2007 (2) (19)

/ /

2006/11/15

2006/10/2

Abstract

The photometric and fundamental plane for a sample of early type galaxies(elliptical and lenticular galaxies) which belongs to Virgo cluster have been calculated by fitting the Sersic model ($r^{1/n}$ -model) to the surface brightness profiles along the major axis of the these galaxies. The results show that the photometric plane has the following relation $r_e \propto n^{0.83} \langle I \rangle_e^{-0.44}$ with a vertical scatter of 0.199 in log r_e , this scatter translates to a 58 per cent error in distance per galaxy, and for the fundamental plane the relation found to have the following form $r_e \propto \sigma_0^{0.9} \langle I \rangle_e^{-0.62}$ with a vertical scatter of 0.124 in log r_e , this scatter translates to a 33 per cent error in distance per galaxy.

Djorgovski & Davis

$$r^{1/4}$$
 - (1987)

 r_{e} σ μ_e

(Fundamental Plane) FP

$$\langle I \rangle_{\rm e}$$
 $r_e \propto \sigma_0^{1.39} \langle I \rangle_e^{-0.90}$

 $\sigma_{\scriptscriptstyle 0}$ r_{e}

Jorgensen et al., (1996)

$$r_e \propto \sigma^{1.24} \left< I \right>_e^{-0.82}$$
 $0.073 \qquad \log r_e \qquad 0.084 \qquad \log r_e$
 $17\% \qquad 100 \text{ kms}^{-1}$

(isophotes)

Graham (1997)
$$r_e \propto \sigma_0^{1.44 \pm 0.11} \left< I \right>_e^{-0.93 \pm 0.08}$$

$$.r^{1/4} \qquad \qquad r^{1/n}$$

Khosroshahi et al., (2000)

(Photometry Plane) PHP

 μ_0 r_e $r^{1/n}$

 $\log n = (0.173 \pm 0.25) \log r_e - (0.069 \pm 0.007) \mu_b(0) + (1.18 \pm 0.05)$

112

n

PHP FP σ La Barbera et al., (2005).) $Z \sim 0.3$ $r_e \propto n^{1.07 \pm 0.06} \langle I \rangle_e^{0.55 \pm 0.009}$ log r_e %32 ZLynden-Bell et al., (1988) استخدم (Centaurus) (Hydra) Graham (2002) 15 12 27 B-) Caon et al., (1990) (band Hypercat* $r^{1/n}$ (Sersic1968) $\mu(r) = \mu_o + 1.0857 \ b_n \ (\frac{r}{r_e})^{1/n} \dots (1)$ μ_{o} r r_{e} (Least-Square Fitting)

^{*}Hypercat: http://www.obs.univ-lyon1.fr/hypercat/

```
.(Muhsin 2005
  \mu_e = \mu_o + 1.0857 \, b_n
                                                .... (2)
                                                                                      b_n
                                                                   n
b_n = 2n - 0.327
                                               .... (3)
                    5%
                                       (FWHM)
         PSF
                                                 ( Caon et al., 1990)
                                                      r > 1.5 FWHM
                                                \mu_B \le 26 \,\mathrm{mag}/\Box
              2%
                        \mu_{e} r_{e, n}
                                                               (1)
                         PHP
                                                            \mu_e n r<sub>e</sub>
    (La Barbera et al., 2005)
 r_e(kpc) \propto n^{A_{php}} \langle I \rangle_e^{-B_{php}} \dots (4)
                                            FP
                                                                                   B A
                                                            (Jorgensen et al., 1999)
r_e (kpc) \alpha \sigma_o^{A_{FP}} \langle I \rangle_e^{-B_{FP}} .....(5)
                                                                                    \sigma_{_{o}}
```

$$\langle \mu \rangle_{e} = \frac{r_{e}}{(\text{Graham,1997}) \langle \mu \rangle_{e}} \qquad r_{e}$$

$$\langle \mu \rangle_{e} = \mu_{e} - 2.5 \log \left(\frac{n e^{b_{n}}}{b_{n}^{2n}} \Gamma(2n) \right) \qquad (6)$$

$$(\text{arcsec}) \qquad r_{e} \qquad (\text{kpc})$$

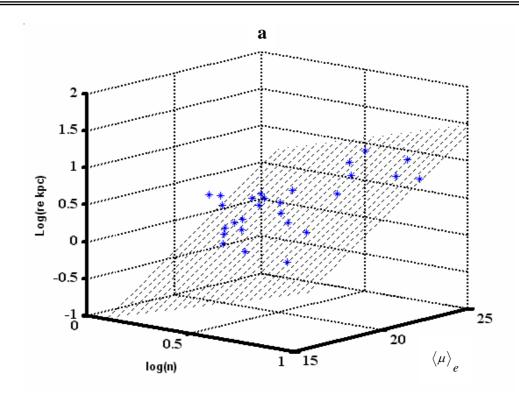
$$r_{e} \text{ (kpc)} = \frac{d(kpc) \times 2\pi \times re(arc \sec)}{360 \times 60 \times 60} \qquad (7)$$

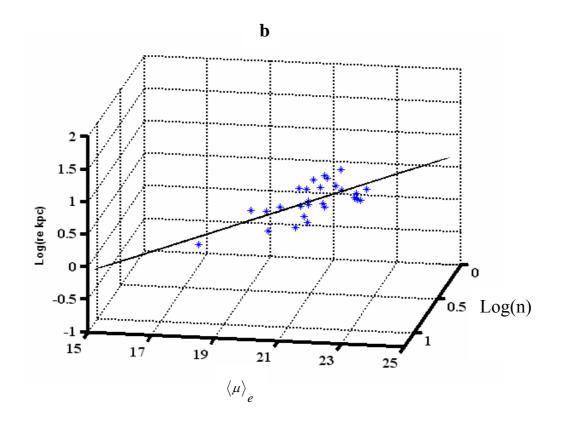
$$(M_{B}) \qquad (1) \qquad (\text{Capaccioli & Caon 1991}) \qquad 31.3 \text{ mag}$$

$$(\text{//}) \sigma_{0} \qquad \text{kpc} \qquad \log r_{e} \quad (\text{mag/arcsec}^{2}) \langle \mu \rangle_{e}$$

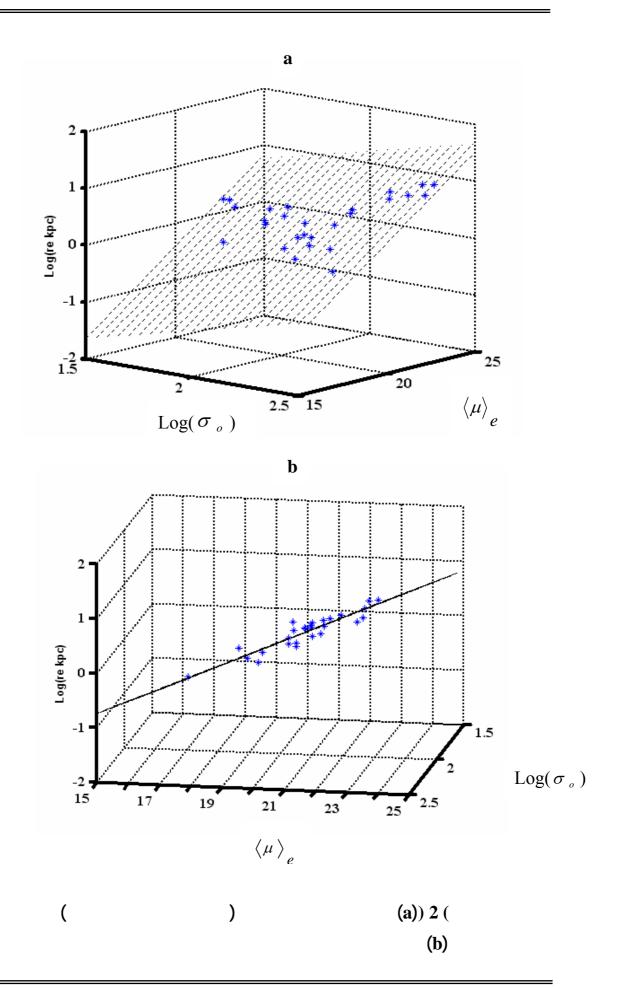
$$(5) \text{ (4)} \qquad \text{B A} \qquad \text{(Least-Square Fitting)}$$

$$(\text{Muhsin 2005}) \qquad \vdots$$


 $r_{e} \propto n^{0.83} \langle I \rangle_{e}^{-0.44} \qquad \dots (8)$


Graham (2002)

(1)


Galaxy Name NGC/or IC	Туре	M_{B}	n*	μ_{e}	r _e (arcsec)	Log(r _e)	$\left\langle \mu \right angle_e$	<i>σ</i> _o ** (km/sec)
N4168	Е	-19.07	6.65	24.59	75.20	0.82	22.93	186
N4374	E	-21.59	8.39	24.19	151.64	1.13	22.41	293
N4387	E	-18.21	1.83	21.33	13.46	0.07	20.34	112
N4434	E	-18.23	3.84	22.01	13.73	0.08	20.64	122
N4458	E	-18.37	2.55	22.46	18.92	0.22	21.30	101
N4464	E	-17.84	2.42	20.60	7.10	-0.20	19.47	129
N4473	E	-20.24	3.15	22.14	44.71	0.60	20.88	179
N4478	E	-18.94	1.86	20.69	12.63	0.05	19.69	144
N4486	E	-21.82	5.34	23.84	165.27	1.16	22.30	339
N4550	E	-18.53	1.64	21.15	22.52	0.30	20.21	80
N4551	E	-18.23	1.90	21.60	14.74	0.11	20.59	114
N4564	E	-19.25	1.48	21.50	27.11	0.38	20.61	158
N4621	E	-20.98	5.23	23.15	82.91	0.86	21.62	237
N4660	E	-19.16	2.37	20.54	14.04	0.09	19.42	191
I3468	E	-17.67	2.08	23.37	20.89	0.27	22.32	34
N4431	SO	-17.44	1.65	23.30	24.08	0.33	22.36	68
N4459	SO	-20.04	4.84	22.69	46.71	0.62	21.20	172
N4476	SO	-18.26	3.07	22.01	16.29	0.16	20.76	73
N4552	SO	-20.92	10.14	24.01	95.11	0.92	22.13	263
N4649	SO	-21.74	5.02	23.24	120.96	1.03	21.72	343
N4638	SO	-19.13	2.16	19.93	12.59	0.05	18.85	129
N4474	SO	-18.82	1.23	21.72	24.49	0.33	20.92	87
N4452	SO	-18.29	5.37	19.34	9.20	-0.09	17.79	269
N4436	SO	-17.24	1.82	23.08	23.01	0.31	22.09	38
N4415	SO	-17.72	1.74	22.97	18.48	0.21	22.01	41
N4352	SO	-17.79	1.74	22.57	24.11	0.33	21.61	65
I3653	SO	-16.87	1.57	21.37	6.43	-0.25	20.46	49

Caon et al., (1990) & Jorgensen et al., (1992) Hypercat http://www.obs.univ-lyon1.fr/hypercat/

(a) (1) (b)

References:

- Caon, N., Capaccioli, M., Rampazzo, R., (1990) "Photographic and CCD surface photometry of 33 early-type galaxies in the virgo cluster". Astron. Astrophys. Suppl. Ser., 86, 429-471.
- **Capaccioli, M., Caon, N., (1991)** "On the lack of a simple relation between R_e and μ_e for early-type galaxies". Mon. Not. R. Astron. Soc., 248, 523-527
- **Djorgovski, S., Davis, M., (1987)** "Fundamental properties of elliptical galaxies". The astrophysical. journal., 313, 59-68.
- Faber, S. M., Wegner, G., Burstein, D., Davies, R., Dressler, A., Lynden-Bell, D., Terlevich, R. J., (1989) "Spectroscopy and photometry of elliptical galaxies. VI. Sample selection and data summary". The Astrophys. journal. supplement. Series., 69, 763-808.
- **Graham, A.W., (1997).** "Elliptical Galaxies: Structure, Dynamics and Applications". Ph.D thesis to the Australia National University.
- **Graham, A.W., (2002)** "The Photometric Plane of Elliptical Galaxies". Mon. Not. R. Astron. Soc., 000, 1-6.
- **Hoessel, J.G., Schneider, D.P., (1985)** "CCD observations of Abell clusters. IV Surface photometry of 175 brightest cluster galaxies". Astronomical. Journal, 90, 1648-1664.
- **Jorgensen, I., Franx, M., Hjorth, J., van DoKKum, P. G., (1999)** "The evolution of cluster E and SO galaxies measured from the fundamental Plane". Mon. Not. R. Astron. Soc., 308, 833-853.
- **Jorgensen, I., Franx, M., Kjaergaard, P., (1992).** "CCD surface photometry for E and SO galaxies in the Coma Cluster", Astro. & Astrophys. Suppl., 95, 459.
- **Jorgensen, I., Franx, M., Kjaergaard, P., (1996)** "The fundamental Plane for cluster E and SO galaxies". Mon. Not. R. Astron. Soc., 280, 167-185.
- Khosroshahi, H.G., Wadadekar, Y., Kembhavi, A., Mobesher, B., (2000) "A near infrared photometric plane for ellipticals and bulges of spirals". ApJ, 531,L103.
- La Barbera, F., Covone, G., Busarello, G., Capaccioli, M., Haines, C.P., Mercurio, A., Merluzzi, P., (2005) " New insights into the structure of early-type galaxies: the Photometric Plane at $z \sim 0.3$ "Mon. Not. R. Astron. Soc., 000, 1-35.
- Lynden-Bell, D., Faber, S.M., Burstein, Davies, D.R., Terlevich, R.J., Wegner, G., (1988). "Spectroscopy and Photometry of Elliptical galaxies. V. Galaxy Streaming toward the new supergalactic center". Astrophys. Journal, 326, 19L.

- **Muhsin, N. A., (2005)** "The structural Photometric Parameters for Early-type galaxies Msc thesis to the college of Education, University of Mosul.
- Sersic, J., (1968) (Cited by Ref. Trujillo et al.,2001)
- **Trujillo, Graham, A.W., Caon, N., (2001)** "On the estimation of galaxy structural parameters: the sersic model". Mon. Not. R. Astron. Soc., 326, 869-876.