ON y-REGULAR RINGS

ABDUL AALI J. MOHAMMAD & SANHAN M. SALIH

Department of Mathematics
College of Education
University of Mosul

Department of Mathematics
College of Science Education
University of Salahaddin -Erbil

Received 2006/10/3

Accepted 2006/6/21

المُلخَص

الهدف الرئيسي في هذا البحث هو تعريف ودراسة نمط جديد من الحلقات المنتظمة a سميت بالحلقات المنتظمة من النمط a اذا كان لكل a في a يوجد a وعدد صحيح موجب a بحيث ان a بحيث ان a

كذلك در سنا بعض الصفات الرئيسية لهذه الحلقات والتمثيل لعناصرها . اخيرا در سنا العلاقة بين الحلقات المنتظمة من النمط - γ و بعض الحلقات الاخرى

ABSTRACT

The main goal of this work is to introduce and study a new type of regular rings called γ -regular rings. That is, a ring R is said to be γ -regular if for every $a \in R$ there exists $b \in R$ and a positive integer $n \ne 1$ such that $a = ab^n a$.

We will study some basic properties of those rings including the representation of their elements.

Finally, we will study the relation between γ -regular rings and other rings.

1: Introduction:

We conclude that all rings are assumed to be associative with identity.

A ring R is said to be Von Neumann regular if for every $a \in R$, there exists $b \in R$ such that a=aba. The concept of regular rings was introduced by J. Von Neumann in 1936[13]. As a generalization of this concept McCoy[1] defined π -regular rings, that is, a ring R with every $a \in R$, there exists $b \in R$ and a positive integer n such that $a^n = a^n b a^n$. In the recent years regularity and π -regularity have been extensively studied by many authors (cf.[1], [10], [11], [12], [15]).

A ring R is said to be strongly regular if for every $a \in R$, there exists $b \in R$ $a = a^2b$. This concept has been defined some sixty years ago by R.F.Arens and I.Kaplansky [2], and was studied in recent years by many authors (cf. [3],[4],[9]). It should be noted that in a strongly regular ring R, $a = ba^2$ if and only if $a = a^2b$ [5]. Azumaya[3] in 1954 defined strongly π -regular rings, that is, a ring R with every $a \in R$, there exists $b \in R$ and a positive integer n such that $a^n = a^{n+1}b$.

In 1968 Ehrlich [6] defined unit regular rings, that is, a ring R with every $a \in R$, there exists a unit $u \in R$ such that a=aua.

: γ-Regular Rings:

In this section we introduce the definition of γ -regular rings and some basic properties of them.

Definition 2.1:

An element a of a ring R is said to be γ -regular if there exists b in R and a positive integer $n \neq 1$ such that $a = a b^n a$.

A ring R is said to be $\gamma\text{-regular}$ if every element of R is $\gamma\text{-regular}$ element.

Examples 2.2:

The following rings are γ-regular rings:

- $1-Z_3, Z_5, Z_{11}, Z_{15}.$
- $2-R_{2x2}(Z_2)$, the ring of 2x2 matrices over Z_2 .
- 3-Boolean rings.

Its clear that every γ -regular ring is regular ring, however the converse is not true in general, for example the rings (Q, +, .) of rational numbers, the rational(real) Hamilton Quaternion and a quadratic field are regulars but not γ -regulars because 2 is regular element in each of them but not γ -regular element.

Theorem 2.3:

Let R be a γ -regular ring and I be an ideal of R, then R/I is also γ -regular ring.

<u>Proof:</u> Let $a+1 \in R/I$, so $a \in R$. Since R is γ -regular ring then there exists $b \in R$ and a positive integer $n \ne 1$ such that $a = a b^n a$.

Hence a+I=a b^n $a+I=(a+I)(b^n+I)(a+I)=(a+I)(b+I)^n(a+I)$.

Therefore R/I is γ -regular ring.

Definition 2.4:

An ideal I of a ring R is said to be γ -regular if for every element $a \in I$ there exists $b \in I$ and a positive integer $n \ne 1$ such that $a = a b^n a$.

Definition 2.5: [7]

A ring R is said to be reduced, if R contains no non-zero nilpotent elements.

Lemma 2.6: [7]:

Every idempotent element in a reduced ring is central.

Proposition 2.7:

In a reduced γ -regular ring, every ideal is γ -regular.

<u>Proof:</u> Let I be any ideal of a reduced γ -regular ring R, and $a \in I$, then there exists $b \in R$ and a positive integer $n \ne 1$ such that $a = a b^n$ a. Let $e = ab^n$, then e is idempotent element and hence it is central.

Now let $y=ab^{n+1}$, so $y \in I$, then

$$ay^n a = a(ab^{n+1})^n a = a(ab^{n+1} \ ab^{n+1} \ ab^{n+1} \ ... \ ab^{n+1})a = a(ab^n b \ ab^{n+1} \ ab^{n+1} \ ... \ ab^{n+1})a$$

$$=a(b ab^{n+1} ab^{n+1} ... ab^{n+1})a = a(b ab^n b ab^{n+1} ... ab^{n+1})a$$

$$= a(b^2 ab^n ab^{n+1} \dots ab^{n+1})a = a(b^2 ab^{n+1} \dots ab^{n+1})a = \dots = \dots = \dots$$

= $a(b^{n-1} ab^{n+1})a = a(b^{n-1} ab^n b)a = a(b^n ab^n)a = ab^n ab^n a = ab^n a = a$. That is $a = ay^n a$ and a positive integer $n \ne 1$ Hence I is γ -regular ideal.

Theorem 2.8:

A homomorphic image of γ -regular ring is γ -regular ring.

Proof: Let $f: R \to R'$ be a homomorphism from R to R'. Let $y \in f(R)$. Then there exists $x \in R$ such that y = f(x). Since R is γ -regular ring, then there exists $b \in R$ and a positive integer $n \ne 1$ such that $x = xb^n x$.

Now $y=f(x)=f(x)b^nx)=f(x)f(b^n)f(x)= f(x)(f(b))^nf(x)=y(f(b))^ny$. Therefore (R) γ -regular ring.

Lemma 2.9:[10]

If R is a reduced ring, and if a is a non-zero element in R. Then $r(a)=r(a^2)$, and l(a)=r(a), where l(a) and r(a) are the left and right annihilators of a respectively.

Theorem 2.10:

Let R be a reduced ring. If R/r(a) is γ -regular ring for all $a \in R$, then R is γ -regular ring.

Proof: Suppose that R/r(a) is γ -regular ring, then for any $a+r(a) \in R/r(a)$, there exists $b+r(a) \in R/r(a)$ and a positive integer $n \ne 1$ such that $a+r(a) = (a+r(a))(b+r(a))^n (a+r(a)) = ab^n a+r(a)$. Then $a-ab^n a \in r(a)$. So $a(a-ab^n a)=0$.

That is a^2 (1- $b^n a$)=0. Then (1- $b^n a$) \in r(a^2)=r(a) [Lemma 2.9]. o a (1- $b^n a$)=0. Hence a= $ab^n a$. Therefore R is γ -regular ring.

Lemma 2.11:

If y is an element of a ring R such that a-ay^{α} a is γ -regular element, then a is regular element, where $1 \neq \alpha$ is a positive integer.

Proof: Suppose that a-ay $^{\alpha}$ a is γ -regular element, then there exists an element $b \in R$ and a positive integer $n \neq 1$ such that

$$a-ay^{\alpha}a=(a-ay^{\alpha}a)b^{\alpha}(a-ay^{\alpha}a).$$

Now $a-ay^{\alpha}a=(a-ay^{\alpha}a)(b^na-b^nay^{\alpha}a)=ab^na-ab^nay^{\alpha}a-ay^{\alpha}ab^na+ay^{\alpha}ab^nay^{\alpha}a$, then $a=ay^{\alpha}a+ab^na-ab^nay^{\alpha}a-ay^{\alpha}ab^na+ay^{\alpha}ab^nay^{\alpha}a$

$$= a(y^{\alpha} + b^{n} - b^{n}ay^{\alpha} - y^{\alpha}ab^{n} + y^{\alpha}ab^{n}ay^{\alpha})a = a z a.$$

Where $z=y^{\alpha}+b^{n}-b^{n}ay^{\alpha}-y^{\alpha}ab^{n}+y^{\alpha}ab^{n}ay^{\alpha}$. Therefore a is a regular lement.

Theorem 2.12:

Let R be a ring and let I be a γ -regular ideal such that R/I is γ -regular. Then R is regular ring.

<u>Proof:</u> Let $a \in R$. Then $a+I \in R/I$. Since R/I is γ -regular ring, then there exists $b+I \in R/I$ and a positive integer $n \ne 1$ such that $a+I=(a+I)(b+I)^n(a+I)$. Then $a+I=ab^na+I$. So $a-ab^na \in I$. Hence a is regular element [Lemma 2.11]. herefore R is regular ring.

Definition 2.13:

A ring R is said to be unit γ -regular if for every a in R there exists a unit u in R and a positive integer $n \neq 1$ such that $a = a u^n a$.

Definition 2.14:[12]

A ring R is said to be a semi-commutative ring if every idempotent element in R is central.

Hence every reduced ring is semi-commutative ring.[12]

Theorem 2.15:

Let R be a semi-commutative γ-regular ring, then R is unit regular ring.

<u>Proof:</u> Let $x \in \mathbb{R}$, then there exists $y \in \mathbb{R}$ and a positive integer $n \neq 1$ such that $x = xy^n x$. Then xy^n and $y^n x$ are idempotent elements.

Hence
$$xy^n = x(y^n x)y^n = (xy^n)(y^n x) = y^n(xy^n)x = y^n x$$
. Let $v = xy^n + xy^{2n} - 1$ and $u = x + xy^n - 1$. Since $xy^n = y^n x$ and $x = xy^n x$, we have $uy = (x + xy^n - 1)(xy^n + xy^{2n} - 1)$

$$uv = (x + xy^n - 1)(xy^n + xy^{2n} - 1)$$

$$= xxy^{n} + xxy^{2n} - x + xy^{n}xy^{n} + xy^{n}xy^{2n} - xy^{n} - xy^{n} - xy^{2n} + 1$$

$$= xy^{n}x + xy^{n}xy^{n} - x + xy^{n}xy^{n} + xy^{n}xy^{n}y^{n} - xy^{n} - xy^{n} - xy^{n}y^{n} + 1$$

$$= x + xy^{n} - x + xy^{n} + xy^{n}y^{n} - xy^{n} - xy^{n} - xy^{n}y^{n} + 1 = 1.$$

Similarly vu=1 and $xvx=x(xy^n+xy^{2n}-1)x=xxy^nx+xxy^ny^nx-x^2=x^2+x-x^2=x$. herefore R is unit regular ring.

Proposition 2.16:

If R is a ring such that for each nonzero element $a \in R$ there is a unique $b \in R$ such that $a^n = a^n b a^n$, a positive integer $n \ne 1$, then b is γ -regular element.

<u>Proof:</u> Since $a^n=a^nba^n$ for each $a \in \mathbb{R}$, then R has no divisor of zero. Then cancellation law holds.

ow $1=ba^n \Rightarrow b=ba^nb$. Therefore b is γ -regular element.

Proposition 2.17:

If a ring R is γ -regular, then r(a) is direct summand for every a in R.

<u>Proof:</u> Since R is γ -regular, then for each $a \in R$ there exists $b \in R$ and a positive integer $n \ne 1$ such that $a = ab^n a$. Then $a(1-b^n a) = 0$.

So 1- $b^n a \in r(a)$. Hence 1- $d \in r(a)$, where $d=b^n a$ and ad=a.

Now 1=d+(1-d), then R=dR+r(a). We shall prove that $dR \cap r(a)=0$.

Let $x \in dR \cap r(a)$, then $x \in dR$ and ax = 0. So x = dc for some $c \in R$.

Now ax=adc=0, then ac=0.So b^n ac=0.That is dc=0. Hence x=0.

Now $y=u^{-1}ay=a(u^{-1}y) \in aR$ (Because a=e+u and R is semi commutative, en $a=u^{-1}e+1$ and $au^{-1}=eu^{-1}+1=u^{-1}e+1$. So $au^{-1}=u^{-1}a$). Hence $(1-e)R\subseteq aR$.

4: γ-Regular Rings with condition (*):

One of the most important rings was introduced by Kandasamy [14] is quasi-commutative rings that is a ring R with $ab=b^m a$ for every pair $a,b \in R$ and for some positive integer m.

Here we restrict the quasi-commutative ring to the condition that has a main role in our proofs and to discuss the connection between γ -regular rings and some other rings. The condition is

(*): Let R be a ring such that for every $1 \neq a \in R$ and $b \in R$, there exists a positive integer m > 1 such that $ab=b^ma$.

The reason for 1 that not satisfies condition (*) is $1 \cdot b = b^m \cdot 1$, this equation is true if m=1, also the identity element $1 \in \mathbb{R}$ is γ -regular element, strongly γ -regular element.

In this section we discus the connection between γ -regular ring with the other rings which they are commutative, reduced or satisfies condition (*).

Proposition 4.1:

Every reduced γ -regular ring is strongly regular ring.

Proof: Since reduced γ -regular ring implies reduced regular ring, then t's trongly regular ring, [10;Theorem1.3.7].

But the converse of this theorem is not true in general. For example the ring (Q, +, .) of rational number is reduced strongly regular but not γ -regular.

Corollary 4.2:

Let R be a semi-commutative γ -regular ring. Then R is strongly regular ring.

roof: Follows from [12; Proposition 1.2.5].

Corollary 4.3:

If R is duo γ -regular ring, then R is strongly regular ring. **roof:** Follows from [12; Proposition 1.2.5].

Theorem 4.4:

Let R be a ring satisfies condition (*), then the following are equivalent:

- 1- R is γ -regular ring.
- 2- R is strongly regular ring.

Proof: 1 \Rightarrow 2: For every $a \in R$ there exists $b \in R$ and a positive integer $n \ne 1$ such that $a=ab^na$. Since R satisfies condition (*), then $ab^n=(b^n)^ra=b^{nr}a$ for some positive integer r > 1.

Now $a=ab^na=b^{nr}a.a=b^{nr}a^2=ca^2$, where $c=b^{nr}\in R$, and if $b^na=a^mb^n$ for some positive integer m>1, then $a=aa^mb^n=a^2a^{m-1}b^n=a^2d$, where $d=a^{m-1}b^n\in R$. Therefore R is strongly regular ring.

2⇒1: For every $a \in R$ there exists $b \in R$ such that $a=a^2b$. Now $a=a.ab=ab^na$ for some positive integer n > 1 (R satisfies condition (*)). Then R is regular ring.

From the proof of above theorem also we can shows that $1\Rightarrow 2$ even when R is quasi-commutative ring, as in the following corollary:

Corollary 4.5:

Let R be a quasi-commutative γ -regular ring, then R is strongly regular ring.

Theorem 4.6:

Let R be a reduced ring satisfies condition (*). Then the following are equivalent:

- 1- R is γ-regular ring.
- 2- R is regular ring.

<u>Proof:</u> 1 \Rightarrow 2: Clearly from the definition of γ -regular ring.

2 \Rightarrow 1: Since R is reduced and regular then R is strongly regular ring, and y [Theorem 4.4] R is γ-regular ring.

Theorem 4.7:

Let R be a ring satisfies condition (*). Then R is γ -regular ring if and only if every principal ideal of R is generated by an idempotent.

<u>Proof:</u> If R is γ -regular ring, then its clearly that every principal right ideal of R is generated by an idempotent, [13].

Conversely: If aR=eR, where e is an idempotent element. Then a=er for some r in R. Now a=er= e^2 r=ea. Let e=ab for some b in R, since R satisfies condition (*), then e=bⁿa for some positive integer n > 1.

Now $a=ea=b^na.a=b^na^2$. Similarly for Ra=Re. Then R is strongly regular. herefore R is γ -regular ring, [Theorem 4.4].

Proposition 4.8:

Let R be a ring satisfies condition (*). Then the following are equivalent:

- 1- R is γ -regular ring.
- 2- Every principal ideal is a direct summand.

Proof: $1 \Rightarrow 2$: Clearly, from [4; Proposition 1.1.3].

2⇒1: Let R=aR⊕K for some ideal K of R, it's clear that $a \ne 1$ because if a=1 then $R = 1 \cdot R \oplus \{0\}$, the proof being trivial. Since $1 \in R$ then 1 = ar + k for some $r \in R$ and $k \in K$. Since R satisfies condition (*) then $ar = r^n a$; and a positive integer $n \ne 1$.

Then $1=r^na+k$ imply a=a r^na+ak and $ak \in aR \cap K=0$. So a=a r^na . Therefore R s γ -regular ring.

Remark 4.9:

If we add the condition that R satisfies condition (*) in [Corollary 3.3], then the converse holds.

Theorem 4.10:

If R is a reduced ring satisfies condition (*). Then R is γ -regular ring if and only if for every element $a \in R$, a=eu, where e is an idempotent and u is unit.

<u>Proof:</u> If R is reduced γ -regular ring, then a=eu, where e is an idempotent and u is unit [Corollary 3.3].

Conversely: Let a=ue, where e is idempotent and u is unit, then e=ra where r is the inverse of u.

Now ae=ara, but ae=ue.e=ue²=a, then a=ara which is regular. Therefore, y [Theorem 4.6] R is γ -regular ring.

Proposition 4.11:

Let R be a ring satisfies condition (*), then R is γ -regular if and only if r(a) is direct summand for every a in R.

<u>Proof:</u> If R is γ -regular, then r(a) is direct summand for every a in R [Proposition 2.17].

Conversely: Let R=aR+r(a). In particular 1=ar+d, where $r \in R$ and $d \in r(a)$, then $a=a^2r+ad$ imply $a=a^2r$ and hence $a=a^2r=aar=ar^na$ for some ositive integer n>1. Therefore R is γ -regular ring.

Theorem 4.12:

Let R be a ring satisfies condition (*). Then the following are equivalent:

1- R is γ-regular ring.

2- For every right ideal I and left ideal J in R, IJ=I∩J.

<u>Proof:</u> 1 \Rightarrow 2: Since every γ-regular is regular, then 2 holds by [10; Theorem 1.1.7].

2⇒1: Let x in R, since x is in $xR \cap Rx = xRx$, there is an element y in R such that xyx = x. Since R satisfies condition (*), then $x = y^n x^2$ for some positive integer n > 1. So R is strongly regular. By [Theorem 4.4] R is -regular ring.

Theorem 4.13:

Let R be a reduced ring satisfies condition (*). If every ideal of R is a maximal right ideal, then R is γ -regular ring.

Proof: Since R is reduced and every prime ideal is maximal right ideal, then R is regular ring [8], and since R satisfies condition (*) nd s reduced, then by [Theorem 4.6] R is γ-regular ring.

Corollary 4.14:

Let R be a reduced ring satisfies condition (*). Then R is a γ -regular ring if R/P is γ -regular ring for every prime ideal P in R.

Proof: Let P be a prime ideal in R, then R/P is a division ring, because R/P is a γ -regular and has no nonzero divisor. Therefore P is maximal right(left)ideal in R and Ris a γ -regular ring[Theorem4.13].

Theorem 4.15:

Let R be a ring satisfies condition (*). Then R is γ -regular ring if and only if $I = \sqrt{I}$ for each ideal I in R.

<u>Proof:</u> Suppose that R is γ -regular ring, its clearly that $I \subseteq \sqrt{I}$ for each ideal I in R. Now let $b \in \sqrt{I}$ then $b^n \in I$ for some $n \in Z^+$, then there exists $c \in R$ and $1 \neq r \in Z^+$ such that $b^n = b^n c^r b^n$. Since R satisfies condition (*), then $b^n c^r = (c^r)^m b^n$ for some positive integer m > 1. That is $b^n = c^{mr} b^{2n}$. So b^{n-1} can be

written in the form $b^{n-1} = c^{mr}b^{2(n-1)} = c^{mr}b^n b^{n-2} \in I$, and we repeat this n-times we get $b \in I$, then $\sqrt{I} \subseteq I$. Hence $I = \sqrt{I}$.

Conversely: Let $I = \sqrt{I}$ for each ideal I in R. Take $I = a^2 R = \sqrt{a^2 R}$ then $a^2 \in a^2 R \Rightarrow a \in \sqrt{a^2 R} = a^2 R \Rightarrow a \in a^2 R$. Hence R is strongly regular ring. herefore by [Theorem 4.4] R is γ -regular ring.

Corollary 4.16:

Let R be a ring satisfies condition (*). Then R is γ -regular ring if and only if each ideal I in R is semi-prime.

Theorem 4.17:

If R is a reduced ring satisfies condition (*) and every maximal ideal of R is a right annihilator, then R is γ -regular ring.

Proof: Let $a \in \mathbb{R}$, we shall prove that $a\mathbb{R}+r(a)=\mathbb{R}$. If not, there exists a maximal right ideal M containing $a\mathbb{R}+r(a)$. If M=r(b) for some $0 \neq b \in \mathbb{R}$, we have $b \in I(a\mathbb{R}+r(a)) \subseteq I(a)=r(a)[10]$; Theorem 1.3.10], which implies $b \in M=r(b)$, then $b^2=0$ and b=0, a contradiction. Therefore $a\mathbb{R}+r(a)=\mathbb{R}$. In particular, ac+d=1, with $c \in \mathbb{R}$ and $d \in r(a)$, then $a^2c+ad=a$ implies $a^2c=a$, then \mathbb{R} is strongly regular ring.

Therefore R is γ -regular ring [Theorem4.4].

Theorem 4.18:

Let R is a reduced ring satisfies condition (*) such that every principal right ideal of R is a right annihilator, then R is γ-regular ring.

Proof: Since R is reduced and every principal right ideal of R is a right annihilator, then by [10; Theorem 1..3.10] R is strongly regular ring, and since R satisfies condition (*) then by [Theorem 4.4] R is γ-regular ring

5:Strongly γ-Regular Rings:

In this section we introduce another new type of rings that [Proposition 4.1], [Corollary 4.2] and [Corollary 4.3] leads us to define it and we shall call those rings as a strongly γ -regular rings.

Definition 5.1:

Let R be any ring. Then R is called rig strongly γ -regular ring if for every element $a \in R$, there exists $b \in R$ and a positive integer $n \ne 1$ such that $a=a^2b^n$.

Hence, in a strongly γ -regular ring R, $a=a^2b^n$ if and only if $a=b^na^2$,[5].

In a commutative ring, the equation $ab^na=a$ may be written as $a^2b^n=a$. That is, a commutative ring R is γ -regular if and only if it is strongly γ -regular. We see that every strongly γ -regular ring is strongly regular ring, however the converse is not true in general, for examples the rings (Q,+,.) of rational numbers, the rational(real) Hamilton Quaternion and a quadratic field are strongly regulars but not strongly γ -regulars.

Theorem 5.2:

Let R be a strongly γ -regular ring and I be an ideal of R. Then R/I is also strongly γ -regular ring.

Proof: Let $a+I \in R/I$, so $a \in R$. Since R is strongly γ -regular ring then there exists $b \in R$ and a positive integer $n \ne 1$ such that $a = a^2 b^n$.

Hence $a+I=a^2b^n+I=(a^2+I)(b^n+I)=(a+I)^2(b+I)^n$. Therefore R/I is strongly -regular ring.

Theorem 5.3:

A homomorphic image of strongly γ -regular ring is strongly γ -regular ring.

Proof: The proof is similar to the proof of Theorem [2.8].

Here we want to find the condition for strongly regular ring to be strongly γ -regular ring.

Theorem 5.4:

Let R be a ring satisfies condition (*), then the following are equivalent:

- 1- R is strongly γ -regular ring.
- 2- R is strongly regular ring.

<u>Proof:</u> $1\Rightarrow 2$: Clearly from the definition of strongly γ -regular ring.

2⇒1: Since R is strongly regular ring, then for every a ∈ R, there exists b ∈ R such that $a=a^2b$.

Now since R satisfies condition (*), then for every $a,b \in R$, $ab=b^na$ for some positive integer n > 1. Then $a=ab^na$, and since R is strongly regular then R is reduced, implies $a=a^2b^n$. Therefore R is strongly γ -regular ring.

Theorem 5.5:

If R is a regular ring satisfies condition (*), then R is strongly γ regular ring.

Proof: Since R is regular ring, then for every $a \in R$, there exists $b \in R$ such that a=aba. Since R satisfies condition (*), then $ab=b^na$ with a positive integer $n \ne 1$ for every $a,b \in R$. Then $a=a^2b^n$. Therefore R is strongly γ -regular ring.

Here we lead to discus the connection between γ -regular rings and strongly γ -regular rings.

Theorem 5.6: Every strongly γ -regular ring is γ -regular ring.

Proof: Since R is strongly γ -regular ring, then for every $a \in R$ there exists $b \in R$ and a positive integer $n \ne 1$ such that $a = a^2b^n = b^na^2$.

Now if $a=b^na^2$, then $ab^n=(b^na^2)b^n=b^n(a^2b^n)=b^na$. This implies $ab^na=c^na^2=a$, then $a=ab^na$. Therefore R is γ -regular ring.

The converse of this theorem is not true in general. For example the ring $R_{2x2}(Z_2)$ of 2x2 matrices over the ring Z_2 is γ -regular ring but not strongly γ -regular ring because the element $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ is γ -regular element but not strongly γ -regular element.

Theorem 5.7:

Let R be a ring. Then R is strongly γ -regular if and only if R is reduced γ -regular.

<u>Proof:</u> Suppose that R is reduced γ -regular, then for every $a \in R$ there exists $b \in R$ and a positive integer $n \ne 1$ such that $a=ab^na$.

Now $(a-a^2b^n)^2 = (a-a^2b^n)(a-a^2b^n) = a^2-a^3b^n-a^2b^na+a^2b^na^2b^n = a^2-a^3b^n-a.ab^na+a.ab^na.ab^n = a^2-a^3b^n-a.a+a.a.ab^n = a^2-a^3b^n-a^2+a^3b^n=0$. Since R is reduced then $a-a^2b^n=0$, and then $a=a^2b^n$. Similarly $(a-b^na^2)^2=0$ which implies $a=b^na^2$. Therefore R is strongly γ -regular.

Conversely: Suppose that R is strongly γ -regular ring, then by [Theorem 5.6] R is γ -regular ring. To prove that R is a reduced ring, suppose that there exists a positive integer n, such that $c^n=0$ for some $c \in R$. Sine $c=c^2d^m$ for sum positive integer $m \ne 1$ gives $0=c^nd^m=c^{n-1}$ and $0=c^{n-1}d^m=c^{n-2}$ and so on c=0, then R is a reduced ring. Therefore R is a reduced γ -regular ring.

Corollary 5.8:

If R is a strongly γ -regular ring, then R is a unit regular ring.

Proof: Since every strongly γ -regular is reduced γ -regular [Theorem 5.7], and since every reduced ring is semi-commutative ring, then by [Theorem 2.15] R is a unit regular ring.

Corollary 5.9:

If a ring R is strongly γ -regular, then a^n is a unit γ -regular element for each $a \in R$ and positive integer n > 1.

Proof: Let R be a strongly γ -regular, then R is γ -regular and reduced [Theorem 5.7], and hence R is semi-commutative ring. Therefore by [Theorem 3.1] a^n is a unit γ -regular element.

Theorem 5.10:

Let R be a ring. If R is semi-commutative γ -regular ring, then R/N is strongly γ -regular ring.

Proof: since R is γ -regular then for each $a \in R$, there exists $b \in R$ and a positive integer $m \ne 1$ such that $a = ab^m a$. Let $e = ab^m$, then e is idempotent and hence central, then a = ae = ea.

Now a(1-e)=0 implies $(a(1-e))^n=0$, this means that $a(1-e)\in N$, so a+N=ae+NThus $a+N=aab^m+N=a^2b^m+N$, yielding $a+N=(a^2+N)(b^m+N)$. Therefore R/N is strongly γ -regular ring.

Lemma 5.11:

Let R be a strongly γ-regular ring. Then R is semi-commutative ring.

Proof: From [Theorem 5.7].

Proposition 5.12:

Let R be a semi-commutative γ -regular ring, then R is strongly γ -regular ring.

<u>Proof:</u> Let R be a γ -regular ring, and let a be a non-zero element in R, then there exists b in R and a positive integer $n \neq 1$ such that $a = ab^n a$.

Let $e = ab^n$, then e is an idempotent element, and hence e is central (Since R is semi-commutative ring). So $a = ea = ae = a^2b^n$, and if $e=b^na$ then e is also an idempotent element, and hence e is central. So $a=ae=ea=b^na^2$. Therefore R is a strongly γ -regular ring.

Corollary 5.13:

Let R be a duo γ-regular ring, then R is strongly γ-regular ring.

Proof: Since R is duo ring, then every idempotent element is central

[18;Lemma1.1.9]. Hence R is semi-commutative ring. Also R is a γ-regular ring, then by [Proposition 5.12], R is strongly γ-regular ring.

From [Theorem 2.10] we conclude the following:

Theorem 5.14:

Let R be a reduced ring. If R/r(a) is γ -regular ring for all $a \in R$, then R is strongly γ -regular ring.

Proof: Suppose that R/r(a) is γ -regular ring, then for any $a+r(a) \in R/r(a)$, there exists $b+r(a) \in R/r(a)$ and a positive integer $n \ne 1$ such that $a+r(a) = (a+r(a))(b+r(a))^n(a+r(a)) = ab^na+r(a)$. Then $a-ab^na \in r(a) \Rightarrow a(a-ab^na)=0 \Rightarrow a^2(1-b^na)=0$.

Then $(1-b^n a) \in r(a^2) = r(a) = l(a)([4:Lemma 1.3.6] and [4:Lemma 1.3.4]) \Rightarrow$ $(1-b^n a)a = 0 \Rightarrow a = b^n a^2, \text{ and from } (1-b^n a)a = 0 \Rightarrow (1-b^n a) \in l(a) = r(a)[Lemma 1.2.13],$ then $a-ab^n a = 0 \Rightarrow (1-ab^n)a = 0 \Rightarrow (1-ab^n) \in l(a) = r(a) \Rightarrow a(1-ab^n) = 0$ then $a=a^2b^n$.

Theorem 5.15:

Let R be a strongly π -regular ring. Then a^n is strongly γ -regular elements for every $a \in R$ and $n \in Z^+$.

<u>Proof:</u> Let R be a strongly π -regular ring, then for every $a \in R$ there exists $b \in R$ and $n \in Z^+$ such that $a^n = a^{2n} b^n$.

Hence a^n is strongly γ -regular element.

Therefore R is strongly γ-regular ring.

REFERENCES

- [1] Alkouri M.R.M., On π -Regular Rings, M.Sc. Thesis, Mosul University, (1996).
- [2] Arens R.F. and Kaplansky I., Topological Representation of Algebras, Trans Amer. Math. Soc. 63 (1998), 457-481.
- [3] Azumaya G. , Strongly π -Regular Rings, J. Fac. Sci. Hokkaido Univ. Vol. 13(1954), 34-39.
- [4] Chiba K. and Tominaga H., On Strongly Regular Rings, Proc. Japan Acad., Vol. 49(1973), 435-437.
- [5] Drazen M.P., Rings with Central Idempotent or Nillpotent elements, Proc. Edinburgh Math. Soc. 9 (1958), 157-165.
- [6] Ehrlich G., Unit Regular Rings, Portugal. Math. Vol. 27(1968), 209-212.
- [7] Forythe A. and McCoy N.H., On The Commutativity of Certain Rings, Bull. Amer. Math. Soc. Vol. 52(1946), 523-526.
- [8] L. T. Y., A First Course in Noncommutative Rings, Springer Verlag, New York, Inc., (1991).
- [9] Luh J., A note on strongly regular rings, Proc. Japan Acad., Vol. 40(1964), 74-75.
- [10] Mahmood A.S., On Von Neumann Regular Rings, M. Sc. Thesis, Mosul University (1990).
- [11] Naoum A.G. and Kider J.R., Commutative π -Regular Rings, Iraq J. Sci., Vol. 35, No. 4 (1994), 1169 1184.
- [12] Naoum F.S., On π -Regular Rings, Ph. D. Thesis, Mosul University, (2004).
- [13] Neumann J.V., Regular Rings, Proc. Nat. Acad. Sci. U. S. A. Vol. 22(1936), 707-713.
- [14] Vasantha Kandasamy W.B., On Quasi-Commutative Rings, Aribb. J. Math. Comput. Sci. Vol. 5, No. 1&2(1995), 22-24.
- [15] Wong E.T., Regular Rings and Integral Extension of a Regular Rings, Proc. Amer. Math. Soc. Vol. 11, No. 2(1972), 313-315.