On G.P.P-Rings

Manal.A. Abd
University of Mosul
College of Comp. and Math Science
Dept. of Mathematics
Mosul, Iraq

Received 2006/7/17

Accepted 2006/4/26

الخلاصة:

في هذا البحث ندرس الحلقات من النمط- P.P المعممة. لقد برهنا أن الحلقات من $a \in R$ لكل $r(a^n) \subseteq r(a)$ إذا كان P.P إذا كان $r(a^n) \subseteq r(a)$ لكل $r(a^n) \subseteq r(a)$ المعممة تكون حلقة ولكل عدد صحيح موجب r(a) كما بينا ان الحلقة المختزلة من النمط r(a) المعممة تكون حلقة منتظمة قوية من النمط r(a) ، اذا كان كل عنصر ليس من قواسم الصفر له معكوس .

Abstract:

In this work we introduce the notion of G.P.P – rings and some of it is basic properties , we prove that if R is a right G.P.P – ring , then R is P.P– ring if $r(a^n) \subseteq r(a)$ for every $a \in R$ and a positive integer n .We also consider that a reduced G.P.P – Ring with every non – zero divisor has inverse is strongly π – Regular .

1- Introduction:

Throughout this paper, R will denote an associative ring with identity, and all modules are unitary R- module. Recall that;

1) R is called reduced if R has non-zero nilpotent elements[5]. 2) R is right (left) duo if every right(left) ideal of R is an ideal of R. 3) R is strongly

 π -regular if for every $a \in R$, There exists $b \in R$ and a positive integer n such that $a = a^{2n}b$ [4]; 4) A right R-module M is called general right principally injective (briefly right GP-injective) if for any $0 \neq a \in R$ there exist a positive integer n, such that $a^n \neq 0$. and any right R-homomorphism of a^nR into M extends to one of R into M. 5) for any element a in R we define a right annihilator of a by $r(a) = \{x \in R : ax = 0\}$ and left annihilator of a, I(a) is similarly defined.

2- Basic Properties:

In this section we introduce the notion of G.P.P- rings, we give some of it is basic properties. Following [2] A ring R is said to be right (left) P.P - ring if for every $a \in R$, there exist $b \in R$ such that a = ab and r(a)=r(b) (a = ba, l(a)=l(b)).

Definition 2-1:

A ring R is said to be right G.P.P – ring if for every $a \in R$ there exist $e \in R$ and a positive integer n such that $a^n = a^n e$ and $r(a^n) = r(e)$. Clearly every P.P – ring is an G P.P – ring, however The converse is not true, we now consider a necessary and sufficent condition for G P.P – ring to be an P.P – ring.

Lemma 2-2:-

Let R be a right GP.P. ring and $r(a^n) \subseteq r(a)$ for every $a \in R$ then R is P.P – ring.

Proof: Assume that R is GP.P. ring , then $a^n = a^n e$ and $r(a^n) = r(e)$. Implies that $a^n(1-e) = 0$. and hence $1-e \in r(a^n) \subseteq r(a)$. There fore $(1-e) \in r(a)$ where a = ae. and $r(e) = r(a^n) \subseteq r(a)$ Thus a = ae and r(a) = r(e).

Throrem 2-3:-

R is G.P.P-ring if and only if for all $a \in R$, $r(a^n)$ is direct summand.

Proof:

Assum that $r(a^n)$ is direct summand, then there exists a right ideal I such that $r(a^n) + I = R$. In particular, d + b = 1, for some $d \in r(a^n)$ and $b \in I$ $a^n \cdot 1 = a^n (d + b) = a^n d + a^n b = 0 + a^n b = a^n b$ Implies that $a^n b = a^n$. Now, we must prove that $r(a^n) = r(b)$. Let $x \in r(b)$, then bx = 0, and

 a^n bx = 0. So a^n x =0 and x \in r(a^n). Hence r(b) \subseteq r(bⁿ) Now Let y \in r(a^n), then a^n y = 0 and a^n by=0. Thus by \in r(a^n). but by \in I implies that by \in r(a^n) \cap I = 0, then y \in r(b) and r(a^n) \subseteq r(b). Therefore r(a^n)=r(b).

Conversely:

Assume that R is right G. P.P – ring ,then for every $a \in R$ there exists $b \in R$ and a positive integer n such that $a^n = a^n b$ and $r(a^n) = r(b)$, Since $a^n(1-b)=0$, then $(1-b)\in r(a^n)$. So 1=b+(1-b), hence R=b $R+r(a^n)$. Let $x \in b$ $R \cap r(a^n)$ implies that x=by for some $y \in R$ and $a^n x = 0$, so $a^n by = 0 = a^n y$. Hence $y \in r(a^n) = r(b)$ and by = 0 = x. Thus b $R \cap r(a^n) = 0$. Therefore $r(a^n)$ is directed summand.

Lemma 2-4:[3]

If R is a duo ring, then every idempotent element in R is central.

Theorem 2.5:

Let R be a duo G.P.P- ring and let J_1, J_2 be ideals in R. Then $r(J_1)+r(J_2)$ generated by a central idempotent element.

Proof: Let R be a duo G.P.P – ring and let J_1, J_2 be two ideals in R. Then $r(J_1)=e_1R$ and $r(J_2)=e_2R$ where e_1,e_2 are idempotent elements. Since R is duo ring then by Lemma 2 – 4 e_1 , e_2 are central idempotents. Also $r(J_1)+r(J_2)=e_1$ R+ e_2 R = e_1 R + e_2 e_1 R + e_2 (1- e_1)R. And e_1 R + e_2 R \subseteq e_1 R + e_2 (1- e_1)R \subset e_1 R + e_2 R = e_1 R + e_2 (1- e_1)R, so $r(J_1)+r(J_2)=e_1$ R + e_2 (1- e_1)R. Let $e_3=e_2(1-e_1)$, we prove that e_3 is idempotent element

$$e_{3}^{2} = e_{2} (1-e_{1}) e_{2} (1-e_{1})$$

$$= (e_{2}-e_{2} e_{1})(e_{2}-e_{2} e_{1})$$

$$= e_{2}^{2} - e_{2}^{2} e_{1} - e_{2} e_{1} e_{2} + e_{2} e_{1} e_{2} e_{1}$$

$$= e_{2}^{2} - e_{2}^{2} e_{1} - e_{2}^{2} e_{1} + e_{2}^{2} e_{1}^{2}$$

$$= e_{2} - e_{2} e_{1} \text{ (since } e_{1}, e_{2} \text{ are idempotent elements)}$$

$$= e_{2} (1-e_{1})$$

$$= e_{3}$$

Hence e_3 is idempotent element. Since R is duo ring, then by Lemma 2-4, e_3 is central idempotent element. Now $e_1e_3=e_1$ (e_2 (1- e_1)).

 $=e_1e_2(1-e_1)=e_1e_2-e_1e_2e_1=e_1e_2-e_1e_2=0$ (since e_1 is idempotent) Similarly $e_3e_1=0$.

Now let $x \in (e_1+e_3)R$ then $x=(e_1+e_3)r$; $r \in R$

Thus $x = e_1 r + e_3 r \in e_1 R + e_3 R$ and $(e_1 + e_3) R \subseteq e_1 R + e_3 R$ Also let $y \in e_1 R + e_3 R$. Then $y = e_1 r_1 + e_3 r_3$ for some $r_1, r_3 \in R$ $(e_1 + e_3) y = (e_1 + e_3) (e_1 r_1 + e_3 r_3)$ $= e_1^2 r_1 + e_1 e_3 r_3 + e_3 e_1 r_1 + e_3 e_3 r_3$ $= e_1 r_1 + 0 + 0 + e_3 r_3$ $= e_1 r_1 + e_3 r_3 = y$ implies $y \in (e_1 + e_3) R$

Thus $e_1R + e_3R = (e_1 + e_3)R$

That is $r(J_1)+r(J_2)=(e_1+e_3)R$, when (e_1+e_3) is central idempotent element.

3-The connection between G. P.P. – Rings and other rings:

Theorem 3-1:-

Let R be a reduced G P.P. - ring with every non-zero divisor has inverse. Then R is strongly π - Regular.

<u>Proof:</u> we must prove $a^n R \cap e R = 0$ for all $a \in R$. Since R is G. P.Pring, then $r(a^n) = r(e)$ where e is central idempotent element. Let $x \in a^n R \cap e R$ implies that $x = a^n r$, and x = e r' for some $r, r' \in R$.

Now, See that x=e r'=e. e r'=e x. Since $e \in R = r(a^n)$ then $a^n e = e a^n = 0$. Also $e x = e a^n r = 0$, $x = a^n r$, then x = e x = 0. Thus $a^n R \cap e R = 0$.

Now we must prove that (a"+e) is non-zero divisor.

Let $(a^n + e) y = 0$ Implies that $a^n y = -e y$. That is $a^n y = -e y \in a^n R \cap e R$. Since $a^n R \cap e R = 0$.

Then $a^ny = e \ y = 0$ and we have $a^ny = 0$. That is $y \in r(a^n) = e R$. There exists $r_1 \in R$ such that $y = e r_1$, also 0 = e y = e. $e r_1 = e^2 r_1 = e r_1 = y$ (e is idempotent), since $(a^n + e)$ is a non-zero divisor.

Let x be the inverse of $(a^n + e)$. Then we have $(a^n + e) x = 1$. implies that $a^n (a^n + e) x = a^n$ implies $(a^{2n} + a^n e) x = a^n$.

Since $a^n e = 0$, then $a^{2n} x = a^n$. Therefore R is strongly π - regular ring.

Theorem 3-2:

Let R be a G.P.P.-ring with $r(a^n) \subseteq r(a)$ for any $a \in R$ and a positive integer n. Then a^n R is idempotent ideal if R/ a^n R is GP-injective ring.

Proof:

Since R be G.P.P.-ring, then for all $a \in R$ there exists $b \in R$ and a positive integer n, such that $a^n = a^n b$ and $r(a^n) = r(b)$.

Now define a right R-homomorphism f: $a^n R \rightarrow R/a^n R$ by $f(a^n x) = bx + a^n R$ for all $x \in R$. Then, f is well-defined, indeed, let $a^n x_1 = a^n x_2$ for any two elements x_1, x_2 in R, then $a^n x_1 - a^n x_2 = 0$. So $a^n (x_1 - x_2) = 0$.

Thus $(x_1-x_2)\in r(a^n)=r(b)$ then $x_1-x_2\in r(b)$ implies $b(x_1-x_2)=0$. Hence $bx_1=bx_2$ therefore $f(a^nx_1)=bx_1+a^nR=bx_2+a^nR=f(a^nx_2)$ Now define g: $R/a^nR\to R/(a^nR)^2$ by $g(y+a^nR)=a^ny+(a^nR)^2$ for all $y\in R$ and by the same way we can prove that g is well-defined. Since R/a^nR is GP- injective ring , there exists $c\in R$ Such that

$$f(a^{n}x) = (c + a^{n} R)a^{n}x = ca^{n}x + a^{n}R.$$
Now
$$g(f(a^{n}x)) = g(bx + a^{n}R)$$

$$= g(ca^{n}x + a^{n}R)$$

$$= a^{n}ca^{n}x + (a^{n}R)^{2}$$

$$= a^{n}x + (a^{n}R)^{2}.$$

So $a^nx+(a^nR)^2=aca^nx+(a^nR)^2$. But $a^nx \in a^nR$, then $(a^nR)^2 \subseteq a^nR$. Thus $a^nx+(a^nR)^2 \in a^nR$ and $a^nca^nx \in a^nR$ $a^nR = (a^nR)^2$. This gives $a^nca^nx + (a^nR)^2 \in (a^nR)^2$. Hence $a^nR \subseteq (a^nR)^2$. Therefore $a^nR = (a^nR)^2$

References:

- [1] Ahmed H.S. (1974), "On Commutative P.P-Rings", M.Sc Thesis, Baghdad University, Iraq.
- [2] Endo S. (1960), Note on P.P Rings, Pac.J. Math. (3) 41. P 687-693.
- [3] Mohammad M.R. (1996), "On π Regular Rings", M.Sc. Thesis , university of Mosul ,Iraq.
- [4] Yue Chi Ming R. (1976), On annihilator ideals, Math. J. Okayama University, (19), p. 51-53.
- [5] Yue Chi Ming R. (1996), On P-injectivity and generalization, Riv. Mat. University Parma. (5), p. 183-188.