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  :الخلاصة

 غير  ة ذاتي القياس في الامثلي    للمتري المتغير  في هذا البحث تم اقتراح خوارزمية جديدة      
الخطية وغير المقيدة مع استخدام خط بحث ملائم وبعد اسـتخدام صـفه التقـارب المحلـي                 

 ـ. ة للحصول على صفه التقارب الشامل في المصفوفة ألمستخدم         BFGS  لمصفوفة  تـم    دلق
     . جداًة  القياسية وكانت النتائج مشجعBFGSوارزمية مع خوارزمية  مقارنه هذه الخ

 
Abstract 

In this study, a new self-scaling VM algorithm for solving large-
scale nonlinear unconstrained optimization problems is proposed. The 
new algorithm is a kind of line search procedure .The local convergence 
theory for the BFGS matrix implementation of this variable metric is 
applied to achieve a globally convergent property.Numerical experiments 
have been done with the standard BFGS algorithm with very promising 
results.  
 
Keywords: Self-scaling Variable Metric, Line search procedure, Large-
scale optimization, Global convergence algorithm. 
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1.  Introduction 
consider line search descent method for solving the unconstrained 

optimization problem              
)(min xf

nRx∈
  ……………….……..(1) 

where f is twice continuously differentiable. Each method 
generates a sequence of points { }kx   for k=1,2,………until termination. 
The initial point ix  is given. If 0)( =∇= kk xfg , for some k, then the 
method terminates with *xxk = . Otherwise, a search direction 

kd  is 
defined for which 

0<k
T
k dg    …………………….….(2) 

(the descent property). Then a new iterate is defined by the line search 
kkkk dxx λ+=+1
   ……………...…(3) 

 where λk is a step length  chosen to minimize f along dk for which 
01 =+ k

T
k dg     …………………….….(4) 

In this case the line search is exact (see [1]). The search direction 
of Newton's method is defined by  

kkk gGd 1−−=     ……………….……(5) 
 

where )(2
kk xfG ∇=  is the Hessian matrix which, for xk sufficiently 

close to x*, is usually positive definite. The methods that we study are all 
iterative methods, since in the quadratic case we cannot expect to be able 
to carry out enough iteration to obtain an exact solution, even if the 
theory allows this possibility, due to the size of n or the build up of round 
off error. For the quadratic case the conjugate gradient (CG) method itself 
(see [3]), or some preconditioned conjugate gradient (PCG) method 
(see[4]), is usually the method of choice, although there are other variants 
such as the minimum residual (MR) algorithm that are also applicable to 
the case that G is symmetric and indefinite. We consider the case when a 
preconditioned version of a nonlinear conjugate gradient method is used 
to minimize f; the matrix G will denote the precondition matrix. At the 
first iteration, the search direction is defined by 

1
1

1 gGd −−=    ……..………..…..….(6) 

for 0>k , 
11

1
−−

− +−= kkkkk dgGd β     ……….…..(7) 
                                           

where 

11

1
1

1
−−

−
−

+ =
k

T
k

kk
T
k

k dy
gGy

β   ………...……….(8) 

and where 



Abbas. Al-Baiati  &  Salah G. Shareef  &  Hamsa Th. Chilmerane 

٤٦ 

11 −− −= kkk ggy    ………….……….(9) 
(This method is referred to as preconditioned conjugate gradient (PCG), 
for more details (see[1])). Resetting corresponds to defining dk for k>1 as 

kkk gGd 1−−=   …………………..…(10) 

which in effect starts a new sequence of iteration. For the VM-methods 
assume that at the k th iteration at approximation point xk and nn × matrix 
Hk are available. Then the methods proceed by generating a sequence of 
approximation points via the equation: 

kkkk dxx λ+=+1
  ……………….…...(11) 

and 
kkk gHd −=+1    ……….…………..….(12) 

where Hk is an approximation of G-1 which is corrected or updated form 
iteration to iteration,in general Hk is symmetric and positive definite. 
There are different  choice of Hk (see[5]) we list here some most popular 
forms (see[6]) 

      
k

T
kkk

T
kkkkkk

k
SR
k yyHv

yHvyHv
HH

)(
))((

1 −
−−

+=+
         …….…(13) 

is called rank one correction formula, where vk = xk+1-xk   and yk is defined 
as in equation(9) 

⎥
⎦

⎤
⎢
⎣

⎡ +
−⎥

⎦

⎤
⎢
⎣

⎡
++=+ T

kk

T
kkkk

T
kk

T
kk

T
kk

k
T
k

kk
T
k

k
BFGS
k yv

vyHHyv
yv
vv

yv
yHy

HH 11
     ………….(14) 

which are satisfies the Quasi-Newton condition defined by  
kkk vyH =+1          …………….…………………..……….(15) 

and maintains  the positive definite matrices if H0 is positive. 
 
2.  Self–scaling VM methods 

To improve the performance of VM updates, (see [6]) we are 
trying to choose  Hk+1  to satisfy the following modified QN equation       

kkkk vyH ρ=+1
     ……………..………………….….(16) 

where 0>kρ  is a scaling parameter .The BFGS may be written as: 
 

  …………(17) 

where  

2))()((61
11 −+−== ++ k

T
kkk

k
T
kk

k gvxfxf
yv

T
λ

   ………………………….(18) 

k
T
k

T
kk

k
T
k

kk
T
k

kk
T
k

k
T
kk

T
kkk

kk yv
vv

yv
yHy

Tyv
HyvvyHHH ⎥

⎦

⎤
⎢
⎣

⎡
++

+
−=+

1
1
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in fact the self-scaling update proposed by (Oren [8]) has some 
good characteristics, with a self –scaling parameter kγ , this class of 
updates can be written as 

k
T
k

T
kk

k
T
kkkkkk

kk
T
k

k
T
kkk

kk yv
vv

vvyHy
yHv
HyyH

HH +⎥
⎦

⎤
⎢
⎣

⎡
+−= −−

+ γφ )(1
   …………….(19 a) 

             with   
kk

T
k

kk

k
T
k

k

yHy
yH

yv
v

v −=  

(Oren and Luenberger [9]) suggest to use the self- adaptable values for 
the parameter kγ  

kk
T
k

k
T
k

kk
T
k

k
T
k

k yHy
yv

t
yHg

vg
t )1( −+=γ

     …………………………….……….(19 b) 
and usually the value t=0 is recommended for the updates in the convex 
class, i.e 

k
T
k

kk
T
k

k
k

kk
T
k

k
T
k

k yv
yHy

and
yHy

yv
y ===

γ
σ 1  (AL-Bayti 1991)   ……….(20) 

 
3.  Armijo line search procedure  

Armijo  provided in [10] a modification of the steepest descent 
method which automatically adapts step size λ  of the iterative scheme 

,.........3,2,1,)(1 =∇−=+ kxfxx kkkk λ , ………,  ………………………(21) 

his method and the corresponding convergence  result are as follows: 
 
Theorem (Armijo[10]) 

suppose that the objective function RRf n →:  is continues on Rn 
and bounded below on Rn. Assume that for a given nRx ∈0 , the function f 
is continuously differentiable on the bounded level set 

{ }00 ()(:)( xfxfxx ≤=α  and that there exists a unique point nRx ∈*  which 
minimize f. Suppose further that the equation 0)( =∇ xf  is satisfied for 

)( oo xx α∈  if and only if *xx =  and that f∇ is Lipschitz continues on )( 0xα , 
i.e, there exists a Lipschitz constant 0≠k , such that  

                                                         yxkyfxf −≤∇−∇ )()( , 

for every pair )(, 0xsyx ∈ . Let λ0 be an arbitrary assigned positive 
number,and consider the sequence 12/ −= mmm λλ , m=1,2,……….. . Then 
for the sequence of points { }∞=0kkx  
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defined by  
)(1 xfxx T

kkk ∇−=+ λ ,    k=0,1,    …………………….………………..(22) 
where  m  is the smallest positive integer for which  

2)(
2
1)())(( k

m
kkk

m
kk xfxfxfxf ∇−≤−∇− λλ  

it holds that *lim xx
k

=
∞→

        

Next, a high–level description of the Armijo,s algorithm, in which the 
corresponding parameters indicate x0 initial point, λ0 an arbitrary large 
initial step size, NIT (number of iterations) the maximum number of 
iterations required and ∈ the predetermined desired accuracy. 
 
Algorithm1 
     1-  Input {f : x0:λ0 ; NIT,ε} 

 2-  Set k=1 

3-  If k<NIT, replace k by k+1,set    λ=λ0,m=1 and go to next step: otherwise, go 

to step(8)     

4-  If  2)(
2
1)())(( kkkk xfxfxfxf ∇−≤−∇− λλ , go to step (6); otherwise, set 

m=m+1 and go to the  next step. 

5-  Set *
1

0 2/ −= mλλ and return to step (4). 

6-  Set )(1 kkk xfxx ∇−=+ λ  

7-  If ε≤∇ )( kxf go to step(8); otherwise go to step (3). 

8-  Output { })();(; kkk xfxfx ∇  

 
4.  A new self-scaling VM- update 

In this section a new self-scaling VM algorithm is proposed, with 
modified Armijo line search, and so we develop a Preconditioned CG- 
algorithm. This new approach finds the minimum of an n dimensional 
non quadratic function. Now let the  ng  is denoted as the gradient of the 
function f(xk). For simplicity fk and Gk denote f(xk) and )(2

kxf∇ , 
respectively. 

Using the Taylor expansion to the third-order terms  f  and gT can 
be written as respective  

          4
1111 )(

!3
1

!2
1

kkkk
T
kkk

T
k

T
kkk vovvTvvGvvgff +−+−= ++++
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         )()(
!2

1 4
111 kkkk

T
kkk

T
kk

T
kk

T
k vovvTvvGvvgvg ++−= +++

 

where nnn
k RT ××
+ ∈1

 is the tensor of f at 
1+kx . We obtain the following 

relation by canceling the terms which induce the tensor in above 
expressions 

         4
111 )(3)(6 kk

T
kkkkk

T
kkk

T
k vovggffyvvGv +++−+= +++

 

Then using a new approximation 
1+kB , we have, after putting 4

kvo (small 
value),   

kk
T
kkk

T
k yvvBv θ+=+1     ………………………(23) 

where 
          

k
T

kkkkk vggff )(3)(6 11 ++ ++−=θ  

equation (23) givens a class of modified secant condition in the form 

k
k

T
k

k
kk u

uv
yy

θ
+=−     ………………………….(24) 

where n
k Ru ∈   is any vector such that  0≠k

T
k uv . 

Now from (17),replacing (24) instead of yk then we get  

k
T
k

T
kk

k
T
k

k
kk

k
T
k

k
T
kk

T
k

k
k

kk yv
vv

yv

yHy

Tyv

HyvvyH
HH )1(1

−−−

+ ++
+

−=      …………..(25) 

And by Armijo line search with λk is the largest number in 
{ }.....,.........2/,2/, 2sss   such that  

k
T
kkkk dgdxff ηλλ −≥+− )(   Where  )1,0(∈η ,  and 0≠s  

Note 1  :In fact, we can use the generalized Armijo's line search λk is the 
largest number in { },......,,, 32 βββ ssss  such that  

k
T
kkkkk dgdxff ληλ 1)( −≥+−   where  )1,0(1 ∈η , )1,0(∈β , and 0≠s   

Note 2: we should choose a suitable step size at each  iteration so that the  
Armijo, type line search on θ  is then carried out until the acceptance 
condition  

dgjfdxf T
kkjmkkk η−≤+

≤≤−
)(max)(

)(max
     ………………………..(26) 

is met, where 
kgd θ−=  is the displace element along the steepest 

direction where 

100
1,

10
1,1),1,0(,10 =∈= θηη  
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5.  The Global convergence property of the new proposed 
algorithm   

   Let s be a positive parameter and let  xs=xk-sdk  where  

kkk gHd −=  

Armijo's rule for determining λ is the following evaluate )( sxg  at 

......................,.........
4
1,

2
1,1=s  

Stopping when 

)()
2

1()( ks xgsxg −≤   ……………………(27) 

if λ denotes the first s which satisfies (27), then xk+1 is given by 
 

 …………………………...(28) 
usually, the Euclidean norm is used in (27) and the sum of the 

squares of g,s components are reduced at each iteration. 
The problem (1), at the minimum when g(x)=0, the partial 

derivative respect to each of the unknown vanishes: 

∑
=

=
∂
∂n

i
i

j

i xfx
x
f

1
0)()(   ……………………………..(29) 

For   j=1,2,…………………,n 
Using matrix-vector notation (29) is written  as 0)()( =xgxj T . If 

j(x) is invertible the equation 0)()( =xgxj T  implies that any minimizer for 
(1)  satisfies  g(x)=0. 

 
6.  Outline of new self-scaling VM algorithm with Armijo line 

search  
Step (1): set the initial point x0,the scalar ε and  H0=I, β=1,k1=1 
Step (2): for k=1  set  111 gHd −=   where  )( 11 xfg ∇=  

Step (3): compute k
T
k gg  

Step(4): if ( 1≠k ) go to step (5) 
                       Β=λ 
                      go to step (6) 
Step(5): if (k=2) 

                        
βλ

β
=

= 2.0  

   goto step (6) 

kkkk gHxx λ−=+1
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step(6): compute kkkk dxx λ+=+1  where kλ  is obtained from Armijo line 
search procedure. 
 Step(7): if )5.0(1.0 11 kkkkkk dgdgff λλ −≤− ++  go to step (8). 

Otherwise set   
1+= kk  and go to step (4) 

   step(8): set   vk=xk+1-xk  and     yk=gk+1-gk 

  step (9): compute θk where 

            
k

k
T
k

k
k

k
T

kkkkk

y
yv

yy

vggff
θ

θ

+=

−+−= ++ )(3)(6 11

 

  step (10): compute Tk  from (20) 

                   
k

T
k

k
T
k

k yv
yHy

=τ  

  step(11): if )1..5.0(
k

kk OR
τ

ττ ≠≠  

then  

                  
1

1

=

=

k

k

τ
τ

φ
 

step(12): compute Hk+1 

                
k

T
k

T
kk

k
T
kkkkkk

kk
T
k

k
T
kkk

kk yv
vv

vvyHy
yHy
HyyH

HH τφ ++−=+ )(1    

where  
kk

T
k

kk

k
T
k

k
k yHy

yH
yv

v
v −=   

step (13): k
k

T
k

kkk
kkk d

yd
gHy

gHd 11
111

++
+++ +−=  

step(14): if   k=N or 11 ++≤ k
T
kk

T
k gggg   then go to step (2)  

else go to step (3) 
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7.  Numerical Results 
The following table, gives the comparison between the results of  

the new self-scaling VM algorithm with Armijo line search and standard 
BFGS algorithm. In the all cases the stopping criterion is 5

1 101×≤+kg . 
Also we run the program on a set of test functions with five versions of 
variables, that is  n=4,20,100,500  and  1000. 

The results are given in the table is specifically quoting the number 
of function evaluations NOF and the number of iterations NOI. 
Experimental results confirm that the new algorithm is superior to the 
standard BFGS algorithm .From the Table, taking the standard BFGS 
algorithm as 100 % NOI, and NOF respectively, there are about 47 % 
NOI and 55 % NOF improvement overall selected group of test functions.  

   

Comparative performance of the two algorithms (classical BFGS with cubic line 
search and new self-scaling VM with Armijo line search) 

Classical BFGS  New self-scaling VM Test function 
NOF (NOI) NOF (NOI) 

Powell(4) 22(71) 32(44) 
Powell(20) 40(117) 39(69) 
Powell(100) 71(197) 64(155) 
Powell(500) 50(148) 49(114) 
Powell(1000) 62(155) 137(329) 
Wood(4) 55(145) 24(46) 
Wood(20) 130(358) 49(114) 
Wood(100) 262(746) 105(278) 
Wood(500) 583() 148(371) 
Wood(1000) 692(1792) 234(422) 
Cubie(4) 19(59) 11(25) 
Cubie(20) 27(66) 24(73) 
Cubie(100) 70(167) 30(94) 
Cubie(500) 53(124) 31(100) 
Cubie(1000) 44(112) 28(88) 
Rosen (4) 35(94) 18(36) 
Rosen (20) 70(180) 34(89) 
Rosen (100) 139(353) 49(161) 
Rosen (500) 88(192) 66(214) 
Rosen (1000) 92(252) 64(208) 
Dixon (4) 11(21) 11(21) 
Dixon (20) 11(21) 30(56) 
Dixon (100) 11(21) 37(75) 
Dixon (500) 11(21) 38(77) 
Dixon (1000) 11(21) 39(7) 
Shallow (4) 8(26) 8(12) 
Shallow (20) 8(26) 8(12) 
Shallow (100) 8(26) 8(12) 
Shallow (500) 8(26) 8(12) 
Shallow (1000) 8(26) 8(12) 
Total  2699(7246) 1431(3326) 
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