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ABSTRACT

The basis number, b(G) ,of a graph G is defined to be the smallest
positive integer k such that G has a k-fold basis for its cycle space. We
investigate upper and lower bounds of the basis number of Kronecker
product of a wheel with a path and a cycle. It is proved that

3<b(W,®P)<4 m=24andn=3,

and
3<b(W,®C,)<5, m=24,n=>3 .
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1. INTRODUCTION.

Throughout this paper, we consider only finite, undirected and simple
graphs. Our terminology and notations will be standard except as
indicated. For undefined terms, see [3] .
Let G be a connected graph, and let e; e, . e, be an ordering of the
edges. Then any subset S of edges corresponds to a (0,1)-vector (a; a, ...
a,) in the usual way, with a; =/ if e, &S5 and a; =0 otherwise, for
i=1,2,.....q. These vectors form a g-dimensional vector space, denoted by
(Z,)? over the field Z,.
The vectors in (Z,)? which correspond to the cycles in G generate a
subspace called the cycle space of G, and denoted by &(G). It is well
known that

dim §(G)= y (G)=q-p+k,
where p is the number of vertices, £ is the number of connected
components and »#G) is the cyclomatic number of G. A basis for £(G) is
called h-fold if each edge of G occurs in at most % of the cycles in the
basis. The basis number of G, denoted by 5(G), is the smallest positive
integer / such that &(G) has an h-fold basis, and such a basis is called a
required basis of G and denoted by B,(G). If B is a basis for £(G) and e is
an edge of G, then the fold of e in B, denoted by fz(e) is defined to be the
number of cycles in B containing e.

Definition: Let G=(V,E) be a simple graph with order n and vertex set

V={p.p2.... pn}. the adjacency matrix of G, denoted by A(G) is the nxn
matrix defined by :

1 .iftheedgep;p; InE,
A(G) :[aij]nxn where a; = 0 , otherwise

a; 1s called the adjacency number of the pair (v;, v;) of vertices.

Definition: Let the vertex sets of the graphs G and H be {p,
| i=1,2,....m} and {q; | j=1,2,...,n} resp.then the Kronecker product
[8],G®H ,is the graph with vertex set {(p;q): for i=1,2,...m and
Jj=1,2,...,n} such that the adjacency number of the pair (p;g; ), (prq, ) is
the product of the adjacency numbers of (p,p; )in G and (g,q,) in H.

G ® H 1s also called direct product(tenser product) of G and H,and may be
denoted by G.H [1]. G® H 1is also defined as

V(G®H)=V(G)xV(H)

E(G®H )={(pig) (pxa,) | pipe <E(G) and q;q, E(H)}.

The Kronecker product is commutative (up to isomorphism) and
associative [7] .
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The first important result of the basis number occured in 1937 when
MacLane [5] proved that a graph G is planar if and only if 5(G)<2. In
1981, Schmeichel [6] proved that for n>5,b(K,)=3, and for m,n >5,
b(K,,,)=4 except for K ;9, K5, and K, in which n=5,6,7 and 8.
Moreover, in 1982, Banks and Schmeichel [2] proved that for n>7,
b(Q,)=4, where Q, is the n-cube.

The purpose of this paper is to determine upper and lower bounds of the
basis number of Kronecker product of a wheel with a path and a cycle.
2.1. On the Basis Number Of W ®P, .

In this section, we obtain upper and lower bounds for the basis number of
kronecker product of a wheel with a path.Let the vertex sets of C,, and P,

be Z, and Z, respectively, where Z, denotes the additive group of
residues modulo n. Let the cycle C,, be 0,1,2,...,m-1,0.

The following lemma is needed in the proof of the following theorem
which is due to Weichsel [8].

Lemmal:If G and H are connected graphs then the Kronecker product
G ® H 1s connected if and only if either G or H contains an odd cycle.

Let W,, be the join of a cycle 0 1 2 ---(m—2) 0with the vertex «and let

P =012---(n—1) .( See Fig.1).

3 0
2 4 1
o ;: 2

! i
(m-2) n-2

0
n-1
Wm
Pl’l
Fig.1

Theorem 2. For m>4 and n>3 ,3<b(W, ® P,)<4 .

Proof: One can easily observe from Fig.2, that W, ® P, contains a
subgraph H homeomorphic to K33 . Thus by Kuratowskis theorem [3],
W, ® P, is non planar, since W, ® P, is a subgraph of W, ® P, for n>3;
then by MacLanes theorem [5], b(W, ® P,) > 3.
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ol 01 (m-3)1
00
(m-2)1
) (m-2)2 (m-2)0
H

Fig2: w,®P,

To complete the proof we find a 4-fold basis BW, ®P,)for

EW, ® P,).We have two cases:
Case (1): “m” 1s even. Let
B=B(C, ,®P)UNUPUM,.
where B(C, ,®P)is the basis for &(C, , ® P,)discussed in Theorem
2.2.1[4] in which “m-1" is odd, that is,

B(C,  ®P)= {ij,(z’—l)(j+1),i(j+2),(i+1)(j+1),ij vieZ, , and
where S =00,11,20,31,...,(m —2)0,01,10,21,30,..., (m — 2)1,00 ,

N ={ij, i+ )G +1),00,i(j + 1), + 1) j,a(j+1),i :i=0,1,2,....m =3 and j=012,.,n-2},
P={(m-2)j,0(j+1),aj,(m—2)(j+1),0/,a(j+1),(m—2)j:j=0,]l..,n-3} and

M ={aj,i(j+ 1), + 1)), +2)(j +1),0f
and a(j+1),ij,(i+D)(+1),i+2)j,a(j+1):i=0,24,.,m—-4
and j=0,1,.,n-2}.
It is clear that
|B|=(m-1)(n-2)+1+(m=2)(n—-1)+(n—2)+(m-2)(n-1)
=3mn—4m—-4n+5=yW,®P)) .

We shall prove that B is independent.

First, the cycles of N U P and M are independent for each j=0,1,..,n-2

since any linear combination of cycles in NuP or M for some

i=0,1,.,m-2 contains edges of the form,

ij,i+D(j+1) or i(j+1D,([i+1)j .

That is, any linear combination of cycles in Nu P and M is not equal to

zero modulo (2). Moreover, for all j=0,,..,n-2, every cycle of NUP

contains _an edge of the form oj,i(j+1) or a(j+1),ij for some
67
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i=13,5,..,m—2 which is not present in any cycle of M. Also the cycles in
NuPUM satisfy (N,UP, UM )N (N, VP, UM, )=® for all j=kwhere
N,is defined as follows:

It is clear that the vertex set of W ® P can be partitioned into V,,V,,....V, ,,
where

V,={(i,)): i = a,0,1,2,..m—2} .

Notice that V(W) = {«,0,1,2,...,m — 2} .

Now, N, is the cycle of N that join a vertex of 7 to a vertex of v, for

41
each j=0,,.,n-2.
By a similar method, we define P,and M, .
Moreover, for every nonconsective integers j and k in /0,7,...,n-2}, every
cycle in N ,UP, UM ,is edge-disjoint with every cycle in N,upP, UM,.
Furthermore, if C; is any cycle in N, UP, UM, j=0,1,..,n-3 then C;
contains the edge ij,(i+1)(j+1) which is not contained in any cycle in
N, wP, UM, . This shows that N UP UM is independent. Moreover,
the cycles of N ,uP, UM for all j=0,1,..,n-2 are independent from the
cycle of B(C, , ® P,)because if C/is any cycle generated from cycles in
NwPouM , then (C/contains an edge of the form
aj ,i(j+1) or a(j+1),ij for some i=0,1,..,m -2 which is not present in any
cycle of B(C, ,®P,). Thus B(W, ® P,)is independent set of cycles and so
it is a basis for E(W, ® P)).

We now consider the fold of B(W, ® P,). Partition, the edge set of
W ®Pinto ij ,(i+1)(j+1) or i(j+1),(i+1)j and
aj ,i(j+1) or a(j+1),ij in which ieZ, , and j=0]1,.,n—2. Thus if e is
any edge in W, ® P, of the form i ,i+1)(j+1) or i(j+1),@+1), ,
then
f (<2, fle) <1, f(e)<l
B(C,_ ®P,) NuP M
and so
f (e)<4.
B(W, A ®P,)

While, if e 1s any edge in W,®P, of the form
aj ,i(j+1) or a(j+1),ij ,then

f (@=0, f(e) <2, f(e)<2

B(C,_ ®P,) NUP M

and so
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f (e)<4 .
BW, ®P,)
Therefore, B(W, ® P,) is a 4-fold basis.
Case (2): “m” is odd. Let
BW, ®P)=B(C, ,®P)UuM UN.
Where B(C, , ®P,)is a basis for &, , ® P,)discussed in[1,Theorem 1,
case(2)] namely,
B™(Cppy ® P,) = {ij, (i + D(j = D, (i + 2)j, (i + 1)(j +1).7j
ez, 1,j=12,.,n=2and (j—1i)is even}
H,G+ D=1, +2)7,G+D(+1),5:
i€eZ, 1,j=12,..,n=2and(j—i)is odd},
M ={0j i(j+ 1.+ 1)/, G+ 2+ D.ej and a(j+1),i, G+ D +1), G +2)j,a(j +1)
:1=0,2,4,.m -3 mod(m—1) and j=0,12,.,n—-2}
and N is same as Case (1).
It is clear that
|B(Wm @P)=(m-D)n-2)+(m-1)(n-1)+(m-2)(n-1)
=mn-2m-n+2+mn—-m—-n+l+mn—-m-2n+2
=3mn—-4m—-4n+5=y(W ®OP)) .
As in the proof of Case (1), we can show that B(W, ® P,) is independent
set of cycles and so it is a basis for &(W,®P,) of fold 4,that
ISB"=B(W,®P,).
Note that if “ m” is even and m >4 ,then W, A ® P,is planar graph,(see
Fig.3).
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Fig.3

Hence »(W, ® P,) =2 for even m > 4.
While, if “ m” 1s odd and m>5, then W

m

® P, contains a subgraph K
homeomorphic to K;,. Therefore by MacLanes theorem [5],the graph
W, ® P,is nonplanar (see Fig.4).
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Fig.4: W, K ®P,

Hence (W, ® P,) =3 foreven m>5.
We conclude the following table
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2.2. On the Basis Number Of W, ®C, .

In this section, we obtain upper and lower bounds for the basis number of
kronecker product of a wheel with a cycle.
Theorem 3. For m>4, n>3 ,we have 3<p(W,®C, )<5.

Proof: Since W, ® P,is a subgraph of W, ® C, for all m>4,and »n >3, then
by Theorem 2, we have W, 6 ®C, is nonplanar and so by MacLanes
theorem [5], we have »(W, ® C,) > 3.For m=4 and n=3,( see Fig.5).

m

Fig.5:w, ® P,

To complete the theorem we establish a 5-fold basis B(W, ®C,) for
EW, ®C,). We have two possibilities for m.

(1) “m” is even. Then consider the following set of cycles in W,
BW,®C )=B(C, ®C,)UNUM.

Where B(C,,®C,) is a basis for &(C
2.3.1[4], where “ m-1" is odd, that is,

®C,:

®C,) discussed in Theorem

m—1

B(C,,®C,)=B(C,  ®P,)UB, U{S,.S,}, where

B(C, ®P)={ij,(i-D(+1,i(j+2),i+D)(+):ieZ , and j=0]..un—31U{S},
S =00,11,20,31,0veeon.... ,(m—2)0,01,10,21,30,............., (m—2)1,00
By ={ij, =D +1),i(j+2),G+D(j+1),ij : i=0,L.. ,m—3 mod(m—1) and

j=n—-2,n—1 (modn)},
S, =(m-2)(n-2),(m-3)(n-1),(m—-2)0,0(n—-1),(m—-2)(n-2)
S, =00, (m —2)(n—1),(m —3)0,(m — 4)(n —1)....,10,0(n — 1), (m — 2)0, (m — 3)(n - 1)....,20,1 (n —1),00 .
N ={ij,i+ D) +1),05,i(j+ 1), + D j,a(j+1)ij:ieZ, and jeZ,} .
and
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M ={aj,i(j+ 1, +1),(+2)(j+1),¢f and a(j+1),i,@+D(+1),0+2)j,a(j+]1)
:1=0,244,...., m—4andjeZn}.

It is clear that
|BW, ®C,)|=mn—n+1+(m-1)n+(m-2)n
=3mn—-4n+1=y(W &C,)
We will prove that B(W,®C,)is independent. It is clear that

n-2 n-2
N=U(N, UPj)U{Nn_l}and M=M)uiM, }, where N, UP, UM, for

Jj=0 j=0
j=0]1,.,n-2 are as mentioned in the proof of Theorem 2. As in the proof
of Theorem 2, N UM is independent. Moreover forall ieZ, |, N, , UM, |

contains the edge i(n-1),G@+1)0, which 1is not contained in
n-2
W, P, UM)).

j=0
Thus NuMis independent set of cycles. Furthermore NuUM s
independent from the cycles of B(C, , ®C,)since for all jeZ ,if C,is any

n-1

cycle generated from cycles of N UM, then C,contains the edge of the
from aj,i(j+1) or a(j+1),ijfor some icZ
cycle of B(C, ,®C,).

Thus BW,®C,)=B(C, ,®C,)YuNuUM, is independent and so it is a
basis. We now consider the fold of B(W, ® C,). Partition the edge-set of
W ®C, into ij,(i+1)(j+1) or i(j+1),(i+1)j and aj,i(j+1) or a(j+1),ij for

which is not present in any

m—1

ieZ , and jeZ . Therefore if e is any edge in W, ® C,of the form
ij,i+D)(j+1) or i(j+1),i+1)j ,then

f (@<3,  fle) <1, f(e)<1

B(C, ®C,) N M

and so

f (e)<5.

BW, &C))

While if e is any edge of the form «j,i(j+1) or a(j+1),ijthen

A (@=0, f(e) <2, f(e) <2

B(C, ®C,) N M

and so

f (e)<4.
BW, ®C)

Thus, the basis B(W

m

® C,)is of fold 5.
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(2) “m” 1s odd, then consider the following set of cycles in W, ® C, :

BW,®C,)=B(C, ,®P)U{F,,F':ieZ, JUN UM, where

B'(C, ,®P,)is a basis for £(C, , ® P,)mentioned in [1, Theorem 1, case

(2)] and F,,F; are independent cycles [1, Theorem 2, case (1)]. That is,

B (C,, , ®P)={ij,(+1)(j—-1),G+2)j,G+ D +1),ij: ieZ, ,,j=12.n—2

and (j—i)even }U {ij,(i+1)(j-1),@+2)j,@+D)+D,ij:ieZ,,
j=12,.,n—2 and (j—1i) odd} U {00,11,20,31,..., (m —3)0, (m — 2)1,00},

F, ={0i,1(G = 1),2,...,(m = 2)(i = 1),04},
F!=1{0i,1( +1),2i,...,(m — 2)(i +1),0i},
N =G+ DG + Do i(G+D. G+ D jsa(G+ 1.4 1 =0Lom =3 and jeZ,}

and

M ={af i +1),(i+1)/,(+2)(+1),af and a(j+1),ij, i +D(+1), G +2)j,a(+1) It
:1=0,24,....... m—3 mod(m—1) andjeZn}.

1s clear that

|BW,, ®C,)

=(m-1)(n-2)+14+2(m—-1)+(m—-2)n+(m—-1)n
=mn-2m-n+2+1+2m—-2+mn—-2n+mn—n
=3mn—-4n+1
=yWw,®C)).
As in possibility (1), we can prove that B(W, ® C,)is a 5-fold basis for
EW,C)).
Remark. In contrast to upper bounds of the basis numbers of W, ® P, and
w,®C, given in Theorem 2 and Theorem 3, one can conjecture that the
upper bound for the basis number of kronecker product of two wheels W,
and W, is b(W, ®W,)<10.
Conjecture:
(1) What is »(K
and K,, resp.
(11)  What did you conjecture about »(G, ® G,) ?

®K,)? where W, and W, are subgraphs of K,

m
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