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Abstract

In this study, a new self-scaling VM algorithm for solving large-
scale nonlinear unconstrained optimization problems is proposed. The
new algorithm is a kind of line search procedure .The local convergence
theory for the BFGS matrix implementation of this variable metric is
applied to achieve a globally convergent property.Numerical experiments
have been done with the standard BFGS algorithm with very promising
results.
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1. Introduction

consider line search descent method for solving the unconstrained
optimization problem

mlig} FX) werernen, (1)
where f is twice continuously differentiable. Each method
generates a sequence of points {x,} for k=1,2,......... until termination.

The initial point x, is given. If g, =Vf(x,)=0, for some k, then the

method terminates with x, =x*. Otherwise, a search direction 4, is
defined for which

grd, <0 (2)
(the descent property). Then a new iterate is defined by the line search

xk+l :xk + ﬁ“kdk ..................... (3)
where A 1s a step length chosen to minimize falong d; for which

g:+ldk :0 ............................. (4)

In this case the line search is exact (see [1]). The search direction
of Newton's method is defined by

d, =—G;§1gk (5)

where G, =V’ f(x,) 1s the Hessian matrix which, for x; sufficiently

close to x, is usually positive definite. The methods that we study are all
iterative methods, since in the quadratic case we cannot expect to be able
to carry out enough iteration to obtain an exact solution, even if the
theory allows this possibility, due to the size of n or the build up of round
off error. For the quadratic case the conjugate gradient (CG) method itself
(see [3]), or some preconditioned conjugate gradient (PCG) method
(see[4]), 1s usually the method of choice, although there are other variants
such as the minimum residual (MR) algorithm that are also applicable to
the case that G is symmetric and indefinite. We consider the case when a
preconditioned version of a nonlinear conjugate gradient method is used
to minimize f: the matrix G will denote the precondition matrix. At the
first iteration, the search direction is defined by

A =—=G g, corereee (6)
for x>0,
d, ==G g + P yd, | eeereeeeennn (7)
where
T ~-1
VG g
B =EESE (8)
yk—ldk—l
and where



Abbas. Al-Baiati & Salah G. Shareef & Hamsa Th. Chilmerane

Vi T8 T8k 9)
(This method is referred to as preconditioned conjugate gradient (PCG),
for more details (see[1])). Resetting corresponds to defining d; for k>1 as

dk :—(_;k_lgk .......................... (10)

which in effect starts a new sequence of iteration. For the VM-methods
assume that at the £ th iteration at approximation point x; and » x » matrix
Hj are available. Then the methods proceed by generating a sequence of
approximation points via the equation:

X =X, + Apd, e (11)

and
dyy=—H, g,
where H, is an approximation of G” which is corrected or updated form
iteration to iteration,in general H; is symmetric and positive definite.

There are different choice of Hj (see[5]) we list here some most popular
forms (see[6])

H* =H +(vk_Hkyk)(Vk_Hkyk)T .......... (13)
k+1 — k
(v _Hkyk)Tyk
is called rank one correction formula, where v, = x;+;-x; and yy is defined
as in equation(9)
HESS — _’_[1 + ygl;lkyki| VkaTT _|:kasz +flkykvlz}
Vive Vidi ViVk

which are satisfies the Quasi-Newton condition defined by

HiaVe S Ve (15)

and maintains the positive definite matrices if H) is positive.

2. Self-scaling VM methods

To improve the performance of VM updates, (see [6]) we are
trying to choose Hj.; to satisfy the following modified QN equation

Hk+1yk 2 R R R EE P RETPREE (16)

where , >0 is a scaling parameter .The BFGS may be written as:

H "+v yI'H 1 "H r
H, =H, - kykva ViV I J{—erkT"yk Vﬁv" ............ (17)
Vi Vi T, Vi Vi Vi Vi
where
1 6
T === = () = () V(i) =2 woverrsmsreesieesieee s (18)
/11( Vi Vi
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in fact the self-scaling update proposed by (Oren [8]) has some

good characteristics, with a self —scaling parameter 7, this class of
updates can be written as

H.yy H T A
H,, = Hk_%Jr%(kakyk)V;v—k}ykjL Kb (19 a)
viH,y, Vi
with 5= % A

vive YiH,y,
(Oren and Luenberger [9]) suggest to use the self- adaptable values for

the parameter 7x

T T
i Vi Vi Vi
T—+(1—t)T—

Vi =t
gy, Vil Y (19 b)

and usually the value =0 is recommended for the updates in the convex
class, i.e

T T
yo= U g o =L S (AL Bayti 1991) ... (20)

ye Hy o, Vi Vi Vi

3. Armijo line search procedure
Armijo provided in [10] a modification of the steepest descent
method which automatically adapts step size A of the iterative scheme

Xey =X —AVF(x,), k=123, s e . (21)
his method and the corresponding convergence result are as follows:
Theorem (Armijo[10])

suppose that the objective function f:R" — R is continues on R"

and bounded below on R". Assume that for a given x, e R", the function f

is  continuously  differentiable on the bounded level set
a(x,)=1x: f(x) < f(x,} and that there exists a unique point x* ¢ " which

minimize f. Suppose further that the equation V/f(x)=0 is satisfied for
x ea(x) 1f and only if x— x* and that Vfis Lipschitz continues on @(x,),
i.e, there exists a Lipschitz constant f » ¢, such that

V7o =vr < klx =

for every pair x,yes(x,). Let Ay be an arbitrary assigned positive

number,and consider the sequence A"=A"/2"", m=1,2,........... . Then

for the sequence of points {xk }fzo
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defined by

X, =X, —AVE(x), k=01, (22)
where m is the smallest positive integer for which

S =47 V() - f(x,) S_E/lk va(xk)“

it holds that limx = x’

Next, a high—level description of the Armijo’s algorithm, in which the
corresponding parameters indicate x, initial point, 4, an arbitrary large

initial step size, NIT (number of iterations) the maximum number of
iterations required and e the predetermined desired accuracy.

Algorithm1
1- Input {/: xp:49 ; NIT, ¢}

2- Set k=1
3- If k<NIT, replace k by k+1,set A=ho,m=1 and go to next step: otherwise, go
to step(8)

2, go to step (6); otherwise, set

40 f - AV ) = Fx) <= A )

m=m+1 and go to the next step.
5- Set A=24,/ 21, and return to step (4).
6- Set x,,, =x, —AVf(x,)
7- If HVf (xk)H < &£go to step(8); otherwise go to step (3).

8- Output {x,; £(x,);Vf(x,)}

4. A new self-scaling VM- update

In this section a new self-scaling VM algorithm is proposed, with
modified Armijo line search, and so we develop a Preconditioned CG-
algorithm. This new approach finds the minimum of an » dimensional

non quadratic function. Now let the &. is denoted as the gradient of the
function f{x). For simplicity f; and G denote f(x;) and v2f(x,),

respectively.

Using the Taylor expansion to the third-order terms f and g can
be written as respective

1 1 4
T T T
e = Jea _gk+1v+5" + GV _gvk (T vi Vi +0”Vk”
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1 4
T T T T
Vi =&V Vi GV + Evk (T vi)ve + 0(||Vk ” )

where T,., € R™™" is the tensor of f at X, We obtain the following

relation by canceling the terms which induce the tensor in above
expressions

4
Vi GV =V vy +6(f, = fra) +3(8 + 84) W +0||vk||

Then using a new approximation p, , we have, after putting o|v, |* (small
value),
ViB,, v, =V, ¥, + 0,
where
0, =6(f; = fr)+3(g + &) v

equation (23) givens a class of modified secant condition in the form

_ 0
yk :yk -|-T—kuk ............................... (24)

Vil
where u, e R" 1s any vector such that viu, 0.
Now from (17),replacing (24) instead of y, then we get

Hk)_’VkT"'kakTHk )_’ H )_’ T
1 B2k vy
Hk+1:Hk_ k — +(_+ — k) ]1‘" ke (25)

Vi Vi T ViV Vil
And by Armijo line search with A, is the largest number in
{s,s/2,s/22, ............. } such that
Si =S +2d,) = —nigid, Where (1), and 520

Note 1 :In fact, we can use the generalized Armijo's line search Ay is the
largest number in {S’ sB,sB>, s, } such that

fk _f(xk +ikdk)2—771/1g,fdk where n e (0,1)9 ﬂG (0,1), and s#0

Note 2: we should choose a suitable step size at each iteration so that the
Armijo, type line search on g is then carried out until the acceptance
condition

f(xk +dk)s max f(])-)]g/fd ............................. (26)

max (k—m)< j<k
is met, where g-_gg, is the displace element along the steepest
direction where
I 1

=10, 0,1),0 =1,—,
=107 (0. 10°100
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5. The Global convergence property of the new proposed
algorithm
Let s be a positive parameter and let x,=x;-sd;, where

d,=-H.g,

Armijo's rule for determining A is the following evaluate |g(x,)| at

s:l,l—,l— ...............................
2

4 b
Stopping when
le (x| < (1 - %)”g(xk)” ........................ (27)
if A denotes the first s which satisfies (27), then x;.; is given by
Xy =X, —AH Q0 oo (28)

usually, the Euclidean norm is used in (27) and the sum of the
squares of g's components are reduced at each iteration.

The problem (1), at the minimum when g(x)=0, the partial
derivative respect to each of the unknown vanishes:

i?(x)fi(x)zo ................................... (29)

i=1 OX;
For j=1,2,..ccccccccce it
Using matrix-vector notation (29) is written as j(x)" g(x)=0. If

j(x) is invertible the equation j(x)" g(x) =0 implies that any minimizer for
(1) satisfies g(x)=0.

6. Outline of new self-scaling VM algorithm with Armijo line
search

Step (1): set the initial point x,,the scalar € and Hy,=I, f=1,k;=1
Step (2): for k=1 set d, =-H,g, where g, =Vf(x,)
Step (3): compute g/ g,
Step(4): if (k=1) go to step (5)

B=\

go to step (6)
Step(5): if (k=2)

B =02

i-F
goto step (6)
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step(6): compute x,,, =x, +4,d, where A, is obtained from Armijo line
search procedure.

Step(7): if f,,, — f, <0.14(g,,,d, —0.51g,d,) go to step (8).
Otherwise set

k =k +1 and go to step (4)

step(8): set vi=xp+-xx and  Vi=Qi+1-Qk
step (9): compute 6, where
0, =6(f; — fr)+3(g, _gk+1)Tvk
_ 0,
Y=yit— "N
Vi Vi

step (10): compute 7, from (20)

__yiHy
k T —
Vi Vi
step(11): if (7, #0.5.0R T, ¢L)
Tk
then
1
p=—
Tk
7, =1
step(12): compute H;
HkykykTHk — =T | = VkaT
H.  =H ——————+¢(Hy )V, +7T,—
Vi, Y, Vi Vs
H,y,

_ v
where v, = - —*£
e YiH»,

v, H
step (13): d,,, =-H,, g, +Md1{

I
step(14): if k=Norg/g, <g/.g.. then go to step (2)

else go to step (3)
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7. Numerical Results

The following table, gives the comparison between the results of
the new self-scaling VM algorithm with Armijo line search and standard
BFGS algorithm. In the all cases the stopping criterion is |g,.,[<1x10°.

Also we run the program on a set of test functions with five versions of
variables, that i1s n=4,20,100,500 and 1000.

The results are given in the table is specifically quoting the number
of function evaluations NOF and the number of iterations NOIL.
Experimental results confirm that the new algorithm is superior to the
standard BFGS algorithm .From the Table, taking the standard BFGS
algorithm as 100 % NOI, and NOF respectively, there are about 47 %
NOI and 55 % NOF improvement overall selected group of test functions.

Comparative performance of the two algorithms (classical BFGS with cubic line
search and new self-scaling VM with Armijo line search)

Test function Classical BFGS New self-scaling VM
NOF (NOI) NOF (NOI)

Powell(4) 22(71) 32(44)
Powell(20) 40(117) 39(69)
Powell(100) 71(197) 64(155)
Powell(500) 50(148) 49(114)
Powell(1000) 62(155) 137(329)
Wood(4) 55(145) 24(46)
Woo0d(20) 130(358) 49(114)
Wood(100) 262(746) 105(278)
Wood(500) 583() 148(371)
Wood(1000) 692(1792) 234(422)
Cubie(4) 19(59) 11(25)
Cubie(20) 27(66) 24(73)
Cubie(100) 70(167) 30(94)
Cubie(500) 53(124) 31(100)
Cubie(1000) 44(112) 28(88)
Rosen (4) 35(94) 18(36)
Rosen (20) 70(180) 34(89)
Rosen (100) 139(353) 49(161)
Rosen (500) 88(192) 66(214)
Rosen (1000) 92(252) 64(208)
Dixon (4) 11(21) 11(21)
Dixon (20) 11(21) 30(56)
Dixon (100) 11(21) 37(75)
Dixon (500) 11(21) 38(77)
Dixon (1000) 11(21) 39(7)
Shallow (4) 8(26) 8(12)
Shallow (20) 8(26) 8(12)
Shallow (100) 8(26) 8(12)
Shallow (500) 8(26) 8(12)
Shallow (1000) 8(26) 8(12)
Total 2699(7246) 1431(3326)
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