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Abstract
In this paper we modify some sort of Runge-Kutta methods
developed by David and Olin which need less function evaluation than
ordinary corresponding Runge-Kutta methods. We improve the stability
region of these methods by adding a suitable term for the formulas of the
methods. We have shown these improvements theoretically and
practically.

1-Introduction:-
We introduce the methods developed by David and Olin [5]:

1-1-Third-order method
We consider initial value problems expressed in autonomous
from. Starting with the non-autonomous form, we assume that f(x,y) is

autonomous function with domain D inR"™" wherex e R,y eR", and
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(x,y) e D .we assume that |f(x,y,)— f(x,y,)|, < L]y, - ,|, forall
(x,¥,),(%,¥,) € D; thus the problem
y'=f(xy) (A)
Y(%) = Yo With (X0 Yo) €D
Has a unique solution.
In autonomous form, y and f have n+1 components with
Yo =x aNd f,,(y)=1.
The initial value problem is then written
y' = f(y)
y(%0) = Yo Where(yo)n+1 = Xo -

Most efforts to increase the order of the Runge-kutta
methods have been accomplished by increasing the number of terms used
and thus the number of functional evaluations required [5].

Our method adds higher order derivative terms to the Runge-
Kutta K; terms (i>1) to achieve a higher order of accuracy.

For more detail see [2],[3].

For a new third order method, about autonomous systems,

David and Olin [5] assume that y, , =y, +blkl+b2k2 and k1= hf(y) .

They introduce additional terms by assigning

k, =hf(y, +a,k, +ha,f (y,)k,), see [1].[5] .

Using Taylor's series expansion techniques, the above is
uniquely satisfied toO(h®) as follows

kl = hf (yn)
2 2
k2 = hf (yn +§kl +§hfy(yn)k1)

1 3
Yo = Yn +Zkl +Zk2

1-2-Utilizing f,
The previous section developed a two — stage, third — order
method; however, it introduced a term with f, .

The result is the addition of a higher derivative term to the standard
Runge-Kutta method. The following describes three methods to utilize f,

[1].
Method 1: If one knows or can generate f,. And if the evaluation of f ,

then savings can be realized. For example, with a linear system of
equations, y’' = Ay, is known and constant [1],[5] .
Method 2: since y"= f'=f f for autonomous equations, and since

k, = hf , k, can be replaced with
2, 2
ko = f (y, + 5k, +5hf,k,)
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2. 2
=hf (y, +Zky+ hf,hf)

2 2
=hf(y, + 2k + M, £)

2 2
= hf ~k,+=h*f’
(yn+3 l+9 )
Or
2 2
k, =hf(y. +=k, +=h%y"
2 (yn 3 1 9 y)

Again, savings can be realized if one can formulate y”(or f')
and if it cheaper to evaluate than f [1],[5] .
Method 3: building onto method2, one approximate y” (or f') by using
the current and previous evaluations of f . For third-order method, this
approximation must be ofO(h). Since an O(h) approximation of f' is
given by f'=(f - f_,)/h, one can approximate k, as follows.

2 2
k, =hf(y, + =k, +=h*f’
2 (yn 3 1 9 )

=hf(y, +§k1 +§h2(fn —f.,)/h)

2 2
= hf (yn +§kl +§h(fn - fn—l))

Since f, is calculated in the current step in the evaluation of
k,, one only has to store the previous value f_,. In effect, the use of

previous for the approximation has created a multi step Runge-Kutta
method [1],[5] .

Similarly, for fourth - order and fifth - order method for
autonomous systems [5].

The new third -, fourth -, and fifth — order numerical
integration techniques inspired by the Runge — Kutta method have been
presented. The new methods exploit the use of higher order derivatives,
specifically f, . In particular, a technique utilizing an approximation to y”

has been presented resulting in a multistep Runge — Kutta method,

[ David and Olin ][ 5 ] shows the cases where the proposed
methods are more efficient that the standard Runge — Kutta methods.
Specifically, the proposed methods are more efficient for cases where
. f, Or y"is cheaper to evaluate than f .

. The use of historical values of f is cheaper than evaluating f , and
. For the fifth — order case, the number of total functional evaluations can
be reduced from 6 to 4 when using an approximation of f' [1].
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2- Improving methods

However, the stepsize remains the important key in the
performance of these methods, some times using large value for h gives
unexpected results.

So that we try to improve the performance of these methods
by increasing their stability regions .

Let us consider the general single — step method of order p
Yo = Yo = NQ(X, + ¥y, h) (1)

We always, assume that ( 1) is consistent and zero stability.

From numerical differentiation, we have
y(x, +h) = y(x.,),as h—0 (2)

Hence, we have yy(x, +h) = w(x,), 0<y <1,as h—0.

Therefore ( 1) may be written as
Yo = Yo +A~hQ(X, +Y,,h) (3)

where A=, ., -, =0 asn—-wx, h—0.

To prove that the improved singlestep methods ( 3) is
convergent, consider the general improved singlestep method (3)
@+ 7)Yn — A+ 7)Y, = hQ(X, +y,,h) (4)

Dependence on the definition of consistency (see Lambert
[7]) the general improved singlestep methods ( 3 ) is said to be consistent
with the initial value problems (A), if ([6],[9])
Q(x,y,0) = f(xy). (5)

If the general improved singlestep method (3) is consistent
with IVPs (A), then
A+ 7)Yn — A+ 7)Y, = hQ(X, +y(x,),h)
=hy'(x,) =hQ(x, +y(x,),h) +O(h*) =O(h?),
where jhy’(x,) =0 ash — 0, is bounded.
For more detail see [4].

So from ( 5) and dependence on the definition of the order p
(see Lambert [7]), the consistent has order at least one.

Therefore by dependence on the definition and theorem of
convergence (see [6], [10]), the above methods is convergent if and only
If it is consistent .For example ,

Let us consider the improved Runge — Kutta methods
Yoa = Yo t blkl + bzkz

Where k, =" f(y.)
1+y

h
kzzl—f(yn +a21kl+ha22 fy(yn)kl) ( 6)
+y
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For h = 0we rewrite the above methods as following
1
F(yml - yn) = blkl + b2k2

Where k, L f(y,)
1+y

1
k2= m f(y, +ayk, +hay, fy(yn)kl)

Also fim Y+ hg = Y{X))

h—0

= y’ =f,
We define the truncation error, T(x,h), of (6) to be
T(xhy= Y&* hg YDk +bk,

where the y(x) is the solution of (A), and we consider that T(x,h) - 0as
h—0.

SolimT (x,h) = %—Q(x, y,0), where Q(x, y,0) = b.k, +b,k,
- X

There for Q(x,y,0) = f(x,y)

Thus, from consistency definition we can see that the above
method is satisfy the consistency conditions. so that

We get improved Runge — Kutta (IRK3) method which has

the following form:
ynﬂ—yn:lLQ(Xﬁyn,h) (7)
+y

For examples, our new third- fourth- and fifth- order method
(IRK) for autonomous system.
2-1 Third-order methods,
Yoa = Yo t blkl + bzkz

h
and kl =mf(yn)l

h
k2= 1— f (yn + aZlkl + ha22 fy(yn)kl)
+y

Using Taylor's series expansion techniques, the above is
uniquely satisfied to O(h*) as follows
h

k,=—f
1 1+7 (yn)
h 2 2
k2=—"F(y, + =k, +=Nhf k
1+7/ (yn 3 1 9 y(yn) l)

1 2
Yo = Yn +Zkl +§k2'
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Since y"=f'=f f for autonomous equations, and since

k, L (y,), k, can be replaced with

1+y
h 2. 2
k2=—"f(y, +k, +Zhf k
1+}/ (yn 3 1 9 y 1)
SN OV VT L
1+y 3 9 “1+y
2
LY AR S
1+y 3 1+y

Building onto methods, since an O(h) approximation of
f'isgivenby f'=(f - f_,)/h, one can approximate k,as follows
2
G =ty 42k + 2 g
1+y 3 91+y
2
-ty 2k 2, - 1))
1+y 3 91+y
h 2 2 h
= f(y, +=k +=——(f — f
(yn 3 1 9 1+7( n n—1))

2-2 Forth-order methods
Now about fourth-order method.
You =Y t blkl + bzkz + bska

where k, =1 f(y.)
1+y

h
k2 = 147 f(y, +ayk, +hay, fy(yn)kl)
+7

and
h
k3= m FQy, +agk, +agyk, +hagf, (y, )k, +hag, T, (y,)k,)

However, in order to utilize methods 2 and 3 of Section 1-2, we
must restrict the solution witha,, =0.

Using Taylor's series expansion techniques, the above is uniquely
satisfied to O(h®) as follows

1 2 1
Yo = Y +gk1 +§k2 +§k3

h
k,=— f
1 1+7 (yn)
h 1 1
k2=—"F(y, +=k +=hf k
1+7 (yn 2 1 8 y 1)
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h 1
k3:mf(yn—kl+2k2—5hfykl)
Since y"=f’'=f f for autonomous equations, and since
k, L (y,), k, can be replaced with
1+y
2
2=ty o+t =g g
1+y 2 81+y ’
2
k3= t(y, —k +2k, =t g
1+y 21+y
2
S0, k2= f(y + 1k 41 gy
1+y 2 8l+y
2
k3= f(y —k, +2k, = £
1+y 21+y

Building onto methods, since anO(h) approximation of ' is given
by f'=(f, - f _,)/h, one can approximate k,and k,as follows

h 1 1 h?

k2=——f + =k, += f —f _)/h
1+7 (yn 2 1 81+}/( n n—l) )

h 1 h?
k3=——1(y, —ki+2k, =S ——(f, = f,.)/h)

therefore, k2=—" f(y +1k +=—"(f —f )
2 814y

1+y
h 1 h

and k3= ey F(y, =k 2k, =3 s (f. —f..))
2-3 Fifth-order methods

For fifth-order method, we have

Yo =Y, +bk +b,k, + bk, +b,k,

h
and k, =mf(yn)

h
k2= m f(y, +ayk, +hay, T, (y,)k)

h
k3= 147 FQyn +agk, +ag,k, +hagf (y,)k)
T

h
k4 = m f (yn + a41k1 + a42k2 + a43k3 + ha44 fy (yn)kl)
Using Taylor's series expansion techniques, the above is uniquely
satisfied to O(h®) as follows

h
K, =——f
1 1+7 (yn)
h 1 1
k2=—f(y,+=k +—=hf k
1+7/ (yn 3 1 18 y 1)
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k3= gy, 22y B2y Mgy
1+y 125 % 125 ° 125
h 199, 72, 25 5
kd=—f(y,+—k, ——k, +—k; +=hf k
1+}/ (yn 2 1 7 2 14 3 2 y 1)
5 27, 125 1
=y +—k, +—k, +=—k, +—k
yn+l yn 48 1 56 2 336 3 24 4
Since y"=f’'=f f for autonomous equations, and since
k, L (y,), k, can be replaced with
1+y
2
O JLLIY TAVRE DI S L )
1+y 3 181+y
2
3= f(yn—152k1+252 2_44 h )
1+y 125 ° 125 ° 1251+y
2
ko= gy, + 0k -2, B 2 gy
1+y 2 7 14 ° 21+y

Building onto methods, since an O(h) approximation of f' is given
by f'=(f, - f _,)/h, one can approximatek, ,k, and k,as follows

2
ko= ¢ (y. + 2k, +ih—(fn —f.,)/h)
1+y 3 181+ y

h 152 252 K 44 n?

(fn - fn—l)/h)

k3=——f(y. ——<k, + —~ f,—f.)/h
1+y (Vs 125 ' 125 ° 1251+y(” na) /1)
2
ko= f(ngkfzkﬁékﬁﬁh—
1+y 2 7 14 21+y
So, kzzif(yn+1k1+iL(fn—fn_l))
1+y 3 181+y
=y 152y, 252, M b g
1+y 125 ' 125 1251+ y
k4: h f(yn-i'gkl_zkz_'_§k3_'_§i(fn_fn—l))
1+y 2 7 14 +y

3-Numerical results

To demonstrate the new methods are of the order
claimed, several equations have been solved using the new third —
fourth and fifth — order method.

Here we show by numerical example the performance
of the improved methods. From the coming tables we shall show the
stability behavior of the normal methods and improved methods by
using different values for the stepsizeh.

These values, of hshowed the stability behavior of the
newly developed methods.
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We include test results of the following problems for
the explicit Runge — Kutta (RK) methods.

Example-1: y'=-2y+1, y(0) =1and
y(x) = %exp(—Zx) +%

Example-2: y'=-10(y -1)?, y(0) =2
y(x) =1+

1+10x

Example -3: y’'=-0.5y
y(0) =1, and y(x) =e %

Tables (1) and ( 2) indicate the effect of step size h
which lies outside of the stability region of normal methods and
inside for the improved methods. The error columns of Tables (1)
and ( 2 ) makes it clear that the new methods perform better than the
old versions.

Also, from Tables (3), (4 )and ( 5) it can be seen that
the improved methods are superior to the normal methods.
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Step size = 0.99

X | Theoretical Solution Numerical Solution of RK Error of RK Numerical Solution of IRK Error of IRK Method
Method Method Method

0.99 0.56903 -0.0099 0.57893 -0.0099 0.57893
9.9 0.5 -1.2365 1.7365 0.50003 2.971e-005
19.8 0.5 -0.43413 0.93413 0.5 7.4188e-009
29.7 0.5 0.025937 0.47406 0.5 3.9794e-012
39.6 0.5 0.26017 0.23983 0.5 1.3323e-015
49.5 0.5 0.37869 0.12131 0.5 0

59.4 0.5 0.43864 0.061362 0.5 0

69.3 0.5 0.46896 0.031038 0.5 0

79.2 0.5 0.4843 0.015699 0.5 0

89.1 0.5 0.49206 0.007941 0.5 0

99 0.5 0.49598 0.0040167 0.5 0
108.9 0.5 0.49797 0.0020317 0.5 0
118.8 0.5 0.49897 0.0010277 0.5 0
128.7 0.5 0.49948 0.00051981 0.5 0
138.6 0.5 0.49974 0.00026293 0.5 0

Table (1): Numerical results of EX. —IRK (y = 0.9) method and RK method .

93




Modifying Runge — Kutta methods with higher order ...

Step size = 1.5

X ng?&fité%al NumeRr:zaI:/Ii?rl]l;gon of Error of RK Method NumericaIIv'SeciLL:)t(ijon of IRK Error of IRK Method
15 0.52489 1.1875 0.66261 1.1875 0.66261
15 0.5 32725 3272 0.50056 0.00055915
30 0.5 4.6984e+007 4.6984e+007 0.5 1.3789e-007
45 0.5 6.7466e+011 6.7466e+011 0.5 1.0627e-011
60 0.5 9.6878e+015 9.6878e+015 0.5 1.7708e-014
75 0.5 1.3911e+020 1.3911e+020 0.5 0

90 0.5 1.9975e+024 1.9975e+024 0.5 0

105 0.5 2.8684e+028 2.8684e+028 0.5 0

120 0.5 4.1188e+032 4.1188e+032 0.5 0

135 0.5 5.9143e+036 5.9143e+036 0.5 0

150 0.5 8.4926e+040 8.4926e+040 0.5 0

165 0.5 1.2195e+045 1.2195e+045 0.5 0

180 0.5 1.7511e+049 1.7511e+049 0.5 0

195 0.5 2.5145e+053 2.5145e+053 0.5 0

210 0.5 3.6107e+057 3.6107e+057 0.5 0

Table (2 ): Numerical results of EX. —-IRK (y = 0.5) method and RK method .
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Step size = 0.12

X Theoretical Numerical Solution of RK | Error of RK Method Numerical Solution of Error of IRK Method
Solution Method IRK Method
0.12 1.4545 1.409 0.045507 1.409 0.045507
1.2 1.0769 -2.0215e+029 2.0215e+029 1.0277 0.049238
24 1.04 NaN NaN 1.0217 0.018318
3.6 1.027 NaN NaN 1.0178 0.0092083
4.8 1.0204 NaN NaN 1.0151 0.0052843
6 1.0164 NaN NaN 1.0131 0.0032564
7.2 1.0137 NaN NaN 1.0116 0.002087
8.4 1.0118 NaN NaN 1.0104 0.0013611
9.6 1.0103 NaN NaN 1.0094 0.00088604
10.8 1.0092 NaN NaN 1.0086 0.00056258
12 1.0083 NaN NaN 1.0079 0.00033554
24 1.0041 NaN NaN 1.0044 0.00027304
36 1.0028 NaN NaN 1.0031 0.00029627
48 1.0021 NaN NaN 1.0023 0.00026775
60 1.0017 NaN NaN 1.0019 0.00023681

Table (3): Numerical results of EX. -IRK (y = 0.2) method and RK method .
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Step size = 4.5

X ng?&fit;zal Numericallﬂi?r:l;gon of RK Error of RK Method Num:eéilc(a:wsec;:]%t(ijon of Error of IRK Method
4.5 0.1054 0.90137 0.79597 0.90137 0.79597
45 1.6919e-010 0.0024995 0.0024995 1.489e-006 1.4889¢-006
90 2.8625e-020 -1.1127e-005 1.1127e-005 1.7456e-013 1.7456e-013
135 4.8431e-030 -3.949¢-008 3.949¢-008 1.8407e-020 1.8407e-020
180 8.194e-040 1.5984e-011 1.5984e-011 1.9122e-027 1.9122e-027
225 1.3863e-049 3.37e-013 3.37e-013 1.982e-034 1.982e-034
270 2.3456e-059 4.8019e-016 4.8019e-016 2.0537e-041 2.0537e-041
315 3.9684e-069 -1.769e-018 1.769e-018 2.1279e-048 2.1279e-048
360 6.7142e-079 -6.9246e-021 6.9246e-021 2.2047e-055 2.2047e-055
405 1.136e-088 1.3801e-024 1.3801e-024 2.2843e-062 2.2843e-062
450 1.9219e-098 5.6539e-026 5.6539e-026 2.3667e-069 2.3667e-069
900 3.6939%¢-196 1.5701e-051 1.5701e-051 3.3741e-139 3.3741e-139
1350 7.0995e-294 4.2761e-077 4.2761e-077 4.8103e-209 4.8103e-209
1800 0 1.1391e-102 1.1391e-102 6.8579e-279 6.8579e-279
2250 0 2.9558e-128 2.9558e-128 0 0

Table (4 ): Numerical results of EX. —IRK (y = 0.85) method and RK method .
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Step size = 2.6
X ng(l)lzfit(i)crz]al Numericallﬂi(t)r:zgon of RK Error of RK Method Numerica'IVlSec;LL:)t(ijon of IRK Error of IRK Method
2.6 0.27253 -0.455 0.72753 -0.455 0.72753
26 2.2603e-006 -0.00064685 0.00064911 -0.00021516 0.00021742
52 5.1091e-012 -5.1591e-006 5.1591e-006 -4.3344e-009 4.3395e-009
78 1.1548e-017 -1.4046e-008 1.4046e-008 -6.9117e-014 6.9129e-014
104 2.6103e-023 -2.756e-011 2.756e-011 -1.0323e-018 1.0323e-018
130 5.9001e-029 -4.1748e-014 4.1748e-014 -1.5079e-023 1.5079e-023
156 1.3336e-034 -4.349e-017 4.349e-017 -2.1851e-028 2.1851e-028
182 3.0144e-040 -4.3251e-021 4.3251e-021 -3.1571e-033 3.1571e-033
208 6.8136e-046 1.2321e-022 1.2321e-022 -4.5566e-038 4.5566e-038
234 1.5401e-051 3.9761e-025 3.9761e-025 -6.5738e-043 6.5738e-043
260 3.4811e-057 8.5192e-028 8.5192e-028 -9.4826e-048 9.4826e-048
520 1.2118e-113 3.9466e-056 3.9466e-056 -3.6954e-096 3.6954e-096
780 4.2184e-170 -7.3971e-083 7.3971e-083 -1.44e-144 1.44e-144
1040 1.4685e-226 -1.531e-110 1.531e-110 -5.6114e-193 5.6114e-193
1300 5.112e-283 4.5598e-138 4.5598e-138 -2.1867e-241 2.1867e-241

Table (5): Numerical results of EX. -IRK (y = 0.6) method and RK method .
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Conclusions

We have improved the method developed by David and Olin by adding
the termA =y, ,-», =0 asn— o, h—0, 0<y <1 for the method's

formulas.
These improvements have been shown theoretically and practically.
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