
J .Edu. Sci , Vol. (19) No.(2) 2007 

64 

UPPER AND LOWER BOUNDS OF THE BASIS 
NUMBER OF KRONECKER PRODUCT OF  A 

WHEEL WITH A PATH AND A CYCLE 
 

*Ghassan  T. Marougi                       Ayhan    A.  Khalil 
*Dept. Math./College of Computers & Mathematics Sciences/ 

Mosul University   
 
 

Accepted Received 

3/10/2006 27/7/2006 

 

 الملخص
 
 

 بحيѧث ان   k علѧى انѧه اصѧغر عѧدد صѧحيح موجѧب        G لبيان b(G)يعرف العدد الأساس 
 فѧي هѧذا البحѧث سѧوف نѧدرس القيѧد الاعلѧى والاصѧغرللعدد                 . لفѧضاء داراتѧه    k قاعدة ذات ثنيѧة      Gلـ

  :توصلنا إلى النتائج الأتية حيث  للعجلة مع الدرب والدارةKroneckerالأساس لجداء 
  

4)(3 ≤⊗≤ nm PWb 4, ≥m  and 3≥n  , 
5)(3 ≤⊗≤ nm CWb , 4≥m , 3≥n  .  

 

ABSTRACT 
 
 The basis number, b(G) ,of a graph G is defined to be the smallest 
positive integer  k such that G has a k-fold basis for its cycle space. We 
investigate upper and lower bounds of the basis number of Kronecker 
product of a wheel with a path and a cycle. It is proved that 
 

4)(3 ≤⊗≤ nm PWb 4, ≥m  and 3≥n  , 
and 
 5)(3 ≤⊗≤ nm CWb , 4≥m , 3≥n  .  
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1.  INTRODUCTION. 
Throughout this paper, we consider only finite, undirected and simple 
graphs. Our terminology and notations will be standard except as 
indicated. For undefined terms, see [3] . 
Let G be a connected graph, and let e1, e2,……, eq be an ordering of the 
edges. Then any subset S of edges corresponds to a (0,1)-vector (a1, a2,….., 
aq) in the usual way, with ai =1 if ei ∈S and ai =0 otherwise, for 
i=1,2,…..q. These vectors form a q-dimensional vector space, denoted by 
(Z2)q over the field Z2. 
The vectors in (Z2)q which correspond to the cycles in G generate a 
subspace called the cycle space of G, and denoted by ξ(G). It is well 
known that 

  dim ξ(G)= γ (G)=q-p+k, 
where p is the number of vertices, k is the number of connected 
components and γ(G) is the cyclomatic number of G. A basis for ξ(G) is 
called h-fold if each edge of G occurs in at most h of the cycles in the 
basis. The basis number of G, denoted by b(G), is the smallest positive 
integer h such that ξ(G) has an h-fold basis, and such a basis is called a 
required basis of G and denoted by Br(G). If B is a basis for ξ(G) and e is 
an edge of G, then the fold of e in B, denoted by fB(e) is defined to be the 
number of cycles in B containing e. 
Definition: Let G=(V,E) be a simple graph with order n and vertex set 
V={p1,p2,..., pn}. the adjacency matrix of G, denoted by A(G) is the n×n 
matrix defined by : 
 

 
 
 

aij is called the adjacency number of the pair (vi , vj) of vertices. 
Definition: Let the vertex sets of the graphs G and H be {pi 

i=1,2,…,m} and {qj j=1,2,…,n} resp.,then the Kronecker product 
[8], HG ⊗ ,is the graph with vertex set {(pi,qj): for i=1,2,…,m and 
j=1,2,…,n} such that the adjacency number of the pair (pi,qj ), (pk,q l  ) is 
the product of the adjacency numbers of (pi,pk )in G and (qj,q l

) in H. 
HG ⊗ is also called direct product(tenser product) of G and H,and may be 

denoted by G.H [1]. HG ⊗  is also defined as  
V( HG ⊗ )=V(G )xV( H ) 
E( HG ⊗ )={(pi,qj) (pk,q l  )  pi pk ∈E(G) and qj ql ∈ E(H)}. 
The Kronecker product is commutative (up to isomorphism) and 
associative [7] .  

,if the edge pi,pj in E , 
, otherwise A(G)=[aij]n×n where aij =

⎩
⎨
⎧
0
1
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The first important result of the basis number occured in 1937 when 
MacLane [5] proved that a graph G is planar if and only if b(G)≤2. In 
1981, Schmeichel [6] proved that for n≥5,b(Kn)=3, and for m,n ≥5, 
b(Km,n)=4 except for K6,10, K5,n and K6,n in which n=5,6,7 and 8. 
Moreover, in 1982, Banks and Schmeichel [2] proved that for n≥7, 
b(Qn)=4, where Qn is the n-cube. 
The purpose of this paper is to determine upper and lower bounds of the 
basis number of Kronecker product of a wheel with a path and a cycle.  
2.1. On the Basis Number Of  nm PW ⊗  . 
In this section, we obtain upper and lower bounds for the basis number of 
kronecker product of a wheel with a path.Let the vertex sets of Cm  and nP  
be Zm and Zn  respectively, where  Zn denotes the additive group of 
residues modulo n. Let the cycle Cm be 0,1,2,…,m-1,0.  
The following lemma is needed in the proof of the following theorem 
which is due to Weichsel [8]. 
Lemma1:If G and H are connected graphs then the Kronecker product 

HG ⊗ is connected if and only if either G or H contains an odd cycle. 
Let Wm be the join of a cycle 0)2(210 −mL with the vertex α and let 

)1(210 −= nPn L .( See Fig.1). 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Theorem 2. For 4≥m  and 3≥n  , 4)(3 ≤⊗≤ nm PWb . 
Proof: One can easily observe from Fig.2, that 3PWm ⊗  contains a 
subgraph H homeomorphic to K3,3 . Thus by Kuratowskis theorem [3], 

3PWm ⊗  is non planar, since 3PWm ⊗  is a subgraph of nm PW ⊗  for 3≥n ; 
then by MacLanes theorem [5], 3)( ≥⊗ nm PWb . 
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 To complete the proof we find a 4-fold basis )( nm PWB ⊗ for 

)( nm PW ⊗ξ .We have two cases: 
Case (1): “ m” is even. Let 

,)( 1 MPNPCBB nm ∪∪∪⊗= − . 
where )( 1 nm PCB ⊗− is the basis for )( 1 nm PC ⊗−ξ discussed in Theorem 
2.2.1[4] in which “m-1” is odd, that is,  

{ } { },3,...,1,0:),1)(1(),2(),1)(1(,)( 11 SnjandZiijjijijiijPCB mnm ∪−=∈++++−=⊗ −−

where   ,00,1)2(,...,30,21,10,01,0)2(,...,31,20,11,00 −−= mmS  
{ } ,2,...,2,1,03,...,2,1,0:,)1(,)1(),1(,),1)(1(, −=−=+++++= njandmiijjjijijjiijN αα

}3,...,1,0:)2(),1(,0),1)(2(,),1(0,)2{( −=−++−+−= njjmjjjmjjjmP αα  and 

}.2,...,1,0
4,...,4,2,0:)1(,)2(),1)(1(,),1(

,)1)(2(,)1(),1(,{

−=
−=+++++

++++=

njand
mijjijiijjand

jjijijijM
αα
αα

 

It is clear that 

.)(5443
)1)(2()2()1)(2(1)2)(1(

nm PWnmmn
nmnnmnmB

⊗=+−−=

−−+−+−−++−−=

γ
 

We shall prove that B  is independent. 
First, the cycles of PN ∪  and M are independent for each 2,...,1,0 −= nj  
since any linear combination of cycles in PN ∪  or M for some 

2,...,1,0 −= mi  contains edges of the form, 
.)1(,)1()1)(1(, jijiorjiij ++++  

That is, any linear combination of cycles in PN ∪  and M is not equal to 
zero modulo (2). Moreover, for all 2,...,1,0 −= nj , every cycle of PN ∪  
contains an edge of the form ijjorjij ,)1()1(, ++ αα for some 

Fig.2: 3PWm ⊗
 

(m-3)1

(m-2)0

01α1

00

(m-2)2α2

(m-2)1

H 

α2 

α1 

α0 

02 

01 

00 

3PWm ⊗

12 

11 

10 

(m-3)2 

(m-3)1 

(m-3)0 

(m-2)2 

(m-2)1 

(m-2)0 



Ghassan  T. Marougi          &             Ayhan    A.  Khalil 
 

 68

2,...,5,3,1 −= mi  which is not present in any cycle of M. Also the cycles in 
MPN ∪∪ satisfy Φ=∪∪∩∪∪ )()( kkkjjj MPNMPN for all kj ≠ where 

jN is defined as follows: 
It is clear that the vertex set of nm PW ⊗ can be partitioned into 110 ,...,, −nVVV , 
where  

}2,...,2,1,0,:),{( −== mijiV j α . 
Notice that .}2,...,2,1,0,{)( −= mWV m α  
Now, jN  is the cycle of N that join a vertex of jV to a vertex of 1+jV , for 
each 2,...,1,0 −= nj . 
By a similar method, we define jP and jM  . 
Moreover, for every nonconsective integers j and k in {0,1,…,n-2}, every 
cycle in jjj MPN ∪∪ is edge-disjoint with every cycle in kkk MPN ∪∪ . 
Furthermore, if Ci  is any cycle in jjj MPN ∪∪ , 3,...,1,0 −= nj  then Ci  
contains the edge )1)(1(, ++ jiij which is not contained in any cycle in 

111 +++ ∪∪ jjj MPN . This shows that MPN ∪∪ is independent. Moreover, 
the cycles of jjj MPN ∪∪ for all 2,...,1,0 −= nj  are independent from the 
cycle of )( 1 nm PCB ⊗− because if iC ′ is any cycle generated from cycles in 

MPN ∪∪ , then iC ′contains an edge of the form 
ijjorjij ,)1()1(, ++ αα for some 2,...,1,0 −= mi  which is not present in any 

cycle of )( 1 nm PCB ⊗− . Thus )( nm PWB ⊗ is independent set of cycles and so 
it is a basis for )( nm PW ⊗ξ . 
 We now consider the fold of )( nm PWB ⊗ . Partition, the edge set of 

nm PW ⊗ into jijiorjiij )1(,)1()1)(1(, ++++ and 
ijjorjij ,)1()1(, ++ αα in which 1−∈ mZi  and 2,...,1,0 −= nj . Thus if e is 

any edge in nm PW ⊗  of the form jijiorjiij )1(,)1()1)(1(, ++++ , 
then 

)(
,2)(

1 nm PCB
ef

⊗
≤

−

    
PN

ef
∪

≤ ,1)(   
M

ef 1)( ≤  

and so 

 
)(

.4)(

nm PWB
ef

⊗
≤

 

 
While, if e is any edge in nm PW ⊗  of the form 

ijjorjij ,)1()1(, ++ αα ,then  

)(
,0)(

1 nm PCB
ef

⊗
=

−

    
PN

ef
∪

≤ ,2)(      
M

ef 2)( ≤  

and so 
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)(

.4)(

nm PWB
ef

⊗
≤

 

Therefore, )( nm PWB ⊗  is a 4-fold basis. 
Case (2): “ m” is odd. Let 

NMPCBPWB nmnm ∪∪⊗=⊗ −
*

1
* )()( . 

Where )( 1
*

nm PCB ⊗− is a basis for )( 1 nm PC ⊗−ξ discussed in[1,Theorem 1, 
case(2)] namely,  

,})(2,...,2,1,
:,)1)(1(,)2(),1)(1(,{

})(2,...,2,1,:
),1)(1(,)2(),1)(1(,{)(

1

1

1
*

oddisijandnjZi
ijjijijiij

evenisijandnjZi
ijjijijiijPCB

m

m

nm

−−=∈
+++−+

∪−−=∈
+++−+=⊗

−

−

−

}2,...,2,1,0)1mod(3,...4,2,0:
)1(,)2(),1)(1(,,)1(),1)(2(,)1(),1(,{*

−=−−=
+++++++++=

njandmmi
jjijiijjandjjijijijM αααα

and N is same as Case (1). 
It is clear that 

.)(5443
22122

)1)(2()1)(1()2)(1()(

nm

nm

PWnmmn
nmmnnmmnnmmn

nmnmnmPWB

⊗=+−−=
+−−++−−++−−=

−−+−−+−−=⊗

γ
 

As in the proof of Case (1), we can show that )( nm PWB ⊗  is independent 
set of cycles and so it is a basis for )( nm PW ⊗ξ  of fold 4,that 
is .)(*

nm PWBB ⊗=  
Note that if “ m” is even and 4≥m ,then 2PWm ⊗ is planar graph,(see 
Fig.3). 
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Hence 2)( 2 =⊗ PWb m  for even 4≥m . 
While, if “ m” is odd and 5≥m , then 2PWm ⊗  contains a subgraph K 
homeomorphic to 3,3K . Therefore by MacLanes theorem [5],the graph 

2PWm ⊗ is nonplanar (see Fig.4). 
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Hence 3)( 2 =⊗ PWb m  for even 5≥m .  
We conclude the following table 

m  n  )( nm PWb ⊗  

mm ,4≥ is even 2 2 
mm ,4≥ is even 3≥n  3 or 4 
mm ,5≥ is odd 2 3 
mm ,5≥ is odd 3≥n  3 or 4 

 
 
 
 
 
 
 
 
 

10 (m-2)0 α0 
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00
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2.2. On the Basis Number Of  nm CW ⊗  . 
In this section, we obtain upper and lower bounds for the basis number of 
kronecker product of a wheel with a cycle. 
Theorem 3. For 4≥m , 3≥n  , we have  5)(3 ≤⊗≤ nm CWb . 
Proof: Since nm PW ⊗ is a subgraph of nm CW ⊗ for all 4≥m ,and 3≥n , then 
by Theorem 2, we have nm CW ⊗ is nonplanar and so by MacLanes 
theorem [5], we have 3)( ≥⊗ nm CWb .For m=4 and n=3,( see Fig.5). 

 

 
 To complete the theorem we establish a 5-fold basis )( nm CWB ⊗  for 

)( nm CW ⊗ξ . We have two possibilities for m. 
(1)  “ m” is even. Then consider the following set of cycles in nm CW ⊗ : 

MNCCBCWB nmnm ∪∪⊗=⊗ − )()( 1 . 
Where )( 1 nm CCB ⊗−  is a basis for )( 1 nm CC ⊗−ξ  discussed in Theorem 
2.3.1[4], where “ m-1” is odd, that is,  

 
},{)()( 21111 SSBPCBCCB nmnm ∪∪⊗=⊗ −− , where  

,}{}3,,.........1,0:)1)(1(),2(),1)(1(,{)( 11 SnjandZijijijiijPCB mnm ∪−=∈++++−=⊗ −−

00,1)2(....,,.........30,21,10,01,0)2(......,,.........31,20,11,00 −−= mmS  

)},(mod1,2
)1mod(3.,,.........1,0:),1)(1(),2(),1)(1(,{1

nnnj
andmmiijjijijiijB

−−=
−−=++++−=

)2)(2(),1(0,0)2(),1)(3(),2)(2(1 −−−−−−−−= nmnmnmnmS  
.00),1(1,20),...,1)(3(,0)2(),1(0,10),...,1)(4(,0)3(),1)(2(,002 −−−−−−−−−−= nnmmnnmmnmS

{ }nm ZjandZiijjjijijjiijN ∈∈+++++= −1:),1(,)1(),1(,),1)(1(, αα . 
and 

Fig.5: 34 PW ⊗
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.}4,....,4,2,0:
)1(,)2(),1)(1(,,)1(),1)(2(,)1(),1(,{

nZjandmi
jjijiijjandjjijijijM

∈−=
+++++++++= αααα        

It is clear that 

)(143
)2()1(1)(

nm

nm

CWnmn
nmnmnmnCWB

⊗=+−=

−+−++−=⊗

γ
 

We will prove that )( nm CWB ⊗ is independent. It is clear that 

}{)( 1

2

0
−

−

=

∪∪=∪ njj

n

j
NPNN and }{)( 1

2

0
−

−

=

∪= ∪ nj

n

j
MMM , where jjj MPN ∪∪  for 

2,...,1,0 −= nj  are as mentioned in the proof of Theorem 2. As in the proof 
of Theorem 2, MN ∪ is independent. Moreover for all 1−∈ mZi , 11 −− ∪ nn MN  
contains the edge 0)1(),1( +− ini , which is not contained in 

)(
2

0
jjj

n

j
MPN ∪∪∪

−

=

. 

Thus MN ∪ is independent set of cycles. Furthermore MN ∪  is 
independent from the cycles of )( 1 nm CCB ⊗− since for all nZj∈ , if iC is any 
cycle generated from cycles of MN ∪ , then iC contains the edge of the 
from ijjorjij ),1()1(, ++ αα for some 1−∈ mZi  which is not present in any 
cycle of )( 1 nm CCB ⊗− .  
Thus  MNCCBCWB nmnm ∪∪⊗=⊗ − )()( 1 , is independent and so it is a 
basis. We now consider the fold of )( nm CWB ⊗ . Partition the edge-set of 

nm CW ⊗ into ijjorjijandjijiorjiij ),1()1(,)1(),1()1)(1(, ++++++ αα  for 
1−∈ mZi  and nZj∈ . Therefore if e is any edge in nm CW ⊗ of the form 

jijiorjiij )1(,)1()1)(1(, ++++ , then 

)(
,3)(

1 nm CCB
ef

⊗
≤

−

     
N

ef ,1)( ≤      
M

ef 1)( ≤  

and so  

 
)(

.5)(

nm CWB
ef

⊗
≤

 

While if e is any edge of the form ijjorjij ,)1()1(, ++ αα then  

)(
,0)(

1 nm CCB
ef

⊗
=

−

   
N

ef ,2)( ≤     
M

ef 2)( ≤  

and so  

 
)(

.4)(

nm CWB
ef

⊗
≤

 

Thus, the basis )( nm CWB ⊗ is of fold 5. 
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 (2) “m” is odd, then consider the following set of cycles in nm CW ⊗ : 
**

11
* }:,{)()( MNZiFFPCBCWB miinmnm ∪∪∈′∪⊗=⊗ −− , where 

)( 1
*

nm PCB ⊗− is a basis for )( 1 nm PC ⊗−ξ mentioned in [1, Theorem 1, case 
(2)] and ii FF ′,  are independent cycles [1, Theorem 2, case (1)]. That is,  

},00,1)2(,0)3(,...,31,20,11,00{})(2,...,2,1
,:),1)(1(,)2(),1)(1(,{})(

2,...,2,1,:,)1)(1(,)2(),1)(1(,{)(

1

11
*

−−∪−−=
∈+++−+∪−

−=∈+++−+=⊗

−

−−

mmoddijandnj
Ziijjijijiijevenijand

njZiijjijijiijPCB

m

mnm

 

},0),1)(2(,...,2),1(1,0{
},0),1)(2(,...,2),1(1,0{
iimiiiF
iimiiiF

i

i

+−+=′
−−−=

 

{ }nZjandmiijjjijijjiijN ∈−=+++++= 3,...,1,0:),1(,)1(),1(,),1)(1(,* αα
 
and  

.})1(mod3,........4,2,0:
)1(,)2(),1)(1(,,)1(),1)(2(,)1(),1(,{*

nZjandmmi
jjijiijjandjjijijijM

∈−−=
+++++++++= αααα It 

is clear that 

.)(
143

222122
)1()2()1(21)2)(1()(

nm

nm

CW
nmn

nmnnmnmnmmn
nmnmmnmCWB

⊗=
+−=

−+−+−+++−−=

−+−+−++−−=⊗

γ

 

As in possibility (1), we can prove that )( nm CWB ⊗ is a 5-fold basis for 
)( nm CW ⊗ξ .  

Remark. In contrast to upper bounds of the basis numbers of nm PW ⊗  and 
nm CW ⊗  given in Theorem 2 and Theorem 3, one can conjecture that the 

upper bound for the basis number of kronecker product of two wheels Wm 
and Wn  is 10)( ≤⊗ nm WWb . 
Conjecture:   

 (i)    What is )( nm KKb ⊗ ? where Wm and Wn  are subgraphs of Km  
and Kn. resp.  
(ii) What did you conjecture about )( 21 GGb ⊗ ? 
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