for each treatment to study some physiological and biochemical characteristics. Three replicates were left in order to obtain the yield, the harvest data was on 20 May2019.

Growth Parameters

- 1- Plant height (cm).
- 2- Leaf area was measured [10].
- 3- Relative water content [11].
- 4- Chlorophyll and carotenoid content of leaves were measured spectrophotometrically according to Lichtenthaler (1987) [12].
- 5- Assays for catalase activity (CAT) in the extract by the method Goth (2009) [13], absorbance was recorded 405 nm with a spectrophotometer.
- 6- Assays for peroxidase (POD) in the extract by the method according Kim and Yoo (1996) [14], absorbance was recorded 470 nm with a spectrophotometer.
- 7- Number of grains/ spike.
- 8- Grain yield.

The experiment is factorial in a completely randomized design (C.R.D) with four factors in six replications Duncan's multiple range test at 5% level was used to compare between the means. The results have been analyzed by using the SAS program.

Results and Discussion Plant Height

Table (1) illustrated a significant decrease in plant height at the probability 5% due to the effect of soil moisture levels (35-60-85%) of field capacity by (6.0, 15.58%) sequentially compared to 85%. Plant reduction can be attributed to water stress reduce that the relative water content that determines cell division and expansion and that expansion is more effective than division [15]. This result agreed with Al-Temimi *et al.* (2013) [16] since water deficit stress significantly reduced plant height, 50% field capacity treatment gave the highest values of plant height and leaf area of wheat compared to (25, 15%) field capacity. The results also showed a significant decrease due to the addition of sunflower and corn residues (14.4, 12.7%) compared with control treatment (without residues). These are consistent with Mohammed and Murshid (2018) [5] obtaining significant differences on the growth of wheat caused by the residues of wheat, corn and sunflower, ultimatly this was attributed to the allelopathic effect of plant residues on the division and elongation that influencing plant height, when the concentration of ascorbic acid to increased the height of the plant, as the concentration of 200 ppm gave the highest average 50.9 cm and superiority rate 10.39 compared with control.

The plant height of spray plants with ascorbic acid is increased which means the ascorbic, plays multiple roles in plant growth such as cell division, and cell wall expansion[8].

This is confirmed by Abdel Adeem and Ahmed (2017) [17] the spraying of corn plant with ASA in concentration 200 ppm increased the plant height of compared to the control.

The interaction effect between residues and ascorbic has a significant increase in plant height at 200 ppm concentration in control compared with other treatments.

With respect to the combined effect (cultivar \times residues \times field capacity) the sham -6- was superior in treatment with no residues and at field capacity 85%. The results of interaction (cultivar \times residues \times field capacity \times ascorbic) showed the highest value in sham 6 of field capacity 85% at 200 ppm concentration of ascorbic acid.

Leaf area

The leaf is the main member of plant that gets the most effective photosynthesis. Table (2) exhibited that the field capacity 85% gave the highest leaf area (17.5) cm². while the addition of irrigation water of the field capacity 35% less values (12.2) cm². This means that water stress reduced leaf area, and also the received light was reduced, this negatively effects the synthesis of organic acid. The results agree with Almahasneh (2012) [18] that leaf area of wheat was significantly affected by water deficit, it returns to the decrease of flag leaf area subject to water stress led to the reduced water absorption. This is reflected in the reduced water potential, which causes a decrease in energy production in light reaction [19]. On the other hand, the leaf area increased with increasing concentration of ascorbic acid, the best treatment was recorded when spraying plants with a 200 ppm compared the treatment 100 ppm and control, the percentage of increase was (9.2, 24.1%) respectively. The results were consistent with Ali et al. (2015) [20] They found an increase in corn leaf area when treated with ascorbic acid because the acid participates in a variety of processes including photosynthesis, cell wall growth, cell expansion and synthesis of ethylene and gibberellin [21]. The results showed an inhibition effects when adding sunflower and corn residues, and corn showed a higher allelopathic effect than sunflower residues compared to control. The results agree with Morshed and Mohammed (2016) [22] that found the control treatment gave the highest value for the leaf area, the residues of wheat, corn and sunflower caused a significant reduction in leaf area. This may be due to residues that were at high levels, which increase the concentration of allelopathic compounds, especially mono phenols derived interfere to some degree with many vital plant processes, including cell division, water balance and phytohormone activity which leads to stop the work plant growth regulator especially auxin and

cytokines resulting in reduced leaf area [23, 24]. With regard to the interaction between cultivars and field capacity, sham -6- was superior to the field capacity 85%. With respect to the residues and field capacity treatment with no residues was outperformed at field capacity 85%.

In terms of interaction (cultivar \times field capacity \times ascorbic) there was a significant superiority of sham 6 at field capacity 85% and asorbic acid concentration 200 ppm.

Relative Water Content

Table (3) indicates that the drought caused a negative effect on the characteristics of relative water content, where has a significant decline when field capacity 35% compared to 60%, 85% the rate of decline (34.8, 14.2%) respectively. This agrees with Hussein and Khursheed (2014) [25] the significant decrease in water content of the wheat leaves with increasing water deficiency in soil, the reduction probably due to stomata closure, reducing water absorption and transpiration rate which reduce the CO_2/O_2 ratio in leaves and inhibits photosynthesis, these conditions increase the rate of reactive oxygen species (ROS). Table (3) also shows an inhibition due to the addition of corn and sunflower residues compared to the control treatment the rate of decline was (12.0, 18.5%) respectively. Our results are consistent with Ali *et al.*(2005) [26] indicating that soils contain 2% powder chard leave led to a significant

Table (1) Effect of corn, sunflower residues and field capacity in the plant height (cm) of wheat treated with ascorbic acid

				wiicat			iscoi bic					
		Ascorbic	Fi	eld Capaci	ity	Cultivar ×	Cultivar ×	Cultivar	Residues	Cultivar	× Residue Capacity	s × Field
Cultivar	Residues	acid	85	60	35	Residues × Ascorbic	Residues	× Ascorbic	× Ascorbic	85	60	35
		0	* 50.201	47.200	46.40	47.933		46.233	51.150	51.666	48.233	46.000
			g-i 50.30	k-s 47.400	m-t 46.500	fg	48.633	d 45.744	53.183	С	de	f
	Control	100	9-k	j-r	i-t	48.066 e-j	46.033 b	43.744 d	33.163 b			
		200	54.500	50.100	45.100	49.900		49.022	55.650			
		200	ef	g-m	o-t	de		c	a			
		0	48.100	45.300	42.000	45.133			43.233	48.166	46.737	43.400
		U	i-o	o-u	u-w	i			f	de	ef	gi
IPA 99	Corn	100	43.300	43.600	42.100	43.000	46.122		44.850			
			t-v	S-V	u-w	j 50.222	de		e			
		200	53.100 e-h	51.300 f-i	46.300	50.233 d			48.750 d			
			53.700	44.200	n-t 39.000	45.633			44.183	49.900	45.900	42.933
		0	e-g	q-v	39.000 WX	43.033 hi			ef	49.900 cd	43.900 f	42.933
			47.500	46.500	44.500	46.166	46.244		47.616	cu	1	_ š
	Sunflower	100	j-q	i-t	p-v	n-j	d		d			
		200	48.500	47.000	45.300	46.933			48.566			
		200	i-o	k-t	o-t	h-j			d			
		0	58.500	56.100	48.500	54.316		46.144		63.500	59.200	51.366
		U	cd	с-е	i-o	c		d		a	b	c
	Control	100	65.000	59.200	50.200	58.300	58.022	51.355				
	Control	100	a	С	g-i	b	a	b				
		200	66.500	62.300	55.400	61.400		52.955				
			a	b	de	a		a		10.255	15055	10.555
İ		0	43.500	41.200	39.300	41.330				48.266	46.366	40.666
			s-t 50.300	v-x 48.400	41.400	46.700	45.100			de	ef	n
Sham 6	Corn	100	g-j	i-0	V-X	g-i	e 45.100					
			51.000	49.500	41.300	47.266						
		200	f-j	h-n	V-X	f-h						
			46.200	43.70	38.300	42.733				51.600	47.866	42.533
		0	n-t	r-v	X	j				с	ef	g
	Sunflower	100	53.500	45.200	45.20	49.066	47.33					
	Sullilowei	100	e-g	o-u	o-t	d-f	c					
		200	55.100	51.400	44.100	50.200						
		200	e	f-i	q-v	d						
							Cultivar	Residues	Ascorbic	Residue	s × Field Ca Aserobi	pacity ×
Cultivar	IP	Λ.	49.911	46.955	44.133		47.00					
×	IP	Η.	c	d	e		b					

Fiel	ld	Sham 6	54.455	51.144	44.855	50.15					
Capa	city	Snam o	a	b	e	a					
		Con-T	57.583	53.716	48.683		53.327				
Resid	lues	Coll-1	a	b	d		a				
×		Corn	48.21	46.550	42.066		45.611				
Fiel		Com	bd	e	f		c				
Capa	city	Sunflower	50.750	46.883	42.733		46.788				
		Sumower	c	e	f		b				
		0	50.033	46.283	42.250			46.188			
Asco	rbic		c	d	e			С			
×		100	51.733	48.933	44.983			48.550			
Fiel		100	b	c	d			b			
Capa	city	200	54.783	51.933	46.250			50.988			
		200	a	b	d			a			
		0	50.666	45.566	42.466			0	45.350	51.650	47.450
	66		cd	ef	g				cd	e-g	i-k
. <u>2</u>	4 9	100	47.033	45.833	44.366		Control	100	57.90	53.300	48.500
orb sity	IPA		e	ef	f				b	de	h-j
ultivar × Ascorbic × Field Capacity		200	52.033	49.466	45.566			200	60.500	56.200	50.250
$\overset{\times}{C}_{A}$			С	d	ef				a	bc	f-h
Cultivar × × Field C		0	49.400	47.000	42.033			0	45.800	43.250	40.650
Ţį.	9		d	е	g				km	no	pq
×Ē	Sham 6	100	56.433	52.033	45.600		Corn	100	46.800	46.000	41.750
_	Sh		a	С	ef				i-l	i-l	op
		200	57.533	54.400	46.933			200	52.050	50.400	43.800
			a	b	e				d-f	f-h	m-o
								0	49.950	43.950	38.650
									f-h	m-o	q
Fiel			52.183	49.050	44.494		Sunflower	100	50.500	47.500	44.850
Capa	city		a	b	С				f-h	i-k	l-n
								200	51.800	49.200	44.700
									ef	g-i	l-n

^{*} Means followed by different letters are a significantly at 0.05 level, Duncan's multiple range test.

Table (2) Effect of corn, sunflower residues and field capacity in leaf area (cm²) of wheat treated with ascorbic acid

				ut	atcu w	iui asco	i bic ac	lu				
			E	eld Capaci	itsz	Cultivar	Cultivar			Cultivar	× Residue	$s \times Field$
		Ascorbic	1.1	eiu Capaci	ity	×	×	Cultivar	Residues		Capacity	
Cultivar	Residues	acid				Residues	Residues	×	×			
		acia	85	60	35	×	residues	Ascorbic	Ascorbic	85	60	35
						Ascorbic						
		0	15.600	12.500	19.700	12.600		12.014	14.616	17.800	14.700	12.111
			e-i	i-r	r-t	g-i		d	de	b	de	g
	Control	100	18.400	15.500	12.733	15.544	14.870	14.481	16.088			
	Common	100	b-e	e-i	i-q	cd	С	С	bc			
		200	19.400	16.100	13.900	16.466		15.548	17.666			
			bc	d-j	j-p	bc		b	a			
		0	13.300	12.200	9.300	11.600			12.666	14.966	13.722	10.300
			j-p	m-t	t	i			f	de	ef	h
IPA 99	Corn	100	15.500	13.700	10.200	13.133	12.996		13.966			
			e-i	j-p	q-t	f-i	d		e			
		200	16.100	15.267	11.400	14.255			15.044			
		200	d-j	e-i	o-t	d-f			с-е			
		0	13.700	12.333	9.500	11.844			12.572	16.622	14.477	11.433
			j-p	m-s	St	hi			f	bc	de	gh
	Sunflower	100	17.300	15.100	11.900	14.766	14.177		15.250			
	Sullio Wel	100	b-h	g-n	o-t	de	С		cd			
		200	18.867	16.000	12.900	15.922			16.766			
		200	b-d	d-k	k-q	cd			ab			
		0	19.500	16.700	13.700	16.633		14.555		20.888	16.977	14.266
			bc	c-i	j-p	bc		c		a	bc	e
	Control	100	19.900	16.100	13.900	16.633	17.377	15.722				
			b	d-j	j-p	bc		b				
		200	23.267	18.133	15.200	18.866		17.437				
Sham 6			a	b-q	g-n	a		a				
		0	15.100	13.200	12.900	13.733				16.866	14.800	12.700
	Corn	-	g-n	j-q	k-q	e-g	14.788			bc	de	fg
		100	17.200	15.100	12.100	14.800	bc					
			b-h	g-n	n-t	de						
		200	18.300	16.100	13.100	15.833						

Journal of Education and Science (ISSN 1812-125X), Vol. 29, No. 2, 2020 (260-278)

				b-f	d-i	j-q	cd						
			_	15.200	13.900	10.800	13.300				18.033	16.077	12.533
			0	g-n	j-p	p-t	e-h				b	cd	fg
				18.700	16.200	12.300	15.733	15.548					8
		Sunflower	100	b-d	d-j	m-s	cd	b					
				20.200	18.133	14.500	17.611	_					
			200	b	b-g	h-n	ab						
					- 8	I		~			Residues	× Field C	anacity ×
								Cultivar	Residues	Ascorbic		Aserobi	
Culti	var	IPA	Δ	16.460	14.300	11.281		14.014					
×		11.2	n.	b	c	e		b					
Fiel		Shar	n 6	18.596	15.951	13.166		15.904					
Capa	city	Shai	11 0	a	b	d		a					
		Con	ı-T	19.344	15.838	13.188			16.124				
Resid		Con		a	С	e			a				
×		Co	rn	15.916	14.261	11.500			13.892				
Fiel				С	d	f			С				
Capa	city	Sunflo	ower	17.327	15.277	11.983			14.860				
				b	cd	f			b				
		0		15.400	13.472	10.983				13.285			
Asco		_		d	e	g				С			
×		10	0	17.833	15.283	12.188				15.101			
Fiel				b	d	f				b			
Capa	city	20	0	19.355	16.622	13.500				16.492			
		_		a	С	e				a			
		0		14.200	12.344	9.500				0	17.550	14.600	11.700
	6	_		ef	g	h					с-е	f-i	k-m
jc ,	IPA 99	10	0	17.066	14.766	11.611			Control	100	19.150	15.800	13.316
orb	IP,	_		b-d	e	g 12.522					bc	e-g	i-k
vsc pa		20	0	18.122	15.788	12.733				200	21.33	17.116	14.550
$\overset{\checkmark}{\sim}$				bc	de	fg					a	de	f-i
'ar' eld		0		16.600	14.600	12.466				0	14.200	12.700	11.100
Cultivar \times Ascorbic \times Field Capacity	9			cd	e 15.000	g 12.766					g-i	i-l	im
×	Sham 6	10	0	18.600	15.800	12.766			Corn	100	16.350	14.400	11.150
	Sh			b 20.588	de	fg					d-f	f-i	im
		20	0		17.455	14.266				200	17.200	15.683	12.250
	l			a	bc	ef			-		de	e-h	j-i
										0	14.450	13.116	10.150
F: 1	1.1			17.500	15 105	12 224					f-i	i-l	m
Fiel				17.529	15.125	12.224			Sunflower	100	18.000	15.650	12.100
Capa	city			a	b	С					b-d	e-h	k-m
										200	19.533	17.066	13.700
ĺ		I		1							b	de	h-k

decrease in relative water content of wheat compared to the control treatment. Lambers *et al.* (1998) [27] explained that inhibition is due to the release of allelopathic compounds from residues to soil and most of these compounds have the potential to dissolve in water and move through the root to the plant. The results also show that spraying plants with ascorbic acid has a positive effect, a stimulation was obtained at 200 ppm concentration compared with 100 ppm and zero, the stimulation rate was (13.9, 22.6%) respectively. The results are consistent with Al-Obaidy (2015) [15] the stimulation of wheat seeds with ascorbic acid caused a significant increase in this trait, superior to control treatment.

The effect of ascorbic acid is attributed to the positive effect on the relative water content, it was positively correlated with phenols and proline content. The indicators of membranes stability are also improved when the seeds are treated with ascorbic acid [28]. The results of the interaction between the field capacity and the ascorbic indicate that the field capacity 85% exceeded at 200 ppm concentration.

With regard to triangular interaction (cultivar \times ascorbic \times residues) the wheat cultivar sham 6 at a concentration of 200 ppm was superior in treatment without residues. The interaction (cultivar \times ascorbic \times residues \times field capacity) sham 6 was superior at field capacity 85% in corn residues ascorbic acid and at concentration 200 ppm.

Chlorophyll and Carotenoid Content

Results of tables (4, 5) indicated the average of chlorophyll and carotenoid content was significantly decreased by water deficit and the reduction was significantly decreased with the increase of water deficit stress. The maximum decrease recorded at 35% of field capacity (17.0, 34.3%) compared to the treatment 85% respectively.

Drought is the most environmental factors that have limited plant growth. The low content of plant pigment is attributed to the wet soils that are not strongly held by water whereas dry soils are held or constrained, so we need force to extract water from the soil also water may be led to stomata closure, which reduce CO₂ availability in leaves and inhibits carbon fixation leading to the reduction plant pigment [29, 30].

These results are in agreement with those obtained by Movani (2011) [31] indicated the lower chlorophyll content in wheat due to the water stress compared to control treatment.

Saker (2010) [32] explained that demolition enzymes chlorophylls activated under stress conditions and distort the size and shape of chloroplasts and reduce of carotenoid, which has a significant role in protecting chlorophyll from demolition under water stress. The addition of the two crop residues (corn, sunflower) caused a reduction in values of total chlorophyll content compared with control, while they showed no significant differences in carotenoid content. The existence of residues plant leads to the increasing the of concentration of allelopathic compounds, which may be related to decline the level of enzymes that are essential for the construction of chlorophyll structure [24]. Rice (1984) [4] proposed that some allelopathic compounds may inhibit synthesis porphyrin which is the basic molecule in chlorophyll. This was confirmed by Ibrahim *et al.* (2013) [33] a study that shows that the allelopathic effects of extract prepared from genetically modified corn significantly decreased chlorophyll and carotenoid content of wheat.

Results of the table indicated that spraying plants with ascorbic acid caused a significant increase in chlorophyll compared to the control while no significant increase in carotenoid. This may be due to the physiological role of ascorbic acid in

Table (3) Effect of corn, sunflower residues and field capacity in relative water content (%) of wheat treated with ascorbic acid

			Field Ca	pacity		Cultivar ×	Cultivar	Cultivar	Residues	Cultivar Capacity		es × Field
Cultivar	Residues	Ascorbic acid	85	60	35	Residues × Ascorbic	× Residues	× Ascorbic	× Ascorbic	85	60	35
		0	72.700 f-h	59.900 m-o	51.100 s-u	61.233 f		55.296 e	63.638 d	78.166 b	64.700 e	56.766 hi
	Control	100	73.400 fg	62.100 im	58.100 n-q	64.533 de	66.544 b	57.185 d	67.783 c			
		200	88.400 b	72.100 g-i	61.000 i-n	73.866 a		70.444 a	73.150 a			
		0	52.900 r-t	51.167 s-u	36.500z	46.855 j			52.055 g	59.888 g	58.188 gh	46.033 k
IPA 99	Corn	100	55.767 p-r	54.400 q-s	44.500 w-y	51.555 i	54.703 f		58.866 e			
		200	71.000 g-i	69.000 h-j	57.100 o-q	65.700 de			68.916 bc			
		0	60.800 i-o	59.600 m-o	53.000 r-t	57.800 g			57.388 f	74.000 c	62.600 f	48.433 j
	Sunflower	100	64.100 kl	61.100 i-n	41.200 y	55.466 h	61.677 e		59.600 e			
		200	97.100 a	67.100 jk	51.100 s-u	71.766 b			70.166			
		0	75.700 ef	71.233 g-i	51.200 s-u	66.044 d		60.092 c		78.500 b	75.144 e	55.866 i
Sham 6	Control	100	79.700 d	76.100 ef	57.300 n-q	71.033 b	69.837 a	66.981 b				
		200	80.100 d	78.100 de	59.100 m-p	72.433 ab		71.044 a				

				68.667	60.800	42.300	57.255				82.322	66.811	46.433
			0	ii	l-o	xy	gh				a	d	k
		_		81.500	69.833	47.200	66.177	65.188					
		Corn	100	cd	g-i	vw	d	С					
			200	96.800	69.800	49.800	72.133			Ī			
			200	a	g-i	t-v	ab						
			_	71.733	58.100	41.100	56.977				81.744	62.433	45.100
			0	g-i	n-q	v	gh				a	f	k
			100	84.000	62.100	45.100	63.733	63.092					
		Sunflower	100	c	lm	wx	e	d					
			200	89.500	67.100	49.110	68.566						
			200	b	jk	w	c						
								Cultivar	Residues	Ascorbic	Residues	s × Field	Capacity ×
									Residues	Ascorbic	Aserobi		
Cultiva	ar	IPA		70.685	61.829	50.411		60.975					
×		11 2 1		b	d	e		b					
Field		Sham 6		80.855	68.129	49.133		66.039					
Capaci	ty	Silani o		a	С	f		a					
		Con-T		78.333	69.922	56.316			68.190				
Residu	es			a	b	d			a				
× Field		Corn		71.105	62.500	46.233			59.946				
				b	С	e			c				
Capaci	ty	Sunflower		77.872	62.516	46.766			62.385				
				a 67.002	C 122	e			b	57.604			
l		0		67.083	60.133	45.866				57.694			
Ascort	01C			d	64.272	48.900				62.083	-		
× Field		100		73.077	64.272	48.900				62.083			
				b 97.150	70.533	54.550	-			70.744	_		
Capaci	ty	200		87.150	/0.533	54.550							
		-		a (2.122	C 000	g 46.066				a	74.200	65.567	51.150
		0		62.133	56.888	46.866				0	74.200	65.567	51.150
				64.422	59.200	47.933					76.550	69.100	kl 57.700
	6	100		64.422	59.200	47.933			Control	100	76.550		il
	IPA 99			85.500	69.400	56.433	\dashv				84.250	75.100	60.100
bic	IP,	200				30.433				200	64.230 b		
Cultivar × Ascorbic × Field Capacity				72.033	e 63.377	44.866	\dashv				60.783	55.983	g-i 39.400
Cultivar × Ascor × Field Capacity		0		d		m				0	gh	;	0
z di				81.733	fg 69.344	49.866	\dashv				68.633	62.117	45.850
var ld (91	100		81./33 C	69.344 e	49.800 k			Corn	100	08.033 de		45.850 m
ılti	Sham			8.000	71.666	52.666	\dashv				83.900	g 69.400	53.450
∪ Z ×	Sh	200		a.000	d	j2.000				200	63.900 h	d	33.430 k
-				u I	u	J	\dashv				66.267	58.850	47.050
										0	ef	38.830 hi	m
Field				75.770	64.979	49.772					74.050	61.600	43.150
Capaci	tv			a a	b	49.772 C			Sunflower	100	C 74.030	g	n
Capaci	· cy			l"	ا	Ĭ					93.300	67.100	50.100
										200	a	d-f	1
		1			1	1		1	1	1	μα	u-1	11

Table (4) Effect of corn, sunflower residues and field capacity in total chlorophyll (mg/g) of wheat treated with ascorbic acid

		A 1:	Field Ca	pacity		Cultivar ×	Cultivar	Cultivar	Residues	Cultivar Capacity		ies × Field
Cultivar	Residues	Ascorbic acid	85	60	35	Residues × Ascorbic	× Residues	× Ascorbic	× Ascorbic	85	60	35
		0	2.810 d-j	2.770 d-k	2.320 k-n	2.633 e-h		2.538 D	2.768 cd	3.038 bc	2.830 c-e	2.463 fg
	Control	100	2.996 c-g	2.810 d-j	2.450 j-n	2.752 c-g	2.777 c	2.666 C	2.846 bc			
		200	3.310 a-c	2.910 c-j	2.620 g-m	2.946 bc		2.787 Bc	3.211 a			
		0	2.710 d-k	2.620 g-m	2.110 n	2.480 h			2.628 d	2.803 c-e	2.711 de	2.201 h
	Corn	100	2.790 d-j	2.703 d-k	2.213 mn	2.568 f-h	2.571 d		2.699 cd			
		200	2.910 c-j	2.810 d-j	2.280 l-n	2.666 e-g			2.827 bc			
	Sunflower	0	2.610 g-m	2.590 g-m	2.310 k-n	2.503 gh	2.642		2.625 d	2.844 cd	2.706 de	2.377 gh
	Sunflower 0	100	2.820	2.710	2.503	2.677	u		2.792			

				a :	d 1-	i n	d h			h d	1		
			-	d-j	d-k	i-n	d-h			b-d	-		
			200	3.103	2.820	2.320	2.747			2.956			
				b-f	d-j	k-n	c-g			b			
			0	3.103	2.980	2.630	2.904		2.809		3.342	3.132	2.846
			U	b-f	c-h	g-m	cd		В		a	ab	cd
		G . 1	100	3.210	2.903	2.706	2.940	3.107	2.892				
		Control	100	b-d	c-j	d-k	bc	a	В				
				3.713	3.513	3.203	3.476		3.209				
			200	a	ab	b-d	a		A				
				2.930	2.890	2.510	2.776				3.010	2.997	2.586
			0	c-i		h-n	c-f				bc	bc	
					c-j	2.580	2.830	2.864			ВС	ВС	e-g
Sham 6	5	Corn	100	2.910	3.000								
				c-j	c-g	g-m	с-е	bc		4			
			200	3.190	3.103	2.670	2.987						
			200	b-c	b-f	f-m	bc						
			0	2.910	2.820	2.513	2.747				3.178	3.000	2.641
			U	c-j	d-j	h-n	c-g				ab	bc	d-f
				3.123	3.010	2.590	2.907	2.940					
		Sunflower	100	b-f	c-g	g-m	cd	ь					
				3.503	3.170	2.820	3.164	⊣്					
			200	ab	b-e	d-j	b						
				ав	р-е	u-j	U						
								Cultivar	Residues	Ascorbic		s × Field	Capacity ×
					_		-				Aserobi		
Cultiva	ar	IPA		2.895	2.749	2.347		2.664					
×		11 7 1		c	d	e		b					
Field		C1 C		3.177	3.043	2.691		2.970					
Capaci	ty	Sham 6		a	b	d		a					
•	•			3.190	2.981	2.655			2.942				
Residu	ec	Con-T		a	b	c			A				
×	ics			2.906	2.854	2.509	_		2.718				
^ Field		Corn		I.									
				b	b	cd			B				
Capaci	ty	Sunflower		3.011	2.853	2.393			2.791				
				b	b	d			В				
		0		2.845	2.778	2.398				2.674			
Ascorb	oic	U		cd	de	g				c			
×		100		2.975	2.856	2.507				2.779			
Field		100		bc	cd	fg				b			
Capaci	tv			3.288	3.054	2.652				2.998			
Cupuci	,	200		3.200	b	ef				a			
		1		2.710	2.660	2.246	⊣			u	2.956	2.875	2.475
		0								0			
		<u> </u>		f-h	f-h	k				-	c-f	d-g	i-j
	6	100		2.868	2.741	2.388	1		Control	100	3.103	2.856	2.278
	6			c-g	e-g	jk	_				b-d	d-h	g-k
. <u>c</u>	IPA 99	200		3.107	2.846	2.406	1			200	3.511	3.211	2.911
Ascorbic pacity	Ι	200		bc	d-g	i-k				200	a	bc	c-f
Cultivar × Ascorb × Field Capacity		0		2.981	2.896	2.551	1			0	2.820	2.755	2.310
As		0		с-е	c-f	g-i	1			0	d-h	e-i	k
× S				3.081	2.971	2.625	┪				2.850	2.851	2.396
var ld '	9 1	100		b-d	c-e	g-i	1		Corn	100	d-h	d-h	k
Hr.	Sham 6	-		3.468		2.897	\dashv			-	3.050	2.956	
× G	Sh	200			3.262		1			200			2.475
		ļ		a	ab	c-f	4			ļ	b-e	c-f	i-j
					1		1			0	2.760	2.705	2.411
					1		1				e-i	f-i	jk
Field				3.036	2.896	2.519	1		C	100	2.971	2.860	2.546
Capaci	ty			a	b	С	1		Sunflower	100	c-f	d-h	h-k
1	•										3.303	2.995	2.570
					1		1			200	ab	c-f	g-k
		1			_1					1	aυ	[C-1	18-r

Table (5) Effect of corn, sunflower residues and field capacity in carotenoid (mg/g) of wheat treated with ascorbic acid

							_,					
		Ascorbic	Field Cap	acity		Cultivar ×	Cultivar	Cultivar		Cultivar : Capacity	× Residue	es × Field
Cultivar	Residues	acid	85	60	35	Residues × Ascorbic	× Residues	× Ascorbic	× Ascorbic	85	60	35
IDA 00	C1	0	0.891 a-g		0.611 d-k	0.794 a	0.815	0.766 A	0.797 a	0.926 a	0.896 a	0.623 b
IPA 99	Control	100			0.632 c-k	0.821 a	a	0.790 A	0.776 a			

				0.000	0.007	0.627	0.920		0.017	0.920		1	
			200	0.966 ab	0.897	0.627 d-k	0.830 a		0.817 A	0.839 a			
				0.854	a-g 0.872	0.510	0.745		A	0.775	0.896	0.876	0.554
			0	0.854 a-j	0.872 a-h	0.310 k	0.743 a			0.773	0.890 a	a	0.334 b
İ				0.890	0.872	0.561	0.774	0.775		0.788	u	u	U
		Corn	100	a-g	a-h	i-k	a	a		a			
			200	0.944	0.885	0.591	0.806			0.831			
			200	a-c	a-g	g-k	a			a			
			0	0.891	0.873	0.511	0.758			0.764	0.917	0.875	0.557
			U	a-g	a-h	k	a			a	a	a	b
		Sunflower	100	0.630	0.867	0.570	0.776	0.783		0.790			
		Buillower	100	c-k	a-i	h-k	a	a		a			
			200	0.972	0.887	0.589	0.816			0.821			
				a 0.004	a-g	g-k	0.800		0.770	a	0.042	0.002	0.652
			0	0.894	0.893	0.612			0.778		0.843	0.883	0.653
				a-g 0.890	a-g 0.871	d-k 0.694	a 0.731	0.793	A 0.779		a	a	b
		Control	100	a-g	a-h	a-k	a	a	A				
				1.006	0.887	0.651	0.848		0.843	1			
			200	a	a-g	b-k	a		A				
				0.873	0.872	0.551	0.765				0.932	0.887	0.613
			0	a-h	a-h	jk	a			<u>L</u>	a	a	b
Sham 6		Corn	100	0.936	0.879	0.591	0.802	0.807					
Shain	,	Com	100	a-d	a-h	g-k	a	a					
			200	0.961	0.910	0.698	0.856						
			200	ab	a-f	a-k	a						
			0	0.896	0.882	0.533	0.770				0.932	0.894	0.575
				a-g	a-h	k	a	0.000			a	a	b
		Sunflower	100	0.913 a-f	0.912 a-f	0.591 g-k	0.805 a	0.800					
				0.988	0.890	0.601	0.826	a					
			200	a	a-g	f-k	a						
				u	ш Б	I K	ш				Residue	s × Field	Capacity ×
								Cultivar	Residues	Ascorbic	Aserobi	5 × 1 lold	cupacity A
Cultiva	ır	ID 4		0.913	0.882	0.578		0.791					
×		IPA		a	a	b		a					
Field		Sham 6		0.899	0.888	0.613		0.800					
Capaci	ty	Shain 0		a	a	b		a					
		Con-T		0.884	0.890	0.638			0.804				
Residu	es			a	a	b			A				
× Field		Corn		0.909	0.881	0.583			0.791				
Capaci	tx.			a 0.025	a	b 0.566			A 0.702	1			
Capaci	ιy	Sunflower		0.925	0.885 a	0.366 b			0.792 A				
				0.883	0.879	0.554			A	0.772			
Ascorb	ic	0		a	a	b				a			
×		100		0.863	0.885	0.606	7			0.785	1		
Field		100		a	a	b				a			
Capaci	ty	200	-	0.972	0.892	0.626	1			0.830			
		200		a	a	b	_			a	1		_
		0		0.878	0.875	0.544				0	0.892	0.887	0.612
				a	a	b	4				a	a	bc
	6	100		0.900	0.883	0.588			Control	100	0.775	0.891	0.662
	IPA 99			0.000	0.000	b	-				ab	0.802	bc 0.620
1	P,	200		0.960	0.889	0.602 b				200	0.986	0.892	0.639 bc
bic	Ι			14	a						0.863	a 0.872	0.530
corbic ity	I			0.887	0.882	() 565			1	0	0.005	10.072	0.550
Ascorbic pacity	I	0		0.887 a	0.882 a	0.565 b				U	a	a	c
$r \times Ascorbic$ Capacity		0		a	0.882 a 0.887	b	_				a 0.913	a 0.875	c 0.576
ivar × Ascorbic eld Capacity				0.887 a 0.826 a	a	I.			Corn	100	a 0.913 a	a	0.576 bc
Sultivar × Ascorbic Field Capacity		0 100		a	a	b 0.625			Corn	100	a 0.913 a 0.925	a 0.875	0.576
$\begin{array}{l} \text{Cultivar} \times \text{Ascorbic} \\ \times \text{Field Capacity} \end{array}$	am 6	0		a 0.826 a	a 0.887 a	b 0.625 b			Corn		a 0.925 a	a 0.875 a 0.897 a	0.576 bc 0.644 bc
Cultivar × Ascorbic × Field Capacity		0 100		a 0.826 a 0.985	a 0.887 a 0.895	b 0.625 b 0.650	_ _ _		Corn	100 200	a	a 0.875 a 0.897	0.576 bc 0.644
		0 100		a 0.826 a 0.985 a	a 0.887 a 0.895 a	b 0.625 b 0.650 b	_		Corn	100	a 0.925 a 0.893 a	a 0.875 a 0.897 a 0.877 a	0.576 bc 0.644 bc 0.522 c
Field	Sham 6	0 100		a 0.826 a 0.985 a	a 0.887 a 0.895 a	0.625 b 0.650 b				100 200 0	a 0.925 a 0.893 a 0.901	a 0.875 a 0.897 a 0.877 a 0.889	0.576 bc 0.644 bc 0.522 c
	Sham 6	0 100		a 0.826 a 0.985 a	a 0.887 a 0.895 a	b 0.625 b 0.650 b			Corn	100 200	a 0.925 a 0.893 a 0.901 a	a 0.875 a 0.897 a 0.877 a 0.889 a	0.576 bc 0.644 bc 0.522 c 0.581 bc
Field	Sham 6	0 100		a 0.826 a 0.985 a	a 0.887 a 0.895 a	0.625 b 0.650 b				100 200 0	a 0.925 a 0.893 a 0.901	a 0.875 a 0.897 a 0.877 a 0.889	0.576 bc 0.644 bc 0.522 c

plant growth, which stimulated the increase of photosynthesis products, which were positively reflected in the production of carbohydrates.

This explanation was suggested with Choudhury (1993) [34] that found a positive effects of ASA on photosynthesis attributed to stabilizing and protecting the photosynthetic pigment and photosynthetic apparatus from oxidation. These results agreed with Hussein and Khursheed (2014) [25] foliar treatment of ASA which gave a significant increase of chlorophyll and carotenoids compared with control.

Relating to the interaction between ascorbic acid and field capacity there was a significant increase in total chlorophyll content when spraying at 200 ppm and field capacity 85%, while a significant decrease in carotenoid in field capacity 35% and non treated with ascorbic. According to the triple interaction (residues × ascorbic × field capacity) it was noted lowest value in corn residues not treated ascorbic and field capacity 35% in chlorophyll content, for carotenoid in sunflower residues, field capacity 35% and non acid treatment.

Catalase and Peroxidase Activity

Table (6, 7) show an increased activity of catalase and peroxidase in high moisture stress, adding water 35% of the field capacity gave the highest values in the activity of CAT and POD (3.503, 0.214%) compared to the field capacity 85% (2.929, 0.129%) respectively. The increase of antioxidant enzyme was explained under water stress a defensive mechanism used by the plant to eliminate the toxic effect of reactive oxygen species (ROS) which is formatted as a result of an imbalance in electron transfer chain when stomata closure maintains to t moisture content of soil when exposed drought. The enzymes are responsible for decomposition and detoxification of H₂O₂ and convert it into water and oxygen [35]. Thus antioxidant enzymes role in protecting the plant from stress and maintain cell compound (Chloroplast, proteins and membranes) from oxidation by free radical [36]. These results agree with Mousi and Ibrahim (2018) [37] that indicated that water stress at 50% from field capacity has given the highest values to the activity of POD and CAT of wheat.

Significant decrease in the activity of catalase enzyme of the control treatment (with residues) has been found, compared with corn and sunflower residues that were (6.205, 8.348%) respectively, there was no significant increase in activity of peroxidase with the treatment of residues. Ibrahim *et al.* (2013) [33] explained the allelopathic effect to 3 extract (3%, 5%, 10%) prepared from the leaves of genetically modified and non-modified corn on the activity of enzyme catalase in the wheat aqueous extracts enhanced the activity of catalase in wheat and maximum significant increase was recorded with lower aqueous extract of non-genetically modified as compared with control. Depending on the results that are obtained her be some allelochemical, might have increased the catalase activity in wheat. The same results were also obtained by Peng *et al.* (2004) [38] which the activity of the antioxidant enzyme was affected by allelopathic compounds. The results illustrate that the increased activity of both catalase and peroxidase was subject to different concentrations of ascorbic acid especially 200 ppm compared with treatment without spray by (20.22, 37.78%) respectively. This result consistents with Behairy *et al.* (2012) [39] that mentioned that seeds fenugreek soaked in ascorbic acid had increased catalase activity in which seeds were not treated with ascorbic acid.

Plants protect cellular from the cytotoxic effect of active oxygen radicals by enzymatic mechanism (Such as catalase) as well as non- enzymatic mechanism (such as carotenoids and ascorbic acid) [40]. With respect to interaction between residues and field capacity the highest activity of the catalase and peroxidase in stressed condition (35% field capacity) in sunflower residues compared to the other treatment. While the interaction of three factors (cultivar \times residues \times field capacity)

was less value in antioxidant enzyme activity (CAT, POD) and for the treatment of cultivar IPA 99 in the field capacity 85% and without adding residues compared with other treatment.

Table (6) Effect of corn, sunflower residues and field capacity in catalase (observed activity) of wheat treated with ascorbic acid

			(of whea	at trea	ted with	ascorb	ic acid				
		Ascorbic	Field Ca	npacity	_	Cultivar ×	Cultivar	Cultivar	Residues	Cultiva: Capacit		ıes × Field
Cultivar	Residues	acid	85	60	35	Residues × Ascorbic	Residues	× Ascorbic	× Ascorbic	85	60	35
		0	2.410	2.520 kl	3.120 b-k	2.683 H		2.807 d	2.717 e	2.780 g	2.847 fg	3.243 c-e
	Control	100	2.820 f-1	2.853 f-l	3.200 b-k	2.957 e-h	2.957 c	3.056 bc	3.020 d	8	-8	
		200	3.110 b-k	3.170 b-k	3.410	3.230 b-e		3.415 a	3.286 bc			
		0	2.610 j-k	2.660 i-l	a-g 3.210 b-k	2.826 f-h		a	2.982 d	2.916 e-g	2.996 d-g	3.412 a-c
IPA 99	Corn	100	2.920 d-1	2.960 d-l	3.316 a-i	3.065 c-g	3.108 bc		3.133 cd	C-g	u-g	a-c
		200	3.220 a-i	3.370 a-h	3.710 a-c	3.433 a-c			3.506 ab			
		0	2.660 i-k	2.660 i-k	3.320 a-i	2.913 e-h			2.963 d	2.885	3.140	3.616 ab
	Sunflower	100	2.656 i-k	3.170 b-k	3.610 a-d	3.145 c-f	3.210 ab		3.263	e-g	c-g	au
		200	3.340	3.490	3.920	3.583	140		3.621			
		0	2.516	a-f 2.530	3.210	Ab 2.752		2.967	a	2.878	2.963	3.336
	Control	100	2.910 e-l	j-l 3.030 c-l	b-k 3.310	Gh 3.083	3.059 bc	3.222		e-g	d-g	b-d
		200	3.210 b-k	3.330 a-i	a-i 3.490	c-g 3.343 a-d		3.527				
		0	2.813 f-l	2.890 e-l	a-e 3.710 a-c	3.137 c-f		a		3.056 c-g	3.193 c-f	3.670 ab
Sham 6	Corn	100	2.986 d-l	3.110 b-k	3.510 a-f	3.202 c-e	3.306 a			c-g	C-1	au
		200	3.370 a-h	3.580	3.790 ab	3.580 Ab	a					
		0	2.710 h-l	a-e 2.820 f-l	3.510 a-f	3.013 d-g				3.058 c-g	3.256 c-e	3.740 a
	Sunflower	100	3.016 c-l	3.380 a-h	3.750 ab	3.382 a-d	3.351 a			C-g	C-C	a
		200	3.450 a-g	3.570 a-e	3.960 a	3.660 A						
			8	u o	, a		Cultivar	Residues	Ascorbic	Residue Aserobi		Capacity ×
Cultivar ×	IPA	L	2.860	2.994 bc	3.424 a		3.093 b			11361331	•	
Field Capacity	Sham 6		2.996 c	3.137 b	3.582		3.239 a					
Residues	Con-T		2.829 e	2.905 de	3.290 b			3.008 b				
× Field	Corn		2.980 c-e	3.095 b-d	3.541 a			3.207 a				
Capacity	Sunflower		2.972 c-e	3.198 bc	3.678 a			3.282 a				
Ascorbic	0		2.620 f	2.696 ef	3.346 b				2.827 c			
× Field	100		2.885 de	3.083 cd	3.449 b				3.139 b			
Capacity	200		3.283 bc	3.418 b	3.713 a				3.471 a			
× .	0		2.560 g	2.646 fg	3.216 c-e				0	2.463 1	2.525 kl	3.165 d-i
r ic 99	100		2.798 fg	2.994 d-f	3.375 bc			Control	100	2.865 h-l	2.941 g-j	3.255 c-h
Cultivar Ascorbic S IPA 99	200		3.223 c-e	3.343 b-d	3.680 ab				200	3.160 d-i	3.250 c-h	3.450 b-e
υ _α .	0		2.680	2.746	3.476			Corn	0	2.711	2.775	3.460

			fg	fg	a-c				i-l	i-l	b-e
		100	2.970	3.173	3.523			100	2.983	3.035	3.413
		100	ef	с-е	a-c			100	f-k	e-j	b-f
		200	3.343	3.493	3.746			200	3.295	3.475	3.750
		200	b-d	a-c	A			200	b-h	b-e	ab
								0	2.685	2.790	3.415
								U	j-l	i-l	b-f
Field			2.929	3.066	3.503		Sunflower	100	2.836	3.275	3.680
Capaci	ty		c	b	A		Sullilowel	100	n-l	b-h	a-c
								200	3.395	3.530	3.940
								200	b-g	a-d	a

Table (7) Effect of corn, sunflower residues and field capacity in peroxidase (μ mol/ml) of wheat treated with ascorbic acid

Cultivar		Ascorbic acid	Field Capacity			Cultivar	Cultivar	Cultivar	Residues	Cultivar × Residues × Field			
	Residues		85	60	35	Residues ×	× Residues	× Ascorbic	× Ascorbic	85	60	35	
		0	0.092	0.121	0.212	Ascorbic 0.141		0.140	0.129	0.101	0.144	0.213	
			g 0.101	d-g 0.141	a-e 0.211	b-d 0.151	0.153	B 0.161	d 0.171	g	d-g	a-c	
	Control	100	fg	b-g	a-e	a-d	b	Ab	a-c				
		200	0.112	0.171	0.218	0.167		0.180	0.171				
			e-g 0.093	a-g 0.123	a-e 0.194	a-d 0.136		A	a-c 0.137	0.112	0.159	0.211	
		0	g.073	d-g	a-g	cd			cd	fg	c-f	a-c	
IPA 99	Corn	100	0.112	0.161	0.219	0.164	0.161		0.170				
11177	Com		e-g 0.131	a-g 0.195	a-e 0.221	a-d 0.182	ab		a-c 0.186				
		200	0.131 c-g	0.193 a-g	0.221 a-d	0.182 a-c			ab				
		0	0.097	0.135	0.199	0.143			0.148	0.119	0.167	0.219	
		0	fg	c-g	a-g	b-d	0.4.60		b-d	e-g	b-f	a	
	Sunflower	100	0.121 d-g	0.169 a-g	0.221 a-d	0.170 a-d	0.168 ab		0.184 ab				
		200	0.141	0.198	0.237	0.192	100		0.200				
		200	b-g	a-g	а-с	a-c			a				
		0	0.097	0.128	0.128	0.117		0.136			0.152	0.188	
			fg 0.212	d-g 0.149	d-g 0.217	d 0.192	0.162	A 0.188		a-g	a-g	a-d	
	Control	100	a-e	a-g	а-е	a-c	ab	A					
		200	0.131	0.179	0.219	0.176		0.192					
			c-g 0.096	a-g 0.125	a-e 0.195	a-d 0.138		A		0.124	0.166	0.215	
		0	fg	d-g	a-g	b-d				l l	b-f	a-c	
Sham 6	Corn	100	0.131	0.177	0.221	0.176	0.168						
Shani o	Com	100	c-g	a-g	a-e	a-d	ab						
		200	0.146 a-g	0.198 a-g	0.229 a-d	0.191 a-c							
		0	0.099	0.139	0.221	0.153				0.145	0.176	0.237	
		0	fg	b-g	a-d	a-d				d-g	b-e	a	
	Sunflower	100	0.161	0.189	0.243 ab	0.197 ab	0.186 a						
		200	a-g 0.176	a-g 0.201	0.249	0.208	a						
		200	a-g	a-f	a	a							
							Cultivar	Residues	Ascorbic			Capacity ×	
Cultivar	IPA		0.111	0.157	0.214		0.160			0.112 0.1 fg c-f 0.119 0.1 e-g b-f 0.124 0.1 d-g 0.124 c-g b-f 0.145 0.1 d-g b-e			
× Field			0.138	b 0.165	0.213		a 0.172						
Capacity	Sham 6		bc	b	a		a						
	Con-T		0.124	0.148	0.200			0.157					
Residues			e 0.119	c-e	ab			A	4				
× Field	Corn		0.118 e	0.163 bc	0.213 a			0.164 A					
Capacity	Sunflower		0.132	0.171	0.228			0.177					
	Sunflower		de	bc	a		1	A					
Ascorbic	0		0.095 e	0.128 de	0.191 bc				0.138 b				
×	100		0.139	0.164	0.222				0.175	1			
Field Capacity	100		d	cd	ab				a	_			
Сараспу	200		0.139	0.190	0.228				0.186				

			d	bc	a				a			
		0	0.940	0.126	0.201				0	0.945	0.124	0
		U	h	e-h	a-d				U	j	g-j	b
	_	100	0.111	0.157	0.217			Control	100	0.156	0.145	0
	66	100	f-h	df	a-c			Control	100	с-ј	d-j	a
၁	IPA	200	0.128	0.188	0.225				200	0.121	0.175	0.
Ascorbic pacity	Ι	200	e-h	a-d	ab				200	h-j	a-h	a-
× Ascorl		0	0.097	0.130	0.181				0	0.094	0.124	0.
, ,		U	gh	e-h	a-e		Corn	U	j	a-j	a-	
	9	100	0.168	0.171	0.227			100	0.121	0.169	0.	
iva eld	Ε Ε	100	с-е	b-e	ab			100	h-j	b-i	a-	
Cultivar > × Field C	Sham	200	0.151	0.192	0.232				200	0.138	g-j 0.145 d-j 0.175 a-h 0.124 a-j 0.169	0.
<u> </u>	01	200	d-g	a-d	a				200	e-j	a-g	a-
									0	0.098		0.
									U	ij		a-
Field			0.124	0.161	0.214			Sunflower	100	0.141	0.179	0.
Capaci	ty		С	b	a			Builliowel	100	e-j		a
									200	0.158	0.199	2.
									200	c-j	a-e	a

The Number of grains/ spike and grain yield

The results of tables (8, 9) indicate that the numbers of grains and grain yield were significantly decreased in wheat grown under different soil water deficit (85, 60, 35%). The irrigation treatment 85% gave the highest percentage compared with the level of field capacity 60% and 35% the ratio was (9.5, 34.2%) and (7.6, 24.5%) respectively. The reason is due to the volume of applied water which affects the growth characters such as leaf area, plant height, water content and pigment which are reflected in the yield and it's components. The results of this study were supported by Al-Temimi et al. (2013) [16] the drought stress reduce all yield components of wheat particularly the number of grains per spike. The results show that the presence of corn and sunflower residues decrease the value of the number of grains and grain yield compared with the control and decrease ratio that (16.1, 11.3%) and (14.1, 12.2%) respectively. This is due to the effect of the crop residues on the growth the of wheat and also adding of residues to the soil allelopathic compounds when decomposed are released to the soil that has a role in the inhibition of subsequent plants. Many researchers have recorded that corn, sorghum and sunflower residues contain allelopathic compounds such as vanillic acid, P-coumaric and Hydroxybenzoic all of which are phenolic acid dissolved in water and have inhibitory activity [41, 42]. Spraying ascorbic acid on the wheat plant at the concentration 200 ppm surpassed compared with 100 ppm and control the superiority ratio was (23.1, 10.3%) respectively. The positive response of wheat may be due the ascorbic acid has been an essential role in plants including, differentiation, regulation of growth, as well as metabolism [43]. This is consistent with Abdel Adeem and Ahmed (2017) [17] a study which shows that the spraying corn plants with ascorbic acid increased grain number per ear and grain yield.

The interaction between residues and field capacity significantly affected the number of grains and grain yield at field capacity 85% and with no residues.

The impact of the interaction of the three factors (residues \times field capacity \times ascorbic) gave the highest value without residues, field capacity 85% and concentration 200 ppm of ASA. Regarding to interaction of four factors, the same results have been got the triple interaction in the sham-6-.

Examining the results we noted that Shame 6 was superior on cultivar IPA 99 for most of the studied characters. The difference may be due to two factors, The first factor is the genetic variation between the two cultivars. This result is consistent with Olaoye (2009) [44] that show the difference in genotypes leads to morphological, anatomical and physiological differences. The second factor is migh the due to the cultivars that are different in tolerance of allelopathic compounds, where it was found several mechanisms for the superiority of the cultivar including plant pigment, relative water content and antioxidant enzyme.

This is consistent with Faysail and Ahmed (2014) [45] The of the superiority the wheat cultivar (Al-Ize) is cultivated in soil that contains residues of fenugreek rather than Talafer-3-.

It is necessary to choose the cultivars that resist to the allelopathic effect rather than the cultivars that showed sensitivity to those compounds.

Table (8) Effect of corn, sunflower residues and field capacity in number of grain/ spike of wheat treated with ascorbic acid

	1	1	1	Wiicat	ucan		ascor br	c aciu	1	1			
			Field Capacity Cult				Cultivar	Cultivar	Residues	Cultivar × Residues × Field Capacity			
Cultivar	Residues	Ascorbic				Residues	× Residues	×	×	Сиристе			
		acid	85	60	35	×		Ascorbic	Ascorbic	85	60	35	
			26.200	24.100	20.100	Ascorbic		21 400	22.022	20, 622	27.044	22 000	
		0	26.200 d-k	24.100 g-m	20.100 l-o	23.467 f-g		21.488 D	23.833 d	29.633 b-d		23.800 h-j	
		100	30.300	29.200	25.100	28.200	27.092	26.137	29.716	o u	00	11 J	
	Control	100	b-e	b-g	e-k	cd	b	C	ah				
		200	32.400	30.233	26.200	29.611		28.125	30.489				
		200	a-c	b-e	d-k	a-c		В	a				
		0	23.100	21.100	16.200	20.133			21.200	26.944		19.300	
			h-n 26.233	k-o 25.300	n 20.300	23.944	23.50.3		25.238	c-f	1-1	k	
IPA 99	Corn	100	d-k	e-k	l-o	e-g	d		d				
		200	31.500	26.400	21.400	26.433			27.766				
		200	b-d	d-k	j-o	d-f			bc				
		0	26.200	20.100	16.300	20.867			21.550	29.033		20.600	
			d-k	1-0	0	hi	25 125		e 27.166	b-d	e-h	jk	
	Sunflower	100	30.200	27.300 c-i	21.300 k-o	26.267 d-f	25.135 c		27.166				
			b-e 30.700	30.100	24.200	28.333	-		29.300				
		200	b-e	b-f	g-m	b-d			ab				
		0	29.300	25.200	18.100	24.200				33.644	30.667	22.490	
		0	b-g	e-k	no	e-g				a	b	ij	
	Control	100	34.200	32.300	27.200	31.233	28.933						
	Control	100	ab	a-c	c-i	ab	a						
		200	37.433	34.500	22.170 i-n	31.368					27.844 b-e 24.267 f-i 25.833 e-h 30.667 b 26.700 e-g		
			25.100	ab 22.100	19.500	22.267				28.567	26 700	22.633	
		0	e-k	i-n	i-0	g-i				b-e	l l	ij	
C1 C	C	100	29.100	27.300	23.200	26.533	25.966		1			7	
Sham 6	Corn	100	b-g	c-i	h-n	de	bc						
		200	31.500	30.700	25.100	29.100							
		200	b-d	b-e	e-k	a-d 22.233				20.000	26.067	22.600	
		0	26.100 d-k	21.300 k-o	19.300 m-o	22.233 g-i				30.000 bc		23.600 hi	
			31.500	28.300	24.400	28.067	26.855			be	C-1	111	
	Sunflower	100	b-d	c-h	f-m	cd	b						
		200	32.400	31.300	27.100	30.267					24.267 f-i 25.833 e-h 30.667 b 26.700 e-g 24.650 j-i 30.750		
		200	a-c	b-d	c-j	a-c							
							Cultivar	Residues	Ascorbic		s × Field	Capacity ×	
C14:			28.537	25.981	21.233		25.250			Aserobi			
Cultivar ×	IPA		b	23.981 C	e 21.233		b						
Field	G1 - 5		30.737	28.111	22.907		27.252						
Capacity	Sham 6		a	b	d		a						
	Con-T		31.638	29.255	23.145			28.013					
Residues	Con 1		a	b	e			A					
× Field	Corn		27.755	25.483	20.966			24.735					
Capacity			bc 29.516	d 26.400	22.100	+		26.005	-				
Сараспу	Sunflower		b	cd	ef			B					
			26.000	22.316	18.266				22.194				
Ascorbic	0		d	f	g				c				
×	100		30.255	28.283	23.583				27.374				
Field	100		b	c	ef	_			b	4			
Capacity	200		32.655	30.538	24.361				29.185				
	+		a 25.167	b 21.767	de 17.533	-			a	27.750	24.650	19.100	
iva × : 99	0		25.167 e-g	21.767 h	i 17.333				0	e-h		lm	
Cultiva r × IPA 99	-		28.911	27.267	22.233	1		Control	100	32.250		26.150	
n /	100								1 1 ()()			g-i	

		200	31.533 a-c	28.911 cd	23.933 f-h
	Sham 6	0	26.833 d-f	22.867 gh	19.000 i
		100	31.600 a-c	29.300 b-d	24.933 e-g
	Shan	200	33.778 a	32.167 ab	24.790 e-g
					- 8
Field Capaci	tv		29.637 a	27.046 b	22.070 c
	•				

Table (9) Effect of corn, sunflower residues and field capacity in in grain yield of wheat treated with ascorbic acid

		1			with asci		1		G 11	ъ	T	
	Ascorbic	Field Ca	apacity		Cultivar ×	Cultivar	Cultivar	Residues	Cultivar × Residues × I Capacity			
Residues	acid	85	60	35	Residues × Ascorbic	Residues	× Ascorbic	× Ascorbic	85	60	35	
	0	4.680	4.620	3.530	4.276		3.678	4.591	5.000 bc	4.871	3.990 gh	
Control	100	4.330	4.850	4.210	4.463	4.620	4.062	4.851	ВС	Cu	gn	
					fg 5.121	bc						
	200	a-d	a-d	k-p	b-d		C	a				
	0	3.730 o-s	3.140 st	2.713 ti	3.194 i			3.437 f		3.863 h	3.247 i	
Corn	100	4.310 k-0	3.900	3.410	3.873 h	3.778		4.278				
	200	4.630	4.550	3.620	4.2667			4.596				
Sunflower		h-m 4.150	i-m 3.336	p-s 3.210	g 3.565			3.886	4.643	3.818	3.343	
		1-q 4.730	rs 3.280	st 3.540	h 3 850	3 035		e 4 361	de	h	i	
Sunflower	100	f-m	v-t	q-s	h	d		d				
	200											
	0	5.210	4.780	4.730	4.906	5.212 a 4.463 c	4.297 D		5.620	5.320	4.696 cd	
Control	100	5.720	5.370	4.630	5.240		4.932		a	au	cu	
		a-c 5.930	5.810	h-m 4.730	a-c 5.490		5.231	-				
	200	a 4.250	ab	f-m	a 2.700		A		4.025	4.554	1.000	
	0	k-f	O-S	rs	h				4.833 cd	4.554 de	4.000 gh	
Corn	100	l l		I								
	200	5.246	5.103	4.430	4.926							
	0	4.660	4.100	3.860	4.206				5.230	4.780	4.346	
		h-m 5 320	m-q 4 830	n-r 4 470	g 4 873	4.785			b	cd	ef	
Sunflower	100	a-g	e-k	i-n	de							
	200	5.710 a-c	5.410 a-e	4.710 g-m	5.276 ab							
						Cultivar	Residues	Ascorbic			Capacity	
IPA	<u> </u>	4.579	4.227	3.527		4.111			11501001	•		
IPA Sham 6		5.228	4.884	4.347		4.820	1					
		a 5.245	5.160	d 4.343		a	4.916					
Con-1		a	a	cd			A	_				
Corn		c	d	f			4.120					
Sunflower		4.936 b	4.299 d	3.845 e			4.360 B					
0		4.446	3.951	3.567		1		3.988				
	Sunflower Control Corn Sunflower IPA Sham 6 Con-T Corn	Control 100 200	Residues	Control 100	Residues	Residues	Residues	Residues Ascorbic Residues Ascorbic Residues Ascorbic	Residues			

Field		100	4.903	4.510	4.078		4.497			
Capaci	ty		b	С	d		b			
	200	5.361	5.207	4.166		4.911				
		200	a	a	d		a			
		0	4.186	3.698	3.151		0	4.945	4.700	4.13
		U	fg	h	i		O	cd	c-f	g-i
		100	4.456	4.010	3.720	Control	100	5.025		4.42
	66	100	ef	gh	h	Control	100	b-d	bc	e-h
<	PA	200	5.094	4.973	3.710	200	200	5.766	5.670	4.48
rbi '		200	bc	cd	h		200	a	a	e-g
sco		0	4.706	4.203	3.983		0	3.990	3.435	3.03
As		0	de	fg	gh		0	hi	i	k
$\overset{\sim}{\mathbb{C}}$		100	5.350	5.010	4.436		100	4.660	4.365	3.81
iva eld	9 u		ab	cd	ef	Corn	100	d-f	f-h	ij
出民	har	200	5.628	c d 5.207 4.166 a d 3.698 3.151 h i 4.010 3.720 gh h 4.973 3.710 cd h 4.203 3.983 fg gh 5.010 4.436 cd ef 5.441 4.623 a e	200	4.938	4.826	4.02		
O ×	S	200	a	a	e		200	cd	c-f 5.110 bc 5.670 a 3.435 j 4.365 f-h 4.826 c-e 3.718 ij 4.055 g-i 5.125	hi
							0	4.405		3.53
							0	e-h	ij	i
Field	ield		4.903	4.556	3.937	G 7	100	5.025	4.055	4.00
Cultivar × Ascorbic × Field Capacity	ty		a	b	c	Sunflowe	r 100	b-d		hi
1	•							5.380		3.99
plais Cultivar × Ascort × Field Capacity							200	ab	bc	hi

The results of the interactions for all studied factors are extended but the interaction of water stress levels and plant residues showed a more inhibitory effect than the inhibitory effect of each factor for many traits. On this side Zuo *et al.* (2012) [46] explained water deficit reduced plants biomass and change phenotypic characteristics such as plant height and leaf area of wheat. More then that the drought might induce the production and accumulation of most allelochemicals by the passive transport. The interaction between drought and ascorbic acid positively effected in the rate of physiological process and reduced from the negative effects of drought by improving the mentioned parameters. This is consistent in the study of Hussein and Khursheed (2014) [25] They indicate that ASA treatment alleviated the harm effect of drought by enhancing parameters (plant height, leaf area, water content and yield). Interaction between residues and ASA also reduces the inhibitory effect of residues, our current study is a pioneer in this field.

Conclusion

Plants submitted to water stress and, the addition of allelochemicals meant important stress only explainable in terms multiple stress. Sham 6 was superior at 85% field capacity, 200ppm of ASA and without residues, in most of the studied traits. Application of ASA mitigates adverse effect of environmental stresses

Acknowledgments

I would like to thank College of Education of pure Science for funding the research.

Reference

- 1- Central Statistical Organization. Iraq (2017).
- 2- Al-Fatlowe S. K. and Al-Samk K. H., J of Kerbala University., 1(2): 174-182. (2013).
- 3- Khaled S. A. J. plant. Physiol., 5(5): 291-294. (2010).
- 4- Rice E.L Allelopathy. Academic press. 2nd New York. (1984).
- 5- Mohammed L. S. and Murshid, J. M., J of Kirkuk University for Agric. Sci., 9(2): 119-127. (2018).
- 6- Shao, H.B. Jaleel C. A. and Shao, M. A., Rev Biotechnol. 29: 131-151. (2019).
- 7- Mittler R., Trends in Plant. Sci., 7: 405-410. (2002).
- 8- Magalhaes J. P. and Church, C. M., Exp. Geronotol 41 (1): 1-15. (2006).
- 9- Ahmed F. F. and Morsy, M. Hd., The fifth Arabian Horti. Conference, Ismaillia, Egypt, March, 24-28. (2001).

- 10- Fang Q. X. Chen, Y. H. Li, Q. Q. Yu, S. Z. Luo, Y. and Ouyang, Z. Acta Agron. Sin., 32: 861-866 (2006).
- 11- Schon-Feid, M. A. Johnson R. C., Carver B. F. and Momhinweeg, D. W., J Crop Sci., 28: 526-531. (1988).
- 12- Lichtenthaler H., Methods of Enzymology., 148: 350-382. (1987).
- 13- Goth L., Clin. Chim. Acta., 196: 143-152. (2009).
- 14- Kim Y. H. and Yoo T. Y., Enz. Microb. Tech., 18: 531-535. (1996).
- 15- Al-Obaidy B. S. J., Ph.D. Dissertation, College of Agriculture, University of Baghdad (2015). (In Arabic).
- 16- Al-Temimi H. N. Al-Shahwany A. W. and Al-Saadawi I. S., Iraq j of Sci., 54(3): 577-584. (2013).
- 17- Abdel Adeem M. S. and Ahmed M. S., J of Biotech Res. Center., 11:28-36. (2017).
- 18- Almahasneh H., Damascus J. for Agric Sci., 28 (2): 127-141. (2012).
- 19- Verma S. K. and Verma A., "A Text Book of plant physiology, Biochemistry and Biotechnology". S. Chand and Company LTD. Ram Nagar, New Delhi(2010).
- 20- Ali Z. A. Hussin M. M. and El-Tahar A. M., Coden (USA): IJCRGG., 8(6): 389-400. (2015).
- 21- Smirnoff N. and Wheeler G. L., Biochem. Mol. Biol., 35(4): 291-314. (2000).
- 22- Morshed J. M. and Mohammed L.S., Tikrit J for Agric Sci., 16(4): 232-247. (2016).
- 23- Einhelling F. A., American Chemi. Soc, Washington, DC: p 1-24. (1995).
- 24- Yassen A. Y., M.S.c. Thesis, College of Agriculture, University of Tikrit. (2014). (In Arabic).
- 25- Hussein Z. K. and Khursheed M. Q., Jordan J of Agric. Sci., 10(1): 1-15. (2014).
- 26- Ali F. A. M., Ali H. S. and Ali, F. H., J of Education and Sci., 17(1): 55-69. (2005).
- 27- Lambers H. Chapin F. S. and Pons T. L., "Plant Physiological Ecology. Spring Verlag, Berlin (1998).
- 28- Farooq, M. Irfan, M. Azizi, T. Ahmad, I. and Cheema S. A., J of Agron Crop Sci., 199(1) (2013).
- 29- Faysal M. S., Rafidian J of Science., 25(3): 26-37. (2014).
- 30- Darvishan M. Moghadam H. R. T. and Zahedi H., Maydica, 58(2): 195-200(2013).
- 31- Movani P., Agric Sci. Res. J., 1: 64-68 (2011).
- 32- Saker, M.T., "Plant Physiology". Agriculture College. Mansoura University. (2010).
- 33- Ibrahim M. Nasser A. Zabta K. S. Asghari B. and Faizan, U., Pak. J. Bot., 45(1): 235-240. (2013).
- 34- Choudhury N. K. Cho, T. H. and Huffaker R. C., Plant Physiolov., 141: 551-556. (1993).
- 35- Grata, P. L. Polle A. Lea P. J. and Azevedo, R. A., Functional plant Bio: 32: 481-494. (2005).
- 36- Sharifi P. Amirnia, R. Hadi H. Majidi E. Nakoda B., Moradi M. Ronstaii and Alipoor H. M. African. J. Microbiol. Res., 6(3): 617-623. (2012).
- 37- Mousi A. N. and Ibrahim N. A., J of Kerbala University., 16(2): 204-216. (2018).
- 38- Peng S. L. Wen J. and Guo, Q. F., Acta Bot Sinica., 46: 757-766. (2004).
- 39- Behairy, R. T. El-Danasor, M. and Craker, L., J. of Medicinally Active Plants., 1(3): 106-112. (2012).
- 40- Alscher R. G. Erturk N. and Heath L. S., J. of Exp. Bot., 53: 133-141. (2002).
- 41- Al-Khalidi R. S. and Dawood W. M., Diyala J of Agric Sci., 9(2): 213-221. (2017).
- 42- Anjum T. and Bajwa R., Phytochemistry., 66: 1919-1921. (2005).
- 43- Horemans N. Foyer C. H. and Asard G. H., Plant Physiology., 38: 531-540. (2000).
- 44- Olaoye G. Bello O. B. Abubaker A. Y. Olayiwolo L. S. and Adesina O. A., Afric. J. Biol. 8(14): 3229-3238. (2009).
- 45- Faysail M. S. and Ahmed A. I., Res. of Reviews in Bio Sciences., 8(12): 481-489(2014).
- 46- Zuo S. Jinhu Z. Hongb. S. and Guangchao., African J. of Biotechnology., 9(33) 5430-5440. (2012).